Добірка наукової літератури з теми "Smooth deformations"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Smooth deformations".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Smooth deformations"

1

Williamson, M., and A. Majumdar. "Effect of Surface Deformations on Contact Conductance." Journal of Heat Transfer 114, no. 4 (1992): 802–10. http://dx.doi.org/10.1115/1.2911886.

Повний текст джерела
Анотація:
This study experimentally investigates the influence of surface deformations on contact conductance when two dissimilar metals are brought into contact. Most relations between the contact conductance and the load use the surface hardness to characterize surface deformations. This inherently assumes that deformations are predominantly plastic. To check the validity of this assumption, five tests were conducted in the contact pressure range of 30 kPa to 4 MPa, with sample combinations of (I) smooth aluminum-rough stainless steel, (II) rough aluminum-smooth stainless steel, (III) rough copper-smooth stainless steel, (IV) smooth copper-rough stainless steel, and (V) smooth aluminum-smooth stainless steel. The experimental results of tests I, II, and IV indicate that the conductance of the first load-unload cycle showed hysteresis, suggesting that the plastic deformation was significant. However, for subsequent load cycles, no conductance hysteresis was observed, implying that elastic deformation was predominant. In contrast, no conductance hysteresis was observed for all load-unload cycles of tests III and V. Therefore, the surface deformation for this combination was always predominantly elastic. In practical applications where plastic deformation is significant for the first loading, mechanical vibrations can produce oscillating loads, which can finally lead to predominance of elastic deformation. Comparison of the results of tests II and V show that even though plastic deformation was significant for the first loading of a rough aluminum surface, elastic deformation was always predominant for the smoother aluminum surface
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gaussier, Hervé, and Xianghong Gong. "Smooth Equivalence of Deformations of Domains in Complex Euclidean Spaces." International Mathematics Research Notices 2020, no. 18 (2018): 5578–610. http://dx.doi.org/10.1093/imrn/rny168.

Повний текст джерела
Анотація:
Abstract We prove that two smooth families of 2-connected domains in $\mathbf{C}$ are smoothly equivalent if they are equivalent under a possibly discontinuous family of biholomorphisms. We construct, for $\infty > m \geq 3$, two smooth families of smoothly bounded $m$-connected domains in $\mathbf{C}$, and for $n\geq 2$, two families of strictly pseudoconvex domains in $\mathbf{C}^n$, which are equivalent under discontinuous families of biholomorphisms but not under any continuous family of biholomorphisms. Finally, we give sufficient conditions for the smooth equivalence of two smooth families of domains.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ilten, Nathan Owen. "Deformations of smooth toric surfaces." Manuscripta Mathematica 134, no. 1-2 (2010): 123–37. http://dx.doi.org/10.1007/s00229-010-0386-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sako, Akifumi. "Recent Developments in Instantons in Noncommutative." Advances in Mathematical Physics 2010 (2010): 1–28. http://dx.doi.org/10.1155/2010/270694.

Повний текст джерела
Анотація:
We review recent developments in noncommutative deformations of instantons in . In the operator formalism, we study how to make noncommutative instantons by using the ADHM method, and we review the relation between topological charges and noncommutativity. In the ADHM methods, there exist instantons whose commutative limits are singular. We review smooth noncommutative deformations of instantons, spinor zero-modes, the Green's functions, and the ADHM constructions from commutative ones that have no singularities. It is found that the instanton charges of these noncommutative instanton solutions coincide with the instanton charges of commutative instantons before noncommutative deformation. These smooth deformations are the latest developments in noncommutative gauge theories, and we can extend the procedure to other types of solitons. As an example, vortex deformations are studied.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

DE BARTOLOMEIS, PAOLO, and ANDREI IORDAN. "DEFORMATIONS OF LEVI FLAT STRUCTURES IN SMOOTH MANIFOLDS." Communications in Contemporary Mathematics 16, no. 02 (2014): 1350015. http://dx.doi.org/10.1142/s0219199713500156.

Повний текст джерела
Анотація:
We study intrinsic deformations of Levi flat structures on a smooth manifold. A Levi flat structure on a smooth manifold L is a couple (ξ, J) where ξ ⊂ T(L) is an integrable distribution of codimension 1 and J : ξ → ξ is a bundle automorphism which defines a complex integrable structure on each leaf. A deformation of a Levi flat structure (ξ, J) is a smooth family {(ξt, Jt)}t∈]-ε,ε[ of Levi flat structures on L such that (ξ0, J0) = (ξ, J). We define a complex whose cohomology group of order 1 contains the infinitesimal deformations of a Levi flat structure. In the case of real analytic Levi flat structures, this cohomology group is [Formula: see text] where (𝒵*(L), δ, {⋅,⋅}) is the differential graded Lie algebra associated to ξ.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Capistrano, Abraão J. S. "Constraints on cosmokinetics of smooth deformations." Monthly Notices of the Royal Astronomical Society 448, no. 2 (2015): 1232–39. http://dx.doi.org/10.1093/mnras/stv052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Neshveyev, Sergey. "Smooth Crossed Products of Rieffel’s Deformations." Letters in Mathematical Physics 104, no. 3 (2013): 361–71. http://dx.doi.org/10.1007/s11005-013-0675-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

SALUR, SEMA. "DEFORMATIONS OF SPECIAL LAGRANGIAN SUBMANIFOLDS." Communications in Contemporary Mathematics 02, no. 03 (2000): 365–72. http://dx.doi.org/10.1142/s0219199700000177.

Повний текст джерела
Анотація:
In [7], R. C. McLean showed that the moduli space of nearby submanifolds of a smooth, compact, orientable special Lagrangian submanifold L in a Calabi-Yau manifold X is a smooth manifold and its dimension is equal to the dimension of ℋ1(L), the space of harmonic 1-forms on L. In this paper, we will show that the moduli space of all infinitesimal special Lagrangian deformations of L in a symplectic manifold with non-integrable almost complex structure is also a smooth manifold of dimension b1(L), the first Betti number of L.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Iacono, Donatella, and Marco Manetti. "On Deformations of Pairs (Manifold, Coherent Sheaf)." Canadian Journal of Mathematics 71, no. 5 (2019): 1209–41. http://dx.doi.org/10.4153/cjm-2018-027-8.

Повний текст джерела
Анотація:
AbstractWe analyse infinitesimal deformations of pairs $(X,{\mathcal{F}})$ with ${\mathcal{F}}$ a coherent sheaf on a smooth projective variety $X$ over an algebraically closed field of characteristic 0. We describe a differential graded Lie algebra controlling the deformation problem, and we prove an analog of a Mukai–Artamkin theorem about the trace map.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Baladi, Viviane, and Daniel Smania. "Smooth deformations of piecewise expanding unimodal maps." Discrete & Continuous Dynamical Systems - A 23, no. 3 (2009): 685–703. http://dx.doi.org/10.3934/dcds.2009.23.685.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії