Добірка наукової літератури з теми "Smash product"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Smash product".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Smash product"
任, 北上. "Duality between the Smash Product and Smash Coproduct." Advances in Applied Mathematics 06, no. 09 (2017): 1105–14. http://dx.doi.org/10.12677/aam.2017.69134.
Повний текст джерелаCinar, Ismet, Ozgur Ege, and Ismet Karaca. "The digital smash product." Electronic Research Archive 28, no. 1 (2020): 459–69. http://dx.doi.org/10.3934/era.2020026.
Повний текст джерелаGuo, Shuangjian, Xiaohui Zhang, Yuanyuan Ke, and Yizheng Li. "Enveloping actions and duality theorems for partial twisted smash products." Filomat 34, no. 10 (2020): 3217–27. http://dx.doi.org/10.2298/fil2010217g.
Повний текст джерелаLYDAKIS, MANOS. "Smash products and Γ-spaces". Mathematical Proceedings of the Cambridge Philosophical Society 126, № 2 (березень 1999): 311–28. http://dx.doi.org/10.1017/s0305004198003260.
Повний текст джерелаMa, Tianshui, Haiying Li, and Tao Yang. "Cobraided smash product Hom-Hopf algebras." Colloquium Mathematicum 134, no. 1 (2014): 75–92. http://dx.doi.org/10.4064/cm134-1-3.
Повний текст джерелаKAN, HAIBIN. "THE GENERALIZED SMASH PRODUCT AND COPRODUCT." Chinese Annals of Mathematics 21, no. 03 (July 2000): 381–88. http://dx.doi.org/10.1142/s0252959900000406.
Повний текст джерелаJia, Ling, and Fang Li. "Global dimension of weak smash product." Journal of Zhejiang University-SCIENCE A 7, no. 12 (December 2006): 2088–92. http://dx.doi.org/10.1631/jzus.2006.a2088.
Повний текст джерелаMu, Qiang. "Smash product construction of modular lattice vertex algebras." Electronic Research Archive 30, no. 1 (2021): 204–20. http://dx.doi.org/10.3934/era.2022011.
Повний текст джерелаNasution, Usman, Muhammad Yan Ahady, Vivi Pratiwi, Fatimah Zahrah Albanjari, Elvita Sari Br Tarigan, and Xyena Tesalonika Br Siregar. "Smash Skills In Table Tennis Games." QISTINA: Jurnal Multidisiplin Indonesia 3, no. 1 (June 1, 2024): 685–88. http://dx.doi.org/10.57235/qistina.v3i1.2376.
Повний текст джерелаWANG, DINGGUO, and YUANYUAN KE. "THE CALABI–YAU PROPERTY OF TWISTED SMASH PRODUCTS." Journal of Algebra and Its Applications 13, no. 03 (October 31, 2013): 1350118. http://dx.doi.org/10.1142/s0219498813501181.
Повний текст джерелаДисертації з теми "Smash product"
Almoosawi, Somar. "Product Related Research Regarding Small and Medium Sized Enterprises, in Hong Kong and South China, Environmental Management Systems." Thesis, Linköping : Linköping University. Institute of Technology, 2008. http://www.diva-portal.org/smash/get/diva2:114196/FULLTEXT01.
Повний текст джерелаGouthier, Bianca. "Actions rationnelles de schémas en groupes infinitésimaux." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0123.
Повний текст джерелаThis thesis focuses on the study of (rational) actions of infinitesimal group schemes, with a particular emphasis on infinitesimal commutative unipotent group schemes and generically free actions and faithful actions. For any finite k-group scheme G acting rationally on a k-variety X, if the action is generically free then the dimension of Lie(G) is upper bounded by the dimension of the variety. We show that this is the only obstruction when k is a perfect field of positive characteristic and G is infinitesimal commutative trigonalizable. If G is unipotent, we also show that any generically free rational action on X of (any power of) the Frobenius kernel of G extends to a generically free rational action of G on X. Moreover, we give necessary conditions to have faithful rational actions of infinitesimal commutative trigonalizable group schemes on varieties, and (different) sufficient conditions in the unipotent case over a perfect field. Studying faithful group scheme actions on a variety X yields information on representable subgroups of the automorphism group functor AutX of X. For any field k, PGL2,k represents the automorphism group functor of P1 k and thus subgroup schemes of PGL2,k correspond to faithful actions on P1 k. Moreover, PGL2,k(k) coincides with the Cremona group in dimension one, i.e. birational self-maps of P1 k, since any rational self-map of a projective non-singular curve extends to the whole curve. In positive characteristic, the situation is completely different if we consider rational actions of infinitesimal group schemes. Most of the faithful infinitesimal actions on the affine line do not extend to P1 k. If the characteristic of a field k is odd, any infinitesimal subgroup scheme of PGL2,k lifts to SL2,k. This is not true in characteristic 2 and, in this case, we give a complete description, up to isomorphism, of infinitesimal unipotent subgroup schemes of PGL2,k. Finally, we prove a result that gives an explicit description of all infinitesimal commutative unipotent k-group schemes with one-dimensional Lie algebra defined over an algebraically closed field k, showing that there are exactly n non-isomorphic such group schemes of fixed order pn
Young, Christopher. "The Depth of a Hopf algebra in its Smash Product." Doctoral thesis, 2014. https://repositorio-aberto.up.pt/handle/10216/102331.
Повний текст джерелаYoung, Christopher. "The Depth of a Hopf algebra in its Smash Product." Tese, 2014. https://repositorio-aberto.up.pt/handle/10216/102331.
Повний текст джерелаShakalli, Tang Jeanette. "Deformations of Quantum Symmetric Algebras Extended by Groups." Thesis, 2012. http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-10855.
Повний текст джерелаWelsh, Charles Clymer. "Some results in crossed products and lie algebra smash products." 1990. http://catalog.hathitrust.org/api/volumes/oclc/22425708.html.
Повний текст джерелаКниги з теми "Smash product"
Conference on Hopf Algebras and Tensor Categories (2011 University of Almeria). Hopf algebras and tensor categories: International conference, July 4-8, 2011, University of Almería, Almería, Spain. Edited by Andruskiewitsch Nicolás 1958-, Cuadra Juan 1975-, and Torrecillas B. (Blas) 1958-. Providence, Rhode Island: American Mathematical Society, 2013.
Знайти повний текст джерелаBruner, R. R. H. Springer, 1986.
Знайти повний текст джерелаPartial Dynamical Systems, Fell Bundles and Applications. American Mathematical Society, 2017.
Знайти повний текст джерелаЧастини книг з теми "Smash product"
Yan, Yan, and Lihui Zhou. "Separability Extension of Right Twisted Weak Smash Product." In Advances in Intelligent and Soft Computing, 103–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14880-4_12.
Повний текст джерелаNgompé, Arnaud Ngopnang. "Homeomorphic Model for the Polyhedral Smash Product of Disks and Spheres." In Toric Topology and Polyhedral Products, 253–75. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57204-3_13.
Повний текст джерелаYan, Yan, Nan Ji, Lihui Zhou, and Qiuna Zhang. "Some Properties of a Right Twisted Smash Product A*H over Weak Hopf Algebras." In Communications in Computer and Information Science, 101–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16336-4_14.
Повний текст джерелаNastasescu, Constantin, and Freddy Van Oystaeyen. "7. Smash Products." In Methods of Graded Rings, 187–221. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-40998-4_7.
Повний текст джерелаJardine, J. F. "Smash products of spectra." In Generalized Etale Cohomology Theories, 1–29. Basel: Springer Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-0066-2_1.
Повний текст джерелаLewis, L. G., J. P. May, and M. Steinberger. "Twisted half smash products and extended powers." In Lecture Notes in Mathematics, 299–349. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0075785.
Повний текст джерелаShaoxue, Liu, and Fred Oystaeyen. "Group Graded Rings, Smash Products and Additive Categories." In Perspectives in Ring Theory, 299–310. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2985-2_26.
Повний текст джерелаLewis, L. G., and J. P. May. "Change of universe, smash products, and change of groups." In Lecture Notes in Mathematics, 54–116. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0075781.
Повний текст джерелаDoi, Yukio. "Generalized Smash Products and Morita Contexts for Arbitrary Hopf Algebras." In Advances in Hopf Algebras, 39–53. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003419792-3.
Повний текст джерелаIlankovan, Velupillai, and Tian Ee Seah. "Surgical Facelift." In Oral and Maxillofacial Surgery for the Clinician, 759–73. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-1346-6_37.
Повний текст джерелаТези доповідей конференцій з теми "Smash product"
Hadzihasanovic, Amar. "The Smash Product of Monoidal Theories." In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 2021. http://dx.doi.org/10.1109/lics52264.2021.9470575.
Повний текст джерелаZhao Lihui. "Generalized L-R smash products and diagonal crossed products of multiplier Hopf algebras." In 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6002679.
Повний текст джерелаKonh, Bardia. "Finite Element Studies of Triple Actuation of Shape Memory Alloy Wires for Surgical Tools." In 2018 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dmd2018-6857.
Повний текст джерелаMontagnoli, Andre, Marcus L. Young, Christoph Somsen, Jan A. Frenzel, F. Tad Calkins, and Douglas E. Nicholson. "Processing and Thermomechanical Stability of Low Hysteresis Shape Memory Alloys." In SMST 2024. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.smst2024p0117.
Повний текст джерелаDe Nardi, Alice, Andrea Marinelli, Flavia Papile, and Andrea Cadelli. "Hoyo – Shape Memory Alloys enable a new way to approach the treatment of the Autism Spectrum Disorder." In Intelligent Human Systems Integration (IHSI 2022) Integrating People and Intelligent Systems. AHFE International, 2022. http://dx.doi.org/10.54941/ahfe100943.
Повний текст джерелаKilic, Ugur, Muhammad M. Sherif, Sherif M. Daghash, and Osman E. Ozbulut. "Full-Field Deformation and Thermal Characterization of GNP/Epoxy and GNP/SMA Fiber/Epoxy Composites." In ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/smasis2019-5640.
Повний текст джерелаShaw, John A., Antoine Gremillet, and David S. Grummon. "The Manufacture of NiTi Foams." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39028.
Повний текст джерелаSong, Di, Guozheng Kang, Qianhua Kan, and Chao Yu. "Observations on the Residual Martensite Phase of NiTi Shape Memory Alloy Micro-Tubes Under Uniaxial and Multiaxial Fatigue-Loadings." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65478.
Повний текст джерелаWorrell, Dominique, Faith Gantz, Linden Bolisay, Art Palisoc, and Marcus L. Young. "Shape Memory Alloy Design for a Lightweight and Low Stow Volume Expandable Solar Concentrator." In SMST 2024. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.smst2024p0115.
Повний текст джерелаHoffmann, Fabian, Robin Roj, Ralf Theiß, and Peter Dültgen. "Development of Shape Memory-Based Elastic-Adaptive Damping Elements for Sport and Rehabilitation Equipment." In ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/smasis2020-2255.
Повний текст джерела