Добірка наукової літератури з теми "Smart nanoparticles"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Smart nanoparticles".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Smart nanoparticles":

1

Jia, Lina, Peng Zhang, Hongyan Sun, Yuguo Dai, Shuzhang Liang, Xue Bai, and Lin Feng. "Optimization of Nanoparticles for Smart Drug Delivery: A Review." Nanomaterials 11, no. 11 (October 21, 2021): 2790. http://dx.doi.org/10.3390/nano11112790.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nanoparticle delivery systems have good application prospects in the treatment of various diseases, especially in cancer treatment. The effect of drug delivery is regulated by the properties of nanoparticles. There have been many studies focusing on optimizing the structure of nanoparticles in recent years, and a series of achievements have been made. This review summarizes the optimization strategies of nanoparticles from three aspects—improving biocompatibility, increasing the targeting efficiency of nanoparticles, and improving the drug loading rate of nanoparticles—aiming to provide some theoretical reference for the subsequent drug delivery of nanoparticles.
2

Li, Tongtao, Kwok Hoe Chan, Tianpeng Ding, Xiao-Qiao Wang, Yin Cheng, Chen Zhang, Wanheng Lu, Gamze Yilmaz, Cheng-Wei Qiu, and Ghim Wei Ho. "Dynamic thermal trapping enables cross-species smart nanoparticle swarms." Science Advances 7, no. 2 (January 2021): eabe3184. http://dx.doi.org/10.1126/sciadv.abe3184.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Bioinspired nano/microswarm enables fascinating collective controllability beyond the abilities of the constituent individuals, yet almost invariably, the composed units are of single species. Advancing such swarm technologies poses a grand challenge in synchronous mass manipulation of multimaterials that hold different physiochemical identities. Here, we present a dynamic thermal trapping strategy using thermoresponsive-based magnetic smart nanoparticles as host species to reversibly trap and couple given nonmagnetic entities in aqueous surroundings, enabling cross-species smart nanoparticle swarms (SMARS). Such trapping process endows unaddressable nonmagnetic species with efficient thermo-switchable magnetic response, which determines SMARS’ cross-species synchronized maneuverability. Benefiting from collective merits of hybrid components, SMARS can be configured into specific smart modules spanning from chain, vesicle, droplet, to ionic module, which can implement localized or distributed functions that are single-species unachievable. Our methodology allows dynamic multimaterials integration despite the odds of their intrinsic identities to conceive distinctive structures and functions.
3

Capek, Ignác. "Smart Biodecorated Hybrid Nanoparticles." Current Bionanotechnology 1, no. 1 (July 28, 2015): 60–78. http://dx.doi.org/10.2174/2213529401666150630170400.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liu, Rihe, Brian K. Kay, Shaoyi Jiang, and Shengfu Chen. "Nanoparticle Delivery: Targeting and Nonspecific Binding." MRS Bulletin 34, no. 6 (June 2009): 432–40. http://dx.doi.org/10.1557/mrs2009.119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractTargeted cancer therapies focus on molecular and cellular changes that are specific to cancer and hold the promise of harming fewer normal cells, reducing side effects, and improving the quality of life. One major challenge in cancer nanotechnology is how to selectively deliver nanoparticles to diseased tissues while simultaneously minimizing the accumulation onto the nanoparticle of unwanted materials (e.g., proteins in the blood) during the delivery process. Once therapeutic nanoparticles have been created, very often they are linked or coated to other molecules that assist in targeting the delivery of nanoparticles to different cell types of the body. These linkers or coatings have been termed targeting ligands or “smart molecules” because of their inherent ability to direct selective binding to cell types or states and, therefore, confer “smartness” to nanoparticles. Likewise, “smartness” can be imparted to the nanoparticles to selectively repel unwanted entities in the body. To date, such smart molecules can consist of peptides, antibodies, engineered proteins, nucleic acid aptamers, or small organic molecules. This review describes how such smart molecules are discovered, enhanced, and anchored to nanoparticles, with an emphasis on how to minimize nonspecific interactions of nanoparticles to unintended targets.
5

Arif, Muhammad. "Catalytic degradation of azo dyes by bimetallic nanoparticles loaded in smart polymer microgels." RSC Advances 13, no. 5 (2023): 3008–19. http://dx.doi.org/10.1039/d2ra07932a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kimura, Atsushi, Miho Ueno, Tadashi Arai, Kotaro Oyama, and Mitsumasa Taguchi. "Radiation Crosslinked Smart Peptide Nanoparticles: A New Platform for Tumor Imaging." Nanomaterials 11, no. 3 (March 12, 2021): 714. http://dx.doi.org/10.3390/nano11030714.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nanoparticles have been employed to develop nanosensors and drug carriers that accumulate in tumors. Thus, it is necessary to control the particle size, surface potential, and biodegradability of these nanoparticles for effective tumor accumulation and safe medical application. In this study, to form a nanoparticle platform suitable for diagnostic and drug delivery system (DDS) applications, peptides composed of aromatic amino acid residues were designed and synthesized based on the radiation crosslinking mechanism of proteins. The peptide nanoparticles, which were produced by γ-ray irradiation, displayed a positive surface potential, maintained biodegradability, and were stable in water and phosphoric buffer solution during actual diagnosis. The surface potential of the peptide nanoparticles could be changed to negative by using a fluorescent labeling reagent, so that the fluorescent-labeled peptide nanoparticles were uptaken by HeLa cells. The radiation-crosslinked nanoparticles can be applied as a platform for tumor-targeting diagnostics and DDS therapy.
7

Kong, Xiangqi, Yi Liu, Xueyan Huang, Shuai Huang, Feng Gao, Pengfei Rong, Shengwang Zhang, Kexiang Zhang, and Wenbin Zeng. "Cancer Therapy Based on Smart Drug Delivery with Advanced Nanoparticles." Anti-Cancer Agents in Medicinal Chemistry 19, no. 6 (July 10, 2019): 720–30. http://dx.doi.org/10.2174/1871520619666190212124944.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Background: Cancer, as one of the most dangerous disease, causes millions of deaths every year. The main reason is the absence of an effective and thorough treatment. Drug delivery systems have significantly reduced the side-effect of chemotherapy. Combined with nanotechnology, smart drug delivery systems including many different nanoparticles can reduce the side-effect of chemotherapy better than traditional drug delivery systems. Methods: In this article, we will describe in detail the different kinds of nanoparticles and their mechanisms emphasizing the triggering factors in drug delivery. Besides, the application of smart drug delivery systems in imaging will be introduced. Results: Combined with nanotechnology, smart drug delivery systems including many different nanoparticles can reduce the side-effect of chemotherapy better than traditional drug delivery systems. Conclusion: Despite considerable progress in nanoparticle research over the past decade, such as smart drug delivery systems for the treatment of cancer, molecular imaging probes and the like. The range of nanoparticles used in multifunction systems for imaging and drug delivery continues to grow and we expect this dilatation to continue. But to make nanoparticles truly a series of clinical products to complement and replace current tools, constant exploration efforts and time are required. Overall, the future looks really bright.
8

Gulia, Khushabu, Abija James, Sadanand Pandey, Kamal Dev, Deepak Kumar, and Anuradha Sourirajan. "Bio-Inspired Smart Nanoparticles in Enhanced Cancer Theranostics and Targeted Drug Delivery." Journal of Functional Biomaterials 13, no. 4 (October 28, 2022): 207. http://dx.doi.org/10.3390/jfb13040207.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Globally, a significant portion of deaths are caused by cancer.Compared with traditional treatment, nanotechnology offers new therapeutic options for cancer due to its ability to selectively target and control drug release. Among the various routes of nanoparticle synthesis, plants have gained significant recognition. The tremendous potential of medicinal plants in anticancer treatments calls for a comprehensive review of existing studies on plant-based nanoparticles. The study examined various metallic nanoparticles obtained by green synthesis using medicinal plants. Plants contain biomolecules, secondary metabolites, and coenzymes that facilitate the reduction of metal ions into nanoparticles. These nanoparticles are believed to be potential antioxidants and cancer-fighting agents. This review aims at the futuristic intuitions of biosynthesis and applications of plant-based nanoparticles in cancer theranostics.
9

Tolle, Christian, Jan Riedel, Carina Mikolai, Andreas Winkel, Meike Stiesch, Dagmar Wirth, and Henning Menzel. "Biocompatible Coatings from Smart Biopolymer Nanoparticles for Enzymatically Induced Drug Release." Biomolecules 8, no. 4 (September 28, 2018): 103. http://dx.doi.org/10.3390/biom8040103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nanoparticles can be used as a smart drug delivery system, when they release the drug only upon degradation by specific enzymes. A method to create such responsive materials is the formation of hydrogel nanoparticles, which have enzymatically degradable crosslinkers. Such hydrogel nanoparticles were prepared by ionotropic gelation sodium alginate with lysine-rich peptide sequences—either α-poly-L-lysine (PLL) or the aggrecanase-labile sequence KKKK-GRD-ARGSV↓NITEGE-DRG-KKKK. The nanoparticle suspensions obtained were analyzed by means of dynamic light scattering and nanoparticle tracking analysis. Degradation experiments carried out with the nanoparticles in suspension revealed enzyme-induced lability. Drugs present in the polymer solution during the ionotropic gelation can be encapsulated in the nanoparticles. Drug loading was investigated for interferon- (IFN-) as a model, using a bioluminescence assay with MX2Luc2 cells. The encapsulation efficiency for IFN- was found to be approximately 25%. The nanoparticles suspension can be used to spray-coat titanium alloys (Ti-6Al-4V) as a common implant material. The coatings were proven by ellipsometry, reflection-absorption infrared spectroscopy, and X-ray photoelectron spectroscopy. An enzyme-responsive decrease in layer thickness is observed due to the degradation of the coatings. The Alg/peptide coatings were cytocompatible for human gingival fibroblasts (HGFIB), which was investigated by CellTiterBlue and lactate dehydrogenase (LDH) assay. However, HGFIBs showed poor adhesion and proliferation on the Alg/peptide coatings, but these could be improved by modification of the alginate with a RGD-peptide sequence. The smart drug release system presented can be further tailored to have the right release kinetics and cell adhesion properties.
10

Friedman, Adam, Sarah Claypool, and Rihe Liu. "The Smart Targeting of Nanoparticles." Current Pharmaceutical Design 19, no. 35 (September 1, 2013): 6315–29. http://dx.doi.org/10.2174/13816128113199990375.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Smart nanoparticles":

1

Koen, Yolande. "Synthesis and investigation of smart nanoparticles." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (MSc (Chemistry and Polymer Science))--University of Stellenbosch, 2010.
ENGLISH ABSTRACT: The use of various ‘smart materials’ (briefly meaning materials that respond to a change in their environment) is currently of interest to both academics and industry. The primary aim of the current study was to entrap photochromic (PC) dyes in miniemulsions, as a means to improve their fatigue resistance, thus synthesizing smart nanoparticles. In the coatings industry the use of aqueous systems is becoming a common requirement for health and environmental reasons. Miniemulsion entrapment allows the direct dispersion of PC dyes into aqueous systems while allowing for the opportunity to tailor-make the host matrix in order to obtain a suitable PC response and improved fatigue resistance. The optimal instrument set-up required to establish the PC response of films of the so-called smart nanoparticles (i.e. PC miniemulsions) was determined. A UV-Vis instrument with a chip-type UV LED mounted inside for activation of the samples provided PC response results. A tungsten lamp with filter provided deactivation of the samples. A stable butyl methacrylate (BMA) miniemulsion formulation was established by conducting a design of experiments. A chromene and spironapthoxazine (SNO) PC dye were entrapped in the BMA miniemulsion. A hindered amine light stabiliser (HALS) was also entrapped with the SNO dye in the BMA miniemulsion to further improve the fatigue resistance. The following PC properties of the smart nanoparticles films were evaluated: colourability, thermal decay rate, half-life and fatigue resistance. To compare results with conventional systems, a BMA solution polymer was prepared. The SNO dye and different concentrations of the HALS were mixed with the BMA solution polymer. In comparison to the SNO smart nanoparticles the chromene smart nanoparticles films had lower colourability, but better fatigue resistance. Incorporating HALS at levels of 0.5–2% in the BMA miniemulsion with PC dye did not lead to any significant improvement in fatigue resistance, yet films of the BMA solution polymer showed some improvement. SNO dye incorporated at 1% gave similar colourability in both miniemulsion and in solution polymer, yet the fatigue resistance of the films of the PC miniemulsions was much better.
AFRIKAANSE OPSOMMING: Die gebruik van verskeie “slim materiale’ (kortliks beskryf as materiale wat reageer op `n verandering in hul omgewing) is tans van belang vir beide akademici en die industrie. Die hoofdoel van hierdie studie was om miniemulsietegnologie te gebruik om fotochromiese (FC) kleurstowwe vas te vang, vir die sintese van slim nanopartikels, om sodoende die weerstand teen afgematheid te verbeter. In die verfindustrie word die gebruik van waterbasissisteme meer algemeen weens gesondheids- en omgewingsredes. Die gebruik van miniemulsie sisteme om materiale vas te vang maak dit moontlik om FC kleurstowwe direk in waterbasissisteme te meng. Die sintese van `n unieke gasheer matriks word benodig om die optimum FC verandering te toon en weerstand teen afgematheid te verbeter. Om die FC verandering van die sogenaamde slim nanopartikel films (d.w.s. FC miniemulsies) te ondersoek was `n gepaste instrumentele opstelling nodig. Dit is vasgestel dat `n UV-Vis instrument waarin `n skyfie-tipe UV LED gemonteer is vir aktivering van die monsters, reproduseerbare resultate gegee het. Die monsters is gedeaktiveer deur gebruik te maak van `n tungsten lig met ‘n filter. `n Eksperimentele ontwerp is toegepas om `n stabiele butielmetakrielaat (BMA) miniemulsie formulasie te verkry. `n ‘Chromene’ en ‘spironapthoxazine’ (SNO) FC kleurstof is in die BMA miniemulsie vasgevang tesame met `n verhinderde amien ligstabiliseerder (VALS) om die weerstand teen afgematheid verder te verbeter. Die volgende FC eienskappe van die slim nanopartikels is gemeet: kleurintensiteit, tempo van termiese verwering, half-lewe en weerstand teen afgematheid. `n BMA polimeeroplossing is berei om resultate mee te vergelyk. Die SNO kleurstof en verskillende konsentrasies van die VALS is met die BMA polimeeroplossing gemeng. In vergelyking met die slim SNO nanopartikels het die intelligente chromene nanopartikelfilms `n swakker kleurintensiteit gehad, maar `n hoër weerstand teen afgematheid. Die gebruik van 0.5–2% VALS in die BMA miniemulsie met FC kleurstof het minimale verbetering in weerstand teen afgematheid getoon, maar daar was wel `n beduidende verbetering in die geval van films met FC kleurstof in `n BMA polimeeroplossing. Byvoeging van 1% SNO kleurstof in `n BMA miniemulsie of polimeeroplossing het dieselfde kleurintensiteit gelewer, maar die weerstand teen afgematheid van die FC miniemulsie was baie beter.
2

Schumacher, Manuela. "Smart organic-inorganic nanohybrids of functionalized silsesquioxane nanoparticles." kostenfrei, 2008. http://opus.ub.uni-bayreuth.de/volltexte/2009/549/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Metcalf, Daniel Gary. "Improving targeting of antibacterial photodynamic therapy using 'smart' nanoparticles." Thesis, University of Leeds, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yang, Long [Verfasser]. "Design of smart responsive polymers and polymer nanoparticles / Long Yang." Mainz : Universitätsbibliothek der Johannes Gutenberg-Universität Mainz, 2020. http://d-nb.info/1223379388/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Krini, Redouane [Verfasser]. "Polymer functionalized nanoparticles and smart polymersomes for medical applications / Redouane Krini." Mainz : Universitätsbibliothek Mainz, 2017. http://d-nb.info/1132738237/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Upadhyaya, Lakshmeesha. "Self-assembled smart filtration membranes from block copolymers and inorganic nanoparticles." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT242/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce travail de thèse propose une nouvelle approche pour la préparation de membranes à matrice mixte basée sur l’utilisation de copolymères à blocs et de nanoparticules inorganiques disposant de propriétés magnétiques. Des aggrégats de copolymères ont été préparés avec une morphologie variée (sphères, cylindres et vésicules) à partir du copolymère poly(acide méthacrylique)-b-poly(méthacrylate de méthyle). Ce dernier a été synthétisé par polymérisation radicalaire contrôlée par transfert de chaîne réversible par addition-fragmentation (RAFT) dans l’éthanol à 70°C. Des particules d’oxyde de fer ont, quant à elles, été préparées en présence de différents stabilisants à température variée pour permettre d’atteindre la charge de surface et les propriétés magnétiques recherchées. La structure des copolymères à bloc a permis d’obtenir à la fois des membranes hydrophobes via le procédé de séparation de phase induite par un non-solvant, ainsi que des membranes hydrophiles lorsque que la technique de spin-coating était appliquée aux aggrégats formés par auto-assemblage induit lors de la polymérisation. Grâce à l’étude détaillée des propriétés de filtration des membranes obtenues, la relation structure-propriété a été discutée sous l’action d’un champ magnétique externe. Enfin, la sensibilité au colmatage a été vérifiée via la filtration de solutions de protéines. Il a ainsi été démontré une diminution notable du colmatage sous champ magnétique, ouvrant de belles perspectives pour ces nouvelles membranes
This thesis presents a new approach to produce mix matrix membranes using block copolymers and inorganic nanoparticles having magnetic properties. The polymeric nanoparticle with different morphologies (linear, Spheres, worms, and vesicles), from poly (methacrylic acid)-b-(methyl methacrylate) diblock copolymer, were synthesized using Reversible addition−fragmentation chain transfer polymerization (RAFT) in ethanol at 70 ֠C. The inorganic counterpart, iron oxide nanoparticles were prepared using different stabilizers at various temperatures to acquire the necessary surface charge and magnetic properties. The chemistry of the particles leads to form both hydrophobic membranes using non-solvent induced phase separation as well as a hydrophilic membrane by using the simple spin coating technique with the particles from polymerization induced self-assembly. By a detailed experimental study of the membrane filtration, the influence of different parameters on the process performance has been investigated with and without magnetic field. Finally, membrane fouling has been studied using protein solution. Also, the membrane performance was examined under magnetic field revealing the successful reduction in the fouling phenomenon making them new performant membranes in the area of membrane technology
7

Ballesteros, Camilo Arturo Suarez. "Smart nanomaterials based on the photoactivated release of silver nanoparticles for bacterial control." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-14092017-143257/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Smart nanomaterials can selectively respond to a stimulus and consequently be activated in specific conditions, as a result of their interaction with electromagnetic radiation, biomolecules, pH change, etc. These nanomaterials can be produced through distinct routes and be used in artificial skin, drug delivery, and other biomedical applications. In this thesis, two smart nanosystems were developed, viz., i) nanocapsules formed by aniline (A) and chitosan (CS) (A-CS) containing silver nanoparticles (AgNPs), with an average size of 78 ± 19 nm, and ii) polycaprolactone (PCL) nanofibers, fabricated by the electrospinning technique containing AgNP into their bulk, with a diameter of 417 ± 14 nm. A novel system, based on the incorporation of the as-prepared nanocapsules onto the surface of PCL nanofibers containing AgNps (antibacterial mats), was also developed. The methodology employed avoids the direct contact of silver nanoparticles with the host and optimizes its release to the surrounding environment. The AgNPs release was triggered by exposing the nanocapsules to light at 405 nm. Consequently, the electronic energy vibration resulting from the interaction of the irradiation with the surface plasmon band (SPR) of AgNps, breaking the hydrogen bonds of the nanocapsules and releasing of AgNPs at a time of 150 s. To understand the perturbation of AgNps-Nanocapsules against bacteria, membrane models using Langmuir technique with the phospholipids 1,2-dipalmitoyl-sn-glycero-3-phospho-(1\'-rac-glycerol) (DPPG) and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE) were employed, which are the main components of cell membrane of Escherichia coli (E. coli). The results suggest that DPPG has more influence on the incorporation of the nanoparticles on the cell membrane. The antibacterial properties of the nanofibers/nanomaterials mats towards E. coli and Staphylococcus aureus (S. aureus) were investigated using the Agar diffusion test for 8 samples. The experiments revealed that the samples based on nanofibers/nanocapsules and irradiation presented a radius of inhibition of 2.58 ± 0.28 mm for S. aureus and 1.78 ± 0.49 mm for E. coli. This nanosystem showed to be highly interesting for biomedical applications.
Nanomateriais inteligentes podem responder seletivamente a um estímulo e consequentemente ser ativados em condições específicas, como resultado da sua interação com a radiação eletromagnética, mudança do pH, campo magnético, etc. Esses materiais podem ser produzidos através de distintas rotas e utilizados em aplicações como pele artificial, liberação de fármacos, e outras aplicações biomédicas. Nessa tese, dois nanossistemas inteligentes foram desenvolvidos, a saber: i) nanocápsulas formadas por anilina (A) e quitosana (CS) (A-CS) contendo nanopartículas de prata (AgNps), com um tamanho médio de 78 ± 19 nm, e ii) nanofibras de policaprolactona (PCL), fabricadas pela técnica de eletrofiação contendo AgNps em seu interior, com diâmetro de 417 ± 14 nm. Um terceiro sistema foi desenvolvido, baseado na incorporação das nanocápsulas na superfície das nanofibras de PCL contendo AgNps (manta antibacteriana). A metodologia utilizada evita o contato direto das nanopartículas de prata com o hospedeiro e otimiza sua liberação no meio ambiente. As AgNps liberadas foram acionadas pela exposição das nanocápsulas à um fonte de luz em 405 nm. Consequentemente, a vibração da energia eletrônica resultante da interação da irradiação com a banda plasmônica de superfície (SPR) das AgNps, quebra as ligações de hidrogênio da nanocápsula e libera as AgNps no meio em um tempo de 150 s. Para entender a perturbação das AgNps-nanocapsulas contra as bactérias, modelos de membrana foram usados através da técnica de Langmuir com os fosfolipídios 1,2-dipalmitoil-sn-glicero-3- fosfo-(1\'-rac-glicerol) (DPPG) and 1,2-dimiristoil-sn-glicero-3-fosfoetanolamina (DMPE), que são os principais componentes da membrana celular de Escherichia coli (E. coli). Os resultados sugerem que DPPG tem mais influência na incorporação das nanopartículas na membrana celular. As propriedades antibacterianas das mantas de nanofibras/nanomateriais contra E. coli e Staphylococus aureus (S. aureus) foram investigadas usando o teste de difusão Agar em 8 grupos, o qual revelou que o grupo contendo a nanofibra/nanocapsula e irradiação apresentou um raio de inibição de 2.58 ± 0.28 mm para S. aureus e 1.78 ± 0.49 mm para E. coli. Este nanossistema mostrou ser altamente interessante para aplicações biomédicas.
8

Greenhalgh, Kerriann R. "Development of biocompatible multi-drug conjugated nanoparticles/smart polymer films for biomedicinal applications." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002318.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Al-Shammaa, Zaid. "Targeting Drug-Resistant Tuberculosis Using SMART Nanotechnology Approach." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439310613.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

San, Miguel Delgadillo Adriana. "Pickering emulsions as templates for smart colloidosomes." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/45760.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Stimulus-responsive colloidosomes which completely dissolve upon a mild pH change are developed. pH-Responsive nanoparticles that dissolve upon a mild pH increase are synthesized by a nanoprecipitation method and are used as stabilizers for a double water-in-oil-in-water Pickering emulsion. These emulsions serve as templates for the production of pH-responsive colloidosomes. Removal of the middle oil phase produces water-core colloidosomes that have a shell made of pH-responsive nanoparticles, which rapidly dissolve above pH 7. The permeability of these capsules is assessed by FRAP, whereby the diffusion of a fluorescent tracer through the capsule shell is monitored. Three methods for tuning the permeability of the pH-responsive colloidosomes were developed: ethanol consolidation, layer-by-layer assembly and the generation of PLGA-pH-responsive nanoparticle hybrid colloidosomes. The resulting colloidosomes have different responses to the pH stimulus, as well as different pre-release permeability values. Additionally, fundamental studies regarding the role of particle surface roughness on Pickering emulsification are also shown. The pH-responsive nanoparticles were used as a coating for larger silica particles, producing rough raspberry-like particles. Partial dissolution of the nanoparticle coating allows tuning of the substrate surface roughness while retaining the same surface chemistry. The results obtained show that surface roughness increases the emulsion stability of decane-water systems (to almost twice), but only up to a certain point, where extremely rough particles produced less stable emulsions presumably due to a Cassie-Baxter wetting regime. Additionally, in an octanol-water system, surface roughness was shown to affect the type of emulsion generated. These results are of exceptional importance since they are the first controlled experimental evidence regarding the role of particle surface roughness on Pickering emulsification, thus clarifying some conflicting ideas that exist regarding this issue.

Книги з теми "Smart nanoparticles":

1

Hashim, Abbass, ed. Smart Nanoparticles Technology. InTech, 2012. http://dx.doi.org/10.5772/1969.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Han, Hua Fen. Smart Nanoparticles Technology. Scitus Academics LLC, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Smart Nanoparticles for Biomedicine. Elsevier, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ciofani, Gianni. Smart Nanoparticles for Biomedicine. Elsevier, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Smart Nanoparticles for Biomedicine. Elsevier, 2018. http://dx.doi.org/10.1016/c2017-0-00984-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Torchilin, V. P. Smart Pharmaceutical Nanocarriers. Imperial College Press, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sŭmatʻŭ nano ipcha rŭl iyonghan chʻŏnyŏnmul yurae yangni hwalsŏng mulchil (hangamje, myŏnyŏk hwalsŏngje) ŭi yangmul chŏndal yudo misairhwa e kwanhan yŏnʼgu: Chʻoejong yŏnʼgu kaebal kyŏlgwa pogosŏ = A study on the development of new drug delivery system with anticancer agents and immunomodulators derived from natural products using smart nano missiles. [Kyŏnggi-do Kwachʻŏn-si]: Pogŏn Pokchibu, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Carter, Joshua D., Chenxiang Lin, Yan Liu, Hao Yan, and Thomas H. LaBean. DNA-based self-assembly of nanostructures. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This article examines the DNA-based self-assembly of nanostructures. It first reviews the development of DNA self-assembly and DNA-directed assembly, focusing on the main strategies and building blocks available in the modern molecular construction toolbox, including the design, construction, and analysis of nanostructures composed entirely of synthetic DNA, as well as origami nanostructures formed from a mixture of synthetic and biological DNA. In particular, it considers the stepwise covalent synthesis of DNA nanomaterials, unmediated assembly of DNA nanomaterials, hierarchical assembly, nucleated assembly, and algorithmic assembly. It then discusses DNA-directed assembly of heteromaterials such as proteins and peptides, gold nanoparticles, and multicomponent nanostructures. It also describes the use of complementary DNA cohesion as 'smart glue' for bringing together covalently linked functional groups, biomolecules, and nanomaterials. Finally, it evaluates the potential future of DNA-based self-assembly for nanoscale manufacturing for applications in medicine, electronics, photonics, and materials science.
9

Segal, Ester, and Pranjal Chandra. Nanobiosensors for Personalized and Onsite Biomedical Diagnosis. Institution of Engineering & Technology, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Smart nanoparticles":

1

Vipulanandan, Cumaraswamy. "Smart Cement with Nanoparticles." In Smart Cement, 153–94. New York: CRC Press, 2021. http://dx.doi.org/10.1201/9780429298172-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vincent, B. "Smart Colloidal Systems." In Nanoparticles in Solids and Solutions, 257–67. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8771-6_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ebara, Mitsuhiro, Yohei Kotsuchibashi, Koichiro Uto, Takao Aoyagi, Young-Jin Kim, Ravin Narain, Naokazu Idota, and John M. Hoffman. "Smart Nanoassemblies and Nanoparticles." In NIMS Monographs, 67–113. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54400-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sharma, Mayur Mukut Murlidhar, Divya Kapoor, Atul Loyal, Rahul Kumar, Pankaj Sharma, and Azamal Husen. "Environmental Toxicity of Engineered Carbon Nanoparticles." In Smart Nanomaterials Technology, 337–53. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0240-4_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sharma, Preeti, Pooja Kumari, Tikam Chand Dakal, Jyotsana Singh, and Narendra Kumar Sharma. "Multifunctional Hypoxia Imaging Nanoparticles." In Smart Nanomaterials Targeting Pathological Hypoxia, 243–55. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1718-1_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Karg, Matthias, and Thomas Hellweg. "Smart Microgel/Nanoparticle Hybrids with Tunable Optical Properties." In Hydrogel Micro and Nanoparticles, 257–79. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527646425.ch11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tiwari, Shalini, Barkha Sharma, Harshita Singh, Pritom Biswas, and Ankita Kumari. "Nanoparticles in Pest Management." In Advances in Nanotechnology for Smart Agriculture, 221–44. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003345565-11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vasam, Mallikarjun, Raja Abhilash Punagoti, and Rita Mourya. "Biomedical Applications of Gold Nanoparticles." In Smart Nanomaterials in Biomedical Applications, 41–59. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84262-8_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rawat, Neha Kanwar, P. K. Panda, and Anujit Ghosal. "Conducting Polymer/CNT-Based Nanocomposites As Smart Emerging Materials." In Carbon Nanotubes and Nanoparticles, 107–26. Toronto; New Jersey : Apple Academic Press, 2019.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429463877-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gautam, Sapna, Anupama Mishra, and Pooja Koundal. "Nanotechnology for Functional/High-Performance/Smart Textiles." In Synthesis and Applications of Nanoparticles, 525–34. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6819-7_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Smart nanoparticles":

1

Ogden, Sam G., David Lewis, and Joe G. Shapter. "Silane functionalisation of iron oxide nanoparticles." In Smart Materials, Nano-and Micro-Smart Systems, edited by Nicolas H. Voelcker and Helmut W. Thissen. SPIE, 2008. http://dx.doi.org/10.1117/12.810679.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cortie, Michael B., Xiaoda Xu, Humayer Chowdhury, Hadi Zareie, and Geoffrey Smith. "Plasmonic heating of gold nanoparticles and its exploitation." In Smart Materials, Nano-, and Micro-Smart Systems, edited by Said F. Al-Sarawi. SPIE, 2005. http://dx.doi.org/10.1117/12.582207.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Funabiki, Fuji, Tetsuji Yano, and Shuichi Shibata. "Laser interference deposition of silver nanoparticles on glass." In Smart Materials, Nano- and Micro-Smart Systems, edited by Nicolas H. Voelcker. SPIE, 2006. http://dx.doi.org/10.1117/12.695731.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Niebert, Marcus, James Riches, Mark Howes, Charles Ferguson, Robert G. Parton, Anton P. J. Middelberg, Llew Rintoul, and Peter M. Fredericks. "Hybrid organic-inorganic nanoparticles: controlled incorporation of gold nanoparticles into virus-like particles and application in surface-enhanced Raman spectroscopy." In Smart Materials, Nano- and Micro-Smart Systems, edited by Nicolas H. Voelcker. SPIE, 2006. http://dx.doi.org/10.1117/12.695578.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nowak, Nicholas, Muhammad Ali Bablu, and James Manimala. "Investigation of Yarn Pullout As a Mechanism of Ballistic Performance Enhancement in Silica Nanoparticle-Impregnated Kevlar Fabric." In ASME 2023 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/smasis2023-111430.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Impregnating Kevlar fabric with silica nanoparticles is known to augment its mechanical properties, especially under shear deformation. Silica nanoparticle-impregnated Kevlar (SNK) fabric could therefore display improved ballistic performance. In this study, firstly, the ballistic performance of SNK with various percentages by weight of nanoparticle addition and number of layers is investigated utilizing compressed air gun experiments. A colloid-based process is used to impregnate spherical silica nanoparticles having 80–100 nm diameter into Kevlar 29-based K745 style plain woven fabric in a dry state. It was found that the addition of nanoparticles provided about 17.3 % mass advantage (owing to three fewer layers) for the 40 wt.% SNK over neat Kevlar for the non-penetrative case. The area of the damaged zone also showed a strong positive correlation with the kinetic energy absorbed at higher treatment levels. Further, SEM imaging revealed that at higher treatment levels the nanoparticles tend to agglomerate in the interstitial spaces of yarn crossover points. This indicated that the nanoparticles restrict yarn mobility and could improve inter-yarn friction, contributing to the engagement of secondary yarns away from the primary impact zone in the impact mitigation mechanism. In order to understand this mechanism better, yarn pullout tests are conducted on neat and treated fabrics under various conditions. Quasistatic and dynamic loading for in-plane and out-of-plane yarn pullout configurations are examined using customized experimental rigs. Factors such as yarn direction, lateral tension, pullout rate, nanoparticle size, shape, material and treatment level are being considered. For each case, the pullout force versus displacement history is recorded and critical features are extracted. In addition, digital footage is used to analyze pullout kinematics. It is noted that the peak pullout force increases with nanoparticle addition until a threshold treatment level is reached. For a given fabric style and weave, an optimal nanoparticle type and treatment level helps maximize peak pullout force and inter-yarn friction. Coefficients for linear, quadratic, and exponentially decaying sinusoidal fitting functions for various pull-out regimes are calibrated to model yarn pull-out behavior vis-à-vis the treatment parameters. Further analysis of the yarn pullout mechanisms is underway to better understand the ballistic performance enhancement displayed by SNK. It is anticipated that nanoparticle treated flexible armors would not only enhance ballistic protection, but also be amenable to integration with multifunctional capabilities such as wearable electronics, wound coagulation, or smart camouflage.
6

Gudapati, Vamshi M., and Mehrdad N. Ghasemi-Nejhad. "Use of Nanoparticles for the Development of High-Performance Nanoresins." In ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3805.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this study, a brittle epoxy resin has successfully been toughened by very small concentrations of SiC and diamond nanoparticles. The tensile stress-strain response (based on the ASTM tensile tests for polymers) and the fracture energy release rate, GIC, (based on the ASTM Single-Edge-Notched-Bending, SENB, tests for polymers) of neat and nano-reinforced epoxy were characterized over a range of nanoparticle concentrations. The maximum elevation of the fracture toughness, GIC, occurred at a very small particle concentration of about 0.2% by weight, for both diamond and SiC nanoparticles). This was also manifested as higher tensile failure stress and strain. The elevation of fracture toughness is most likely due to crack front trapping of the particles that promoted subsequent local plastic deformation. Scanning electron micrographs of the fracture surfaces for samples tested in tension and fracture showed the transition of epoxy behavior from brittle-to-ductile-to-brittle with increasing weight percentage of nanoparticles. At higher particle concentrations, flaky fracture surface was observed and the fracture toughness dropped, attaining values similar to the unreinforced polymer, which is attributed to agglomeration of the nanoparticles.
7

Bandyopadhyay, Sulalit, Gurvinder Singh, Sina M. Lystvet, Sondre Volden, Sabina Strand, and Wilhelm R. Glomm. "Smart Nanoparticles (NP) for Drug Delivery." In 5th Asian Particle Technology Symposium. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-2518-1_140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lee, Jiho, and Jeong Ho Chang. "Magnetic DNA separation process with functionalized magnetic silica nanoparticles." In Smart Materials, Nano-and Micro-Smart Systems, edited by Dan V. Nicolau and Guy Metcalfe. SPIE, 2008. http://dx.doi.org/10.1117/12.814120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Khodaparast, Payam, and Zoubeida Ounaies. "On the Dielectric and Mechanical Behavior of Metal Oxide-Modified PVDF-Based Nanocomposites." In ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/smasis2013-3302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nanoparticle modified polymers have promise as hybrid materials that exhibit properties beyond those predicted by mixing law theories. In the case of metal-oxide nanoparticles in a polymer, it is expected that multifunctional properties of the obtained nanocomposite, including dielectric and mechanical, will be dominated by presence of interface rather than predicted by the inherent properties of individual components. This paper will focus on understanding the role of different types of nanoparticles, namely, titania, silica and alumina and a polymer matrix, Polyvinylidene fluoride (PVDF) in affecting the final dielectric and mechanical properties.
10

Rosa, Lorenzo, and Saulius Juodkazis. "Tailoring plasmonic nanoparticles and fractal patterns." In Smart Nano-Micro Materials and Devices, edited by Saulius Juodkazis and Min Gu. SPIE, 2011. http://dx.doi.org/10.1117/12.903742.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Smart nanoparticles":

1

Zhao, Yan. Mesoporous silica nanoparticles as smart and safe devices for regulating blood biomolecule levels. Office of Scientific and Technical Information (OSTI), January 2011. http://dx.doi.org/10.2172/1029552.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії