Добірка наукової літератури з теми "Slag resistance"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Slag resistance".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Slag resistance"
Skaf, Marta, Emiliano Pasquini, Víctor Revilla-Cuesta, and Vanesa Ortega-López. "Performance and Durability of Porous Asphalt Mixtures Manufactured Exclusively with Electric Steel Slags." Materials 12, no. 20 (October 11, 2019): 3306. http://dx.doi.org/10.3390/ma12203306.
Повний текст джерелаBabenko, A. A., M. V. Ushakov, A. V. Murzin, and L. Yu Mikhailova. "Elaboration and mastering of technology of semiproduct smelting in EAF under magnesia slags." Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information 75, no. 8 (September 6, 2019): 936–43. http://dx.doi.org/10.32339/0135-5910-2019-8-936-943.
Повний текст джерелаYu, Chao, Chengji Deng, Hongxi Zhu, Zhengliang Xue, and Jun Ding. "Slag corrosion resistance of Al4SiC4." International Journal of Materials Research 108, no. 3 (March 13, 2017): 249–52. http://dx.doi.org/10.3139/146.111469.
Повний текст джерелаXu, Haiqin, Shaopeng Wu, Hechuan Li, Yuechao Zhao, and Yang Lv. "Study on Recycling of Steel Slags Used as Coarse and Fine Aggregates in Induction Healing Asphalt Concretes." Materials 13, no. 4 (February 17, 2020): 889. http://dx.doi.org/10.3390/ma13040889.
Повний текст джерелаYuan, Wen Jie, Cheng Ji Deng, Wei Zhou, and Hong Xi Zhu. "The Slag Resistance of Al4SiC4-Al4O4C Composite Refractories." Applied Mechanics and Materials 692 (November 2014): 224–28. http://dx.doi.org/10.4028/www.scientific.net/amm.692.224.
Повний текст джерелаChen, Tie Jun. "Study on Full-Slag Concrete Feasibility." Advanced Materials Research 535-537 (June 2012): 1682–85. http://dx.doi.org/10.4028/www.scientific.net/amr.535-537.1682.
Повний текст джерелаMa, Bei Yue, Qiang Zhu, Yong Sun, Jing Kun Yu, and Ying Li. "Influences of Commercial SiC and Al2O3-SiC Synthesized from Clay on the Slag Resistance of Corundum Material." Advanced Materials Research 146-147 (October 2010): 526–29. http://dx.doi.org/10.4028/www.scientific.net/amr.146-147.526.
Повний текст джерелаKempf, Luca-Alexander, Rolf Breitenbücher, Christian Gerten, and Andreas Ehrenberg. "Optimizing the acid resistance of concrete with granulated blast-furnace slag." Acta Polytechnica CTU Proceedings 33 (March 3, 2022): 295–99. http://dx.doi.org/10.14311/app.2022.33.0295.
Повний текст джерелаHumad, Habermehl-Cwirzen, and Cwirzen. "Effects of Fineness and Chemical Composition of Blast Furnace Slag on Properties of Alkali‐Activated Binder." Materials 12, no. 20 (October 21, 2019): 3447. http://dx.doi.org/10.3390/ma12203447.
Повний текст джерелаKushnirskii, G. M., V. G. Sloushch, A. N. Sokolov, E. S. Borisovskii, L. M. Myznikova, I. K. Orlov, and T. V. Zhukova. "Slag resistance of refractories for evacuators." Refractories 27, no. 7-8 (July 1986): 429–33. http://dx.doi.org/10.1007/bf01389512.
Повний текст джерелаДисертації з теми "Slag resistance"
Wang, Xidong. "Synthesis of AlON and MgAlON Ceramics and Their Chemical Corrosion Resistance." Doctoral thesis, KTH, Materials Science and Engineering, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3120.
Повний текст джерелаIn view of the excellent mechanical, chemical and opticalproperties, AlON (Aluminum oxynitride) as well as MgAlON(Magnesium Aluminum oxynitride) have drawn the attention ofmaterials scientists in past decades. In this thesis,thermodynamic properties, synthesis and corrosion resistance tooxygen and slag of AlON and MgAlON ceramics have beeninvestigated.
Gibbs energy of AlON and MgAlON with different compositionsand temperatures were estimatedby using thermodynamicquasi-parabola rule. Phase stability diagrams of Al-O-N andMg-Al-O-N systems at different conditions have been calculated.On the basis of thermodynamic analysis, AlON and MgAlONceramics were synthesized by hot-press sintering andcharacterized by XRD, TEM and HREM analyses. An X-raydiffraction standard file of MgAlON is suggested and sent toJCPDS.
The density of AlON synthesized was 3.63g/cm3, about 97.8% of its theoretical density. Thedensity of MgAlON is 3.55 g/cm3. Fracture toughness of AlON and MgAlON is 3.96 and4.06 MPa.m1/2. Three-point bending strength of AlON and MgAlONare 248 and 268 MPa, respectively, at room temperature andkeeps very high until 1723K. However the strength drops 189 and202 MPa for AlON and MgAlON, respectively, at 1723K. Thefracture section of AlON and MgAlON were examined and found tobe a mixed fracture of intercrystalline and cleavage fracturefor AlON and a mixed intercrystalline and transcrystallinefracture for MgAlON.
Oxidation experiments of AlON and MgAlON and a comparison ofthe oxidation behavior of AlON, MgAlON, O'SiAlON-ZrO2and NB-ZCM have been carried out. Undernon-isothermal oxidation conditions, oxidation of AlON exhibitstwo steps with a "S"-shaped curve due to the phasetransformation of oxidation product. As temperature increases,the oxidation product, γ -Al2O3formed at lower temperatures will transform intoα-Al2O3. Due to the differences in the molar volumesbetween α-Al2O3and γ -Al2O3, cracks are likely to be formed in the productlayer promoting further oxidation. MgAlON, O'SiAlON-ZrO2and NB-ZCM show only one step with paraboliccurves.
Isothermal oxidation experiments of AlON, MgAlON,O'SiAlON-ZrO2and NB-ZCM have been carried out in thetemperature range of 1373-1773K. At lower temperatures, MgAlONshows the best resistance to oxidation. But at highertemperatures, such as 1773K, AlON shows the best resistance tooxidation. O'SiAlON-ZrO2shows very good oxidation resistance in the lowtemperature range up to 1673K. But, as the temperature goes upabove 1673K, there is liquid phase produced during theoxidation process. Gas bubbles are also formed in the productlayer causing the flaking-off of some parts of the productlayer. Therefore its oxidation rate increases greatly astemperature rises to 1673K. In the case of BN-ZCM ceramics, dueto the evaporation of B2O3, the oxidation resistance seems to be poorest. Thechemical reaction activation energies for the initial stage ofoxidation of AlON, MgAlON, O'SiAlON-ZrO2and BN-ZCM are 218, 330, 260 and 254 kJ/molerespectively. And the activation energies at the laterdiffusion controlling stages are 227, 573, 367 and 289 kJ/molefor AlON, MgAlON, O'SiAlON-ZrO2and BN-ZCM respectively.
The roughness of the oxidation sample surfaces has beenmeasured by Atomic Force Microscope. As the temperatureincreases, the degrees of roughness of AlON and MgAlON surfacesincrease slightly due to the growth of crystal grain. Theroughness degree of BN-ZCM increases greatly because of theevaporation of B2O3. However the roughness of O'SiAlON-ZrO2decreases as the temperature increases from 1473Kto 1673K. The main reason is that the liquid phase (glass)produced during the oxidation process at high temperatures suchas 1673K and 1773K. The roughness degree of MgAlON, AlON,O'SiAlON-ZrO2and BN-ZCM are 234, 174, 75 and 63 nm respectivelyat 1473K, and 297, 284, 52 and 406 nm respectively at1673K.
Experiments of corrosion of AlON by CaO-MgO-"FeO"-Al2O3-SiO2slags were conducted in the temperature range of1693-1753K under static conditions as well as under forcedconvection. XRD, SEM-EDS and TEM analyses on the corrodedsamples were carried out.
The results showed that the diffusion was therate-controlling step in the initial stage of the corrosion.Thereafter, the slag formation (the product layer dissolvinginto the liquid slag) became more and more important. Thisaspect was further confirmed by fractal dimension analysis ofthe interface. The overall activation energy for the corrosionprocess with slag No.1 was evaluated to be 1002 kJ. Adding"FeO" to the slag greatly enhanced the corrosion rate probablydue to the reaction of the sample with "FeO".
Key words:AlON, MgAlON, Thermodynamics, Synthesis,Oxidation, Slag corrosion
Chan, Chen-Feng. "Influence of additives and atmosphere on microstructural evolution and slag resistance of Al₂O₃-SiC-C refractories." Thesis, University of Sheffield, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391039.
Повний текст джерелаHassan, Husseen, and Abdifatah Sahal. "Experimental Tests of Pre - placed Aggregate Concrete for Concrete Repairs." Thesis, KTH, Betongbyggnad, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278540.
Повний текст джерелаDå en stor del av vattenkraftsdammarna i Sverige byggdes på 1950 och 1960-talet börjar många av dessa sakta men säkert brytas ner. Vattenkraftföretagen står inför stora utmaningar och investerar följaktligen i effektiva reparationsmetoder då dammbrott skulle kunna få allvarliga konsekvenser för människor, den omgivande miljön och för samhället. Flertalet konstruktioner inom vattenkraften är gjorda av betong och kraven på den nya kompletterande betongen är höga. En betong med potentialen att möta och uppfylla dessa höga krav är injekteringsbetongen som i tidigare studier uppvisat lovande resultat beträffande dess mekaniska egenskaper. Med anledning av detta är injekteringsbetongen av intresse att undersöka. Fokus har inte varit på att optimera injekteringsbetongen i syfte att genomföra fullskaliga försök. Istället har huvudsyftet med detta examensarbete varit att studera och analysera injekteringsbetongens mekaniska egenskaper såsom krympning, tryckhållfasthet, spräckhållfasthet, frostbeständighet samt undersöka viktiga parametrar i skapandet av ett homogent och lättflytande cementbruk som med god framgång kunde fylla ut hålrummen mellan grova ballasten. Undersökningarna utfördes genom laboratorieförsök på Vattenfalls betonglaboratorium i Älvkarleby. Vidare har skapandet och utvecklandet av bruket utförts i enlighet med metoder och krav angivna i American Society for Testing and Materials, ASTM standards, samt i Svenska institutet för Standarder, SiS. Totalt gjordes 15 bruksblandningar, dock användes enbart de sista fem till gjutning av provkroppar då lufthalten visade sig vara för låg i dem första tio. Resultaten indikerade på att det är nödvändigt att ersätta luftporbildare med mikrosfärer för att erhålla en lufthalt som uppfyller kraven för betong i exponeringsklass XF3 samt XC4. Injekteringbetongens avflagning efter 56 dygn var mindre än 0.1 kg/m2 och frostbeständigheten kunde därmed klassas som mycket god. Användningen av slagg minskade cementbrukets vattenseparation avsevärt och bidrog även till förbättrade gjutresultat. Dock bidrog det å andra sidan till en ökad krympning hos injekteringsbetongen. En effektivitetsfaktor på 0.6 visade sig vara för låg då injekteringsbetongen med slagg hade en cirka 50 % högre tryckhållfasthet än dem utan. Dessutom visade sig injekteringsbetongens krympning vara mindre än den konventionella betongens efter 63 dagar. Tryckhållfastheten hos injekteringsbetongen utan slagg uppvisade även en cirka 15 % lägre tryckhållfasthet än den konventionella betongens. Vibrering under gjutning visade sig höja tryckhållfastheten hos injekteringsbetongen samt förbättra gjutresultaten. En låg vattenseparation i kombination med en flödestid på cirka 45 sekunder för 1.7 liter bruk visade sig ge bästa gjutresultaten. Resultaten från laboratorieförsöken har visat på att injekteringsbetongen besitter stor potential. Dock bör ytterligare undersökningar genomföras för att bedöma huruvida en mindre ballastfraktion för sanden påverkar brukets förmåga att penetrera den grova ballasten. Vidare bör bruket pumpas in istället för att hällas över den grova ballasten, detta för att se huruvida gjutresultaten samt de mekaniska egenskaperna hos injekteringsbetongen skulle förbättras.
Anttila, S. (Severi). "Influence of minor elements on some weldability issues of intermediate purity stabilized ferritic stainless steels." Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526219738.
Повний текст джерелаTiivistelmä Stabiloidut ferriittiset ruostumattomat teräkset soveltuvat korvaamaan tavanomaisia austeniittisia ruostumattomia teräksiä ohutlevysovelluksissa. Näillä teräksillä keskeiset mekaaniset ja korroosio-ominaisuudet ovat usein paremmat kuin varhaisilla, stabiloimattomilla ferriittisillä teräksillä. Hiili ja typpi ovat näissä teräksissä kuitenkin epäpuhtauksia. Toisin kuin austeniittiset teräkset, ferriittiset teräkset ovat alttiita haurasmurtumalle, erityisesti hitsatuissa rakenteissa. Tässä väitöstutkimuksessa keskityttiin mikroseosaineiden ja epäpuhtauksien vaikutukseen keskipuhtaiden stabiloitujen ferriittisten teräslajien hitsauksessa. Tutkimus kohdistui erityisesti alumiinin, kalsiumin, piin, titaanin, niobin, typen ja hapen vaikutuksiin. Aluksi tutkittiin kaupallisten terästen hitsien keskeisiä ominaisuuksia. Tämän jälkeen tutkittiin uusia ns. korkeakromisia stabiloituja ferriittisiä teräslajeja. Lopuksi tutkittiin teräksen valmistuksen vaikutuksia stabiloitujen ferriittisten ruostumattomien terästen hitsattavuuteen. Tutkituilla teräksillä hitsauksen aikana muodostui runsaasti kuonalauttoja. Näillä kuonilla on monta alkuperää, esim. deoksidointi, kalsiumkäsittely ja stabilointiaineet. Hitsien kuonaisuutta voidaan karkeasti arvioida teräksen kemiallisen koostumuksen perusteella. Muodostuvilla kuonilla on useita vaikutuksia hitsauksessa, mm. epäjatkuvuuksiin ja sulan virtauksiin. Hitsauksessa muodostuva suuri raekoko ja stabiloinnin titaanikarbonitridipartikkelit heikentävät oleellisesti hitsin muutosvyöhykkeen sitkeyttä. Stabilointi käyttäen pääasiassa niobia on toivottavaa, mutta jos stabilointiin käytetään vain niobia, tulee hitsin mikrorakenteesta karkea ja hitsin ominaisuudet voivat heikentyä. Karkean mikrorakenteen hienontaminen on mahdollista käyttäen suojakaasuna argonia, jossa on hieman typpeä ja happea, mikäli teräkseen on seostettu hieman alumiinia ja titaania. Raerakenteen hienontaminen ei kuitenkaan yksiselitteisesti paranna hitsin ominaisuuksia, mikäli hienontaminen saavutetaan kasvattamalla epäpuhtauspitoisuutta tarpeettoman korkeaksi
Sampaio, Soares Luis Fernando. "Influence of slab continuity on punching resistance." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/48011.
Повний текст джерелаŠimko, Lukáš. "Vliv ohybového namáhání na elektrické vlastnosti alkalicky aktivovaných struskových kompozitů." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-372061.
Повний текст джерелаJohnston, Katherine Ann. "Biochemical mechanisms of resistance of potato cultivars to slug attack." Thesis, University of Newcastle Upon Tyne, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254057.
Повний текст джерелаDeva, Yashika Poorvi. "Slug flow induced corrosion studies using electrochemical noise measurements." Ohio : Ohio University, 1995. http://www.ohiolink.edu/etd/view.cgi?ohiou1179513355.
Повний текст джерелаLindeman, Harriet. "Spoken Resistance: Slam Poetry Performance as a Diasporic Response to Discursive Violence." Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/scripps_theses/1032.
Повний текст джерелаNguyen, Tien Dung. "Apport des aluminates de calcium vis-à-vis de la résistance à l'eau des sulfates de calcium hydratés." Thesis, Lyon, INSA, 2012. http://www.theses.fr/2012ISAL0002.
Повний текст джерелаCalcium sulphate materials are economical and ecological. But their use in the construction is quite limited because of their sensibility to water. The capacity of aluminate cement (CAC) to decrease the water sensibility of calcium sulphate and the mechanisms of insensibilisation were investigated. Waterproofing of gypsum base materials was carried out by addition of small amounts of aluminate cement (≤ 30%). Different nature of calcium sulphates : gypsum, hemihydrate α and β, synthetic anhydrite was studied. The study of mechanisms of insensibilisation to water of calcium sulphate by adding cement Fondu, with different analysis of microstructure : IR, DRX, ATD-TG, MEB, revealed two approaches : formation of ettringite insoluble and formation of gel AH3 that stick soluble grains of calcium sulphate. The nature of phases of aluminate cement has influences on the mechanical properties, sensibility to water and durability of mixtures [calcium sulphate / CAC]. The studies of mixtures [synthetic anhydrite / slag / CAC] offer interesting perspectives for the development of binders with low imprint CO2
Книги з теми "Slag resistance"
Boyd, Andrew James. Salt scaling resistance of concrete containing slag and fly ash. Ottawa: National Library of Canada, 1995.
Знайти повний текст джерелаSmith, Amanda J. Factors affecting the sulphate resistance of mortars containing slag and silica fume. Ottawa: National Library of Canada, 2002.
Знайти повний текст джерелаPashutinski, Igor. Mechanisms of improved sulphate resistance of concrete containing slag or silica fume. Ottawa: National Library of Canada, 1990.
Знайти повний текст джерелаJiao, Qingxian. Generation and tranmission [sic] of heat in an electric slag resistance furnace. 1991, 1991.
Знайти повний текст джерелаMa, Thomas Lai-Wai. A finite element model of the coupled electrothermal effects in a slag resistance furnace. 1985.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. The Manufacturing method of surface decarbonized steel slab with excellent sulfide stress corrosion and ammonia cracking resistance. Washington, DC: National Aeronautics and Space Administration, 1987.
Знайти повний текст джерелаWelsh, Mary Sue. Keeping Up with the Speed Kings. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252037368.003.0004.
Повний текст джерелаЧастини книг з теми "Slag resistance"
Ahmad, Saeed, Nasir Shafiq, Hafiz Waheed Iqbal, Raja Zaheer Ahmad, Zulqurnain Abbas, Anees-ur Rehman, and Muhammad Ali. "Effect of Slag on Chloride Resistance of Concrete." In Lecture Notes in Civil Engineering, 365–74. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6311-3_42.
Повний текст джерелаSaurav, Anjani Kumar Shukla, and Pratyush Malaviya. "A Comparative Study of Fire Resistance of Concrete Incorporating Ultrafine Slag." In Advances in Industrial Safety, 291–304. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6852-7_26.
Повний текст джерелаMoriwaki, Koji, Kyohei Yamaguchi, and Masanori Ogata. "Evaluation Methods of the Corrosion Resistance of ZrO2-C Material used for Sen Slag Line." In Proceedings of the Unified International Technical Conference on Refractories (UNITECR 2013), 819–24. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118837009.ch140.
Повний текст джерелаKennedy, Mark William, Melina Garcia, and Finn Olesen. "Comparison of Classical Tools and Modern Finite Element Modeling in the Electrical Design of Slag Resistance Furnaces." In International Smelting Technology Symposium, 239–49. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118364765.ch29.
Повний текст джерелаSen, Anupal, B. Prasad, J. K. Sahu, and J. N. Tiwari. "Studies & Optimisation of Various types of Zirconia to Minimise Crack Propagation & Improve Corrosion &Erosion Resistance of Slag Band of Subentry Nozzle." In Proceedings of the Unified International Technical Conference on Refractories (UNITECR 2013), 825–30. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118837009.ch141.
Повний текст джерелаChardon, Patrick. "The Molecular Genetics of the Sla Complex." In Improving Genetic Disease Resistance in Farm Animals, 91–98. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1057-7_10.
Повний текст джерелаChang, Peng, Qian Feng Yao, and Aping Wang. "Crack Resistance Analyses on RC Composite Floor Slab." In Environmental Ecology and Technology of Concrete, 637–43. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-983-0.637.
Повний текст джерелаChen, Mao, Junhong Chen, and Baojun Zhao. "Corrosion Resistances of Cr-Free Refractories to Copper Smelting Slags." In Advances in Molten Slags, Fluxes, and Salts, 1101–8. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119333197.ch117.
Повний текст джерелаKristensen, Birte. "Current Status of SLA Class I And II Serology." In Improving Genetic Disease Resistance in Farm Animals, 23–32. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1057-7_4.
Повний текст джерелаVaiman, Marcel. "Possible Effects of the Pig SLA Complex on Physiological Performances." In Improving Genetic Disease Resistance in Farm Animals, 124–33. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1057-7_14.
Повний текст джерелаТези доповідей конференцій з теми "Slag resistance"
"Alkaline Activated Slag (AAS): Resistance to Sulfate Attack." In SP-326: Durability and Sustainability of Concrete Structures (DSCS-2018). American Concrete Institute, 2018. http://dx.doi.org/10.14359/51711005.
Повний текст джерела"Resistance of Alkali-Activated Slag Mortars to Chloride Solution." In "SP-114: Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete: Proceedings of the Third International Conference". American Concrete Institute, 1989. http://dx.doi.org/10.14359/1886.
Повний текст джерела"Freezing and Thawing Resistance of High Slag Content Concrete." In SP-179: Fourth CANMET/ACI/JCI Conference: Advances in Concrete Technology. American Concrete Institute, 1998. http://dx.doi.org/10.14359/6086.
Повний текст джерела"Scaling Resistance of Ground Granulated Blast Furnace (GGBF) Slag Concretes." In "SP-145: Durability of Concrete -- Proceedings Third CANMET - ACI International Conference, Nice, France 1994". American Concrete Institute, 1994. http://dx.doi.org/10.14359/4540.
Повний текст джерелаWang, Guo-qiang, Ke-bin Shi, and Yi-xiong Ge. "nStudy on crack resistance of high performance concrete with lithium-slag." In 2011 International Conference on Electric Technology and Civil Engineering (ICETCE). IEEE, 2011. http://dx.doi.org/10.1109/icetce.2011.5776466.
Повний текст джерелаZhong, Song, Wei Chen, Wei Wang, Linze Li, and Long Xie. "Experimental Study on Frost Resistance of High Titanium Heavy Slag Concrete." In 2015 4th International Conference on Sensors, Measurement and Intelligent Materials. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icsmim-15.2016.182.
Повний текст джерела"The Sulphate Resistance of Portland and Blast Furnace Slag Cement Concretes." In "SP-126: Durability of Concrete: Second International Conference, Montreal, Canada 1991". American Concrete Institute, 1991. http://dx.doi.org/10.14359/2490.
Повний текст джерелаNam, Huynh Phuong, and Akira Hosoda. "Improvement of Crack Resistance of Slag Concrete by Utilizing High Alite Cement." In Ninth International Conference on Creep, Shrinkage, and Durability Mechanics (CONCREEP-9). Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784413111.042.
Повний текст джерелаTurchin, Vadim, Stanislav Sychugov, Ludmila Yudina, Alexander Gumeniuk, Tatyana Zhilkina, Yuriy Gmizov, Rimantas Mackevicius, and Tatyana Ivanova. "Corrosion resistance dry building mortars base on alkaline slag binder for using in aggressive sulfate medium." In The 13th international scientific conference “Modern Building Materials, Structures and Techniques”. Vilnius Gediminas Technical University, 2019. http://dx.doi.org/10.3846/mbmst.2019.039.
Повний текст джерелаTurkmen, Ibrahim, M. Murat Maras, Mehmet Burhan Karakoc, Ramazan Demirboga, and Fatih Kantarci. "Fire resistance of geopolymer concrete produced from Ferrochrome slag by alkali activation method." In 2013 International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, 2013. http://dx.doi.org/10.1109/icrera.2013.6749726.
Повний текст джерелаЗвіти організацій з теми "Slag resistance"
SUGAMA, T., L. E. BROTHERS, and T. R. VAN DE PUTTE. EFFECT OF QUARTZ/MULLITE BLEND CERAMIC ADDITIVE ON IMPROVING RESISTANCE TO ACID OF SODIUM SILICATE-ACTIVATED SLAG CEMENT. CELCIUS BRINE. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/875883.
Повний текст джерелаAdams, Caitlin J., Baishakhi Bose, Ethan Mann, Kendra A. Erk, Ali Behnood, Alberto Castillo, Fabian B. Rodriguez, Yu Wang, and Jan Olek. Superabsorbent Polymers for Internally Cured Concrete. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317366.
Повний текст джерелаWang, K., J. He, E. E. Davis, and C. Goldfinger. Stresses in the Juan de Fuca plate and the role of mantle resistance to horizontal slab motion. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2002. http://dx.doi.org/10.4095/222540.
Повний текст джерелаPROGRESSIVE COLLAPSE RESISTANCE OF STEEL FRAMED BUILDINGS UNDER EXTREME EVENTS. The Hong Kong Institute of Steel Construction, September 2021. http://dx.doi.org/10.18057/ijasc.2021.17.3.10.
Повний текст джерела