Статті в журналах з теми "Singlet exciton fission"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Singlet exciton fission.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Singlet exciton fission".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Neef, Alexander, Samuel Beaulieu, Sebastian Hammer, Shuo Dong, Julian Maklar, Tommaso Pincelli, R. Patrick Xian, et al. "Orbital-resolved observation of singlet fission." Nature 616, no. 7956 (April 12, 2023): 275–79. http://dx.doi.org/10.1038/s41586-023-05814-1.

Повний текст джерела
Анотація:
AbstractSinglet fission1–13 may boost photovoltaic efficiency14–16 by transforming a singlet exciton into two triplet excitons and thereby doubling the number of excited charge carriers. The primary step of singlet fission is the ultrafast creation of the correlated triplet pair17. Whereas several mechanisms have been proposed to explain this step, none has emerged as a consensus. The challenge lies in tracking the transient excitonic states. Here we use time- and angle-resolved photoemission spectroscopy to observe the primary step of singlet fission in crystalline pentacene. Our results indicate a charge-transfer mediated mechanism with a hybridization of Frenkel and charge-transfer states in the lowest bright singlet exciton. We gained intimate knowledge about the localization and the orbital character of the exciton wave functions recorded in momentum maps. This allowed us to directly compare the localization of singlet and bitriplet excitons and decompose energetically overlapping states on the basis of their orbital character. Orbital- and localization-resolved many-body dynamics promise deep insights into the mechanics governing molecular systems18–20 and topological materials21–23.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Stern, Hannah L., Andrew J. Musser, Simon Gelinas, Patrick Parkinson, Laura M. Herz, Matthew J. Bruzek, John Anthony, Richard H. Friend, and Brian J. Walker. "Identification of a triplet pair intermediate in singlet exciton fission in solution." Proceedings of the National Academy of Sciences 112, no. 25 (June 9, 2015): 7656–61. http://dx.doi.org/10.1073/pnas.1503471112.

Повний текст джерела
Анотація:
Singlet exciton fission is the spin-conserving transformation of one spin-singlet exciton into two spin-triplet excitons. This exciton multiplication mechanism offers an attractive route to solar cells that circumvent the single-junction Shockley–Queisser limit. Most theoretical descriptions of singlet fission invoke an intermediate state of a pair of spin-triplet excitons coupled into an overall spin-singlet configuration, but such a state has never been optically observed. In solution, we show that the dynamics of fission are diffusion limited and enable the isolation of an intermediate species. In concentrated solutions of bis(triisopropylsilylethynyl)[TIPS]—tetracene we find rapid (<100 ps) formation of excimers and a slower (∼10 ns) break up of the excimer to two triplet exciton-bearing free molecules. These excimers are spectroscopically distinct from singlet and triplet excitons, yet possess both singlet and triplet characteristics, enabling identification as a triplet pair state. We find that this triplet pair state is significantly stabilized relative to free triplet excitons, and that it plays a critical role in the efficient endothermic singlet fission process.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Uchida, Kazuyuki, Takashi Kubo, Daiki Yamanaka, Akihiro Furube, Hiroyuki Matsuzaki, Ritsuki Nishii, Yusuke Sakagami, Aizitiaili Abulikemu, and Kenji Kamada. "Synthesis, crystal structure, and photophysical properties of 2,9-disubstituted peropyrene derivatives." Canadian Journal of Chemistry 95, no. 4 (April 2017): 432–44. http://dx.doi.org/10.1139/cjc-2016-0569.

Повний текст джерела
Анотація:
Peropyrene is a promising candidate molecule for use in organic solar cells based on singlet fission, because it fulfills the energy matching requirement for singlet fission. We prepare three 2,9-disubstitued peropyrene derivatives and investigate their crystal structures, photophysical properties, and singlet fission phenomenon. Although each derivative shows different molecular overlap motifs in solid state, no singlet fission occurs under normal exciton density conditions due to the substantial stabilization of the first excited singlet (S1) state. In contrast, under high exciton density conditions, singlet fission from highly excited singlet (Sn) states, which is generated by singlet–singlet exciton annihilation, takes place to produce a triplet exciton. We also investigate the reverse process of singlet fission, that is, triplet–triplet annihilation, of peropyrene in solution state to explore the possibility of photon upconversion.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Duan, Hong-Guang, Ajay Jha, Xin Li, Vandana Tiwari, Hanyang Ye, Pabitra K. Nayak, Xiao-Lei Zhu, et al. "Intermolecular vibrations mediate ultrafast singlet fission." Science Advances 6, no. 38 (September 2020): eabb0052. http://dx.doi.org/10.1126/sciadv.abb0052.

Повний текст джерела
Анотація:
Singlet fission is a spin-allowed exciton multiplication process in organic semiconductors that converts one spin-singlet exciton to two triplet excitons. It offers the potential to enhance solar energy conversion by circumventing the Shockley-Queisser limit on efficiency. We study the primary steps of singlet fission in a pentacene film by using a combination of TG and 2D electronic spectroscopy complemented by quantum chemical and nonadiabatic dynamics calculations. We show that the coherent vibrational dynamics induces the ultrafast transition from the singlet excited electronic state to the triplet-pair state via a degeneracy of potential energy surfaces, i.e., a multidimensional conical intersection. Significant vibronic coupling of the electronic wave packet to a few key intermolecular rocking modes in the low-frequency region connect the excited singlet and triplet-pair states. Along with high-frequency local vibrations acting as tuning modes, they open a new channel for the ultrafast exciton transfer through the resulting conical intersection.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lee, Jiye, Priya Jadhav, Philip D. Reusswig, Shane R. Yost, Nicholas J. Thompson, Daniel N. Congreve, Eric Hontz, Troy Van Voorhis, and Marc A. Baldo. "Singlet Exciton Fission Photovoltaics." Accounts of Chemical Research 46, no. 6 (April 23, 2013): 1300–1311. http://dx.doi.org/10.1021/ar300288e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Seiler, Hélène, Marcin Krynski, Daniela Zahn, Sebastian Hammer, Yoav William Windsor, Thomas Vasileiadis, Jens Pflaum, Ralph Ernstorfer, Mariana Rossi, and Heinrich Schwoerer. "Nuclear dynamics of singlet exciton fission in pentacene single crystals." Science Advances 7, no. 26 (June 2021): eabg0869. http://dx.doi.org/10.1126/sciadv.abg0869.

Повний текст джерела
Анотація:
Singlet exciton fission (SEF) is a key process for developing efficient optoelectronic devices. An aspect rarely probed directly, yet with tremendous impact on SEF properties, is the nuclear structure and dynamics involved in this process. Here, we directly observe the nuclear dynamics accompanying the SEF process in single crystal pentacene using femtosecond electron diffraction. The data reveal coherent atomic motions at 1 THz, incoherent motions, and an anisotropic lattice distortion representing the polaronic character of the triplet excitons. Combining molecular dynamics simulations, time-dependent density-functional theory, and experimental structure factor analysis, the coherent motions are identified as collective sliding motions of the pentacene molecules along their long axis. Such motions modify the excitonic coupling between adjacent molecules. Our findings reveal that long-range motions play a decisive part in the electronic decoupling of the electronically correlated triplet pairs and shed light on why SEF occurs on ultrafast time scales.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Baldacchino, Alexander J., Miles I. Collins, Michael P. Nielsen, Timothy W. Schmidt, Dane R. McCamey, and Murad J. Y. Tayebjee. "Singlet fission photovoltaics: Progress and promising pathways." Chemical Physics Reviews 3, no. 2 (June 2022): 021304. http://dx.doi.org/10.1063/5.0080250.

Повний текст джерела
Анотація:
Singlet fission is a form of multiple exciton generation, which occurs in organic chromophores when a high-energy singlet exciton separates into two lower energy triplet excitons, each with approximately half the singlet energy. Since this process is spin-allowed, it can proceed on an ultrafast timescale of less than several picoseconds, outcompeting most other loss mechanisms and reaching quantitative yields approaching 200%. Due to this high quantum efficiency, the singlet fission process shows promise as a means of reducing thermalization losses in photovoltaic cells. This would potentially allow for efficiency improvements beyond the thermodynamic limit in a single junction cell. Efforts to incorporate this process into solar photovoltaic cells have spanned a wide range of device structures over the past decade. In this review, we compare and categorize these attempts in order to assess the state of the field and identify the most promising avenues of future research and development.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Walker, Brian J., Andrew J. Musser, David Beljonne, and Richard H. Friend. "Singlet exciton fission in solution." Nature Chemistry 5, no. 12 (November 17, 2013): 1019–24. http://dx.doi.org/10.1038/nchem.1801.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Snamina, Mateusz, and Piotr Petelenz. "Dopant-Catalyzed Singlet Exciton Fission." ChemPhysChem 18, no. 1 (December 2, 2016): 149–55. http://dx.doi.org/10.1002/cphc.201600885.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Llansola-Portoles, M. J., K. Redeckas, S. Streckaité, C. Ilioaia, A. A. Pascal, A. Telfer, M. Vengris, L. Valkunas, and B. Robert. "Lycopene crystalloids exhibit singlet exciton fission in tomatoes." Physical Chemistry Chemical Physics 20, no. 13 (2018): 8640–46. http://dx.doi.org/10.1039/c7cp08460a.

Повний текст джерела
Анотація:
Transient absorption studies conducted on in vitro lycopene aggregates, as well as on lycopene crystalloids inside tomato chromoplasts, reveal the appearance of a long-lived excited state, which we unambiguously identified as lycopene triplet generated by singlet exciton fission.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Zhai, Yaxin, Chuanxiang Sheng та Z. Valy Vardeny. "Singlet fission of hot excitons in π -conjugated polymers". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, № 2044 (28 червня 2015): 20140327. http://dx.doi.org/10.1098/rsta.2014.0327.

Повний текст джерела
Анотація:
We used steady-state photoinduced absorption (PA), excitation dependence (EXPA( ω )) spectrum of the triplet exciton PA band, and its magneto-PA (MPA( B )) response to investigate singlet fission (SF) of hot excitons into two separated triplet excitons, in two luminescent and non-luminescent π -conjugated polymers. From the high energy step in the triplet EXPA( ω ) spectrum of the luminescent polymer poly(dioctyloxy)phenylenevinylene (DOO-PPV) films, we identified a hot-exciton SF (HE-SF) process having threshold energy at E ≈2 E T (=2.8 eV, where E T is the energy of the lowest lying triplet exciton), which is about 0.8 eV above the lowest singlet exciton energy. The HE-SF process was confirmed by the triplet MPA( B ) response for excitation at E >2 E T , which shows typical SF response. This process is missing in DOO-PPV solution, showing that it is predominantly interchain in nature. By contrast, the triplet EXPA( ω ) spectrum in the non-luminescent polymer polydiacetylene (PDA) is flat with an onset at E = E g (≈2.25 eV). From this, we infer that intrachain SF that involves a triplet–triplet pair state, also known as the ‘dark’ 2A g exciton, dominates the triplet photogeneration in PDA polymer as E g >2 E T . The intrachain SF process was also identified from the MPA( B ) response of the triplet PA band in PDA. Our work shows that the SF process in π -conjugated polymers is a much more general process than thought previously.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Jadhav, Priya J., Patrick R. Brown, Nicholas Thompson, Benjamin Wunsch, Aseema Mohanty, Shane R. Yost, Eric Hontz, et al. "Triplet Exciton Dissociation in Singlet Exciton Fission Photovoltaics." Advanced Materials 24, no. 46 (September 12, 2012): 6169–74. http://dx.doi.org/10.1002/adma.201202397.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

LIU, Yan-Ping, Yi-Shi WU, and Hong-Bing FU. "Recent Progress in Singlet Exciton Fission." Acta Physico-Chimica Sinica 32, no. 8 (2016): 1880–93. http://dx.doi.org/10.3866/pku.whxb201606061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Sanders, Samuel N., Elango Kumarasamy, Andrew B. Pun, Kannatassen Appavoo, Michael L. Steigerwald, Luis M. Campos, and Matthew Y. Sfeir. "Exciton Correlations in Intramolecular Singlet Fission." Journal of the American Chemical Society 138, no. 23 (June 2016): 7289–97. http://dx.doi.org/10.1021/jacs.6b00657.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Walker, Brian J., Andrew J. Musser, David Beljonne, and Richard H. Friend. "Erratum: Singlet exciton fission in solution." Nature Chemistry 6, no. 1 (December 17, 2013): 81. http://dx.doi.org/10.1038/nchem.1829.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Graham, Matt Werden. "(Invited) Controlling Interlayer Stacking Configuration to Optimize Exciton Extraction Pathways in Van Der Waals Materials." ECS Meeting Abstracts MA2022-01, no. 12 (July 7, 2022): 862. http://dx.doi.org/10.1149/ma2022-0112862mtgabs.

Повний текст джерела
Анотація:
Employing ultrafast microscopy methods, we demonstrate how tuning the interlayer coupling by twisting stacking orientations results in different metastable electronic states like Moiré excitons in twisted bilayer graphene (tBLG) and bound triplet pairs (TT) in molecular crystals. Considering first tBLG, we show how stacking-angle tunable absorption resonances form a strongly-bound exciton state due to the interlayer orbitals' symmetric rehybridization. Using two-photon photoluminescence and intraband-transient absorption (TA) microscopies, we have imaged the photoemission and exciton dynamics from single-grains of tBLG. After resonant excitation, our results suggest the formation of strongly bound (up to 690 meV), metastable interlayer exciton states.[1] Our observation of resonant PL emission from twisted bilayer graphene materials is best explained by the theoretically predicted coexistence of strongly bound interlayer excitons and metallic graphene continuum states to form Moiré excitons. Unlike stacked graphene, semiconducting 2D transition metal dichalcogenides (TMDCs) have diffuse interlayer d-orbital overlap. To enhance interlayer electronic coupling in TMDCs, we apply an interlayer-directed E-field, inducing electron-hole dissociation as shown in Fig. 1b. Time-resolved photocurrents show that stacked WSe2 devices shown in Fig. 1a can have both IQE >50% and fast (<60 ps) picosecond electron escape times. Our ultrafast photocurrent rates kinetics give the same E-field-dependent electronic escape and dissociation rates seen from ultrafast optical TA microscopy.[2] To rationalize these fast electronic escape rates, we show the ratio of the electronic rates accurately predicts the actual WSe2 device photocurrent generation efficiency. Lastly, we will show how certain intermolecular twist angle packings of athraditiophene molecular crystals make electron-multiplication by singlet fission of TT states favorable. Singlet fission dynamics are indicated in Fig. 1c by the matching singlet (blue) vs. rising triplet dynamics (red) obtained when the probe polarization aligned along the crystal charge-transfer axis. However, other intermolecular packing angles (at 90o) instead localize and trap excitons as excimers, preventing singlet fission.[3] These interlayer stacked systems collectively demonstrate how remarkably different interlayer electronic states evolve from relatively small changes in interlayer twist angles in van der Waals stacked materials and molecular singlet fission materials. References [1] H. Patel, L. Huang, C.J. Kim, J. Park, M. W. Graham, Stacking Angle-Tunable Photoluminescence from Interlayer Exciton States in Twisted Bilayer Graphene, Nature Comm, 10, 1445 (2019) [2] K. T. Vogt, S.-F. Shi, F. Wang, M. W. Graham, Ultrafast photocurrent and absorption microscopy of few-layer TMD devices isolate rate-limiting dynamics driving fast and efficient photoresponse, J Phys Chem C, 124, 28, 15195–15204 (2020) [3] G. Mayonado, K. T. Vogt, J. Van Schenck, O. Ostroverkhova, M. W. Graham, Packing Morphology-Dependent Singlet Fission in Single Crystal Anthradithiophene Derivatives, OSA Technical Digest: Ultrafast Phenomena, doi.org/10.1364/UP.2020.Th2A.4 (2020) Figure 1
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Li, Jingjing, He Cao, Zhibin Zhang, Shuo Liu, and Yuanqin Xia. "Research Progress on Singlet Fission in Acenes and Their Derivatives." Photonics 9, no. 10 (September 25, 2022): 689. http://dx.doi.org/10.3390/photonics9100689.

Повний текст джерела
Анотація:
Solar energy is widely used as a renewable and clean energy, and how to improve the photovoltaic conversion efficiency of solar devices has always been a hot topic. Singlet fission (SF), which converts one singlet exciton into two triplet excitons, is an exciton multiplication generation process in organic semiconductors and is expected to be integrated into solar cells. Moreover, acenes are currently one of the most widely used and popular SF materials. We review recent research on novel acene materials and their developments in the field of solar cells, aiming to provide researchers with ideas for applying the SF process to solar cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Thompson, Nicholas J., Eric Hontz, Wendi Chang, Troy Van Voorhis, and Marc Baldo. "Magnetic field dependence of singlet fission in solutions of diphenyl tetracene." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2044 (June 28, 2015): 20140323. http://dx.doi.org/10.1098/rsta.2014.0323.

Повний текст джерела
Анотація:
Magnetic field effects provide a convenient and specific probe of singlet exciton fission within optoelectronic devices. Here, we demonstrate that this tool may also be applied to screen potential fission material candidates in solution. We characterize the phenomenon in diphenyl tetracene (DPT), which shows strong fluorescence modulation and the expected field dependence in its transient decay as a function of concentration. Solution measurements may also be used to test for the presence of an intermediate charge transfer state, but we observe no changes to the field dependence of DPT singlet exciton fission in toluene relative to chloroform.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Wilson, Mark W. B., Akshay Rao, Kerr Johnson, Simon Gélinas, Riccardo di Pietro, Jenny Clark, and Richard H. Friend. "Temperature-Independent Singlet Exciton Fission in Tetracene." Journal of the American Chemical Society 135, no. 44 (October 22, 2013): 16680–88. http://dx.doi.org/10.1021/ja408854u.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Lee, Jiye, Matthew J. Bruzek, Nicholas J. Thompson, Matthew Y. Sfeir, John E. Anthony, and Marc A. Baldo. "Singlet Exciton Fission in a Hexacene Derivative." Advanced Materials 25, no. 10 (January 4, 2013): 1445–48. http://dx.doi.org/10.1002/adma.201203982.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Stoycheva, Joanna, Julia Romanova, and Alia Tadjer. "Women in the Singlet Fission World: Pearls in a Semi-Open Shell." Molecules 26, no. 10 (May 14, 2021): 2922. http://dx.doi.org/10.3390/molecules26102922.

Повний текст джерела
Анотація:
Singlet fission, a multiple exciton generation process, can revolutionize existing solar cell technologies. Offering the possibility to double photocurrent, the process has become a focal point for physicists, chemists, software developers, and engineers. The following review is dedicated to the female investigators, predominantly theorists, who have contributed to the field of singlet fission. We highlight their most significant advances in the subject, from deciphering the mechanism of the process to designing coveted singlet fission materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Scholes, Gregory D. "Correlated Pair States Formed by Singlet Fission and Exciton–Exciton Annihilation." Journal of Physical Chemistry A 119, no. 51 (December 9, 2015): 12699–705. http://dx.doi.org/10.1021/acs.jpca.5b09725.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

He, Guiying, Lauren M. Yablon, Kaia R. Parenti, Kealan J. Fallon, Luis M. Campos, and Matthew Y. Sfeir. "Quantifying Exciton Transport in Singlet Fission Diblock Copolymers." Journal of the American Chemical Society 144, no. 7 (February 15, 2022): 3269–78. http://dx.doi.org/10.1021/jacs.1c13456.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Li, Xin, Robert M. Parrish, and Todd J. Martínez. "An ab initio exciton model for singlet fission." Journal of Chemical Physics 153, no. 18 (November 14, 2020): 184116. http://dx.doi.org/10.1063/5.0028605.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Musser, Andrew J., Mohammed Al-Hashimi, Margherita Maiuri, Daniele Brida, Martin Heeney, Giulio Cerullo, Richard H. Friend, and Jenny Clark. "Activated Singlet Exciton Fission in a Semiconducting Polymer." Journal of the American Chemical Society 135, no. 34 (August 20, 2013): 12747–54. http://dx.doi.org/10.1021/ja405427j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Petelenz, Piotr, and Mateusz Snamina. "Locally Broken Crystal Symmetry Facilitates Singlet Exciton Fission." Journal of Physical Chemistry Letters 7, no. 10 (May 10, 2016): 1913–16. http://dx.doi.org/10.1021/acs.jpclett.6b00746.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Liu, Heyuan, Zhiwei Wang, Xuemin Wang, Li Shen, Chunfeng Zhang, Min Xiao, and Xiyou Li. "Singlet exciton fission in a linear tetracene tetramer." Journal of Materials Chemistry C 6, no. 13 (2018): 3245–53. http://dx.doi.org/10.1039/c7tc05783k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Jadhav, Priya J., Aseema Mohanty, Jason Sussman, Jiye Lee, and Marc A. Baldo. "Singlet Exciton Fission in Nanostructured Organic Solar Cells." Nano Letters 11, no. 4 (April 13, 2011): 1495–98. http://dx.doi.org/10.1021/nl104202j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Sanders, Samuel N., Elango Kumarasamy, Kealan J. Fallon, Matthew Y. Sfeir, and Luis M. Campos. "Singlet fission in a hexacene dimer: energetics dictate dynamics." Chemical Science 11, no. 4 (2020): 1079–84. http://dx.doi.org/10.1039/c9sc05066c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Rais, David, Jiří Pfleger, Miroslav Menšík, Alexander Zhigunov, Pavla Štenclová, Jan Svoboda, and Jiří Vohlídal. "Singlet fission in thin films of metallo-supramolecular polymers with ditopic thiophene-bridged terpyridine ligands." Journal of Materials Chemistry C 5, no. 32 (2017): 8041–51. http://dx.doi.org/10.1039/c7tc00484b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Kolata, Kolja, Tobias Breuer, Gregor Witte, and Sangam Chatterjee. "Molecular Packing Determines Singlet Exciton Fission in Organic Semiconductors." ACS Nano 8, no. 7 (June 26, 2014): 7377–83. http://dx.doi.org/10.1021/nn502544d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Musser, Andrew J., Margherita Maiuri, Daniele Brida, Giulio Cerullo, Richard H. Friend, and Jenny Clark. "The Nature of Singlet Exciton Fission in Carotenoid Aggregates." Journal of the American Chemical Society 137, no. 15 (April 10, 2015): 5130–39. http://dx.doi.org/10.1021/jacs.5b01130.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

XIONG, ZuHong, Yong ZHANG, ZhongHai CHEN, and Jing LI. "Singlet exciton fission process in rubrene-doped organic films." Chinese Science Bulletin 59, no. 20 (July 1, 2014): 1942–48. http://dx.doi.org/10.1360/n972013-00043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Einzinger, Markus, Tony Wu, Julia F. Kompalla, Hannah L. Smith, Collin F. Perkinson, Lea Nienhaus, Sarah Wieghold, et al. "Sensitization of silicon by singlet exciton fission in tetracene." Nature 571, no. 7763 (July 2019): 90–94. http://dx.doi.org/10.1038/s41586-019-1339-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Krishnapriya, K. C., Andrew J. Musser, and Satish Patil. "Molecular Design Strategies for Efficient Intramolecular Singlet Exciton Fission." ACS Energy Letters 4, no. 1 (November 26, 2018): 192–202. http://dx.doi.org/10.1021/acsenergylett.8b01833.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Andrzejak, Marcin, Tomasz Skóra, and Piotr Petelenz. "Is Vibrational Coherence a Byproduct of Singlet Exciton Fission?" Journal of Physical Chemistry C 123, no. 1 (December 14, 2018): 91–101. http://dx.doi.org/10.1021/acs.jpcc.8b09124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Berkelbach, Timothy C., Mark S. Hybertsen, and David R. Reichman. "Microscopic theory of singlet exciton fission. III. Crystalline pentacene." Journal of Chemical Physics 141, no. 7 (August 21, 2014): 074705. http://dx.doi.org/10.1063/1.4892793.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Zimmerman, Paul M., Zhiyong Zhang, and Charles B. Musgrave. "Singlet fission in pentacene through multi-exciton quantum states." Nature Chemistry 2, no. 8 (June 20, 2010): 648–52. http://dx.doi.org/10.1038/nchem.694.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Berkelbach, Timothy C., Mark S. Hybertsen, and David R. Reichman. "Microscopic theory of singlet exciton fission. I. General formulation." Journal of Chemical Physics 138, no. 11 (March 21, 2013): 114102. http://dx.doi.org/10.1063/1.4794425.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Ehrler, Bruno, Mark W. B. Wilson, Akshay Rao, Richard H. Friend, and Neil C. Greenham. "Singlet Exciton Fission-Sensitized Infrared Quantum Dot Solar Cells." Nano Letters 12, no. 2 (January 23, 2012): 1053–57. http://dx.doi.org/10.1021/nl204297u.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Margulies, Eric A., Yi-Lin Wu, Przemyslaw Gawel, Stephen A. Miller, Leah E. Shoer, Richard D. Schaller, François Diederich, and Michael R. Wasielewski. "Sub-Picosecond Singlet Exciton Fission in Cyano-Substituted Diaryltetracenes." Angewandte Chemie International Edition 54, no. 30 (June 10, 2015): 8679–83. http://dx.doi.org/10.1002/anie.201501355.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Margulies, Eric A., Yi-Lin Wu, Przemyslaw Gawel, Stephen A. Miller, Leah E. Shoer, Richard D. Schaller, François Diederich, and Michael R. Wasielewski. "Sub-Picosecond Singlet Exciton Fission in Cyano-Substituted Diaryltetracenes." Angewandte Chemie 127, no. 30 (June 10, 2015): 8803–7. http://dx.doi.org/10.1002/ange.201501355.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Beard, Matthew C., Justin C. Johnson, Joseph M. Luther, and Arthur J. Nozik. "Multiple exciton generation in quantum dots versus singlet fission in molecular chromophores for solar photon conversion." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2044 (June 28, 2015): 20140412. http://dx.doi.org/10.1098/rsta.2014.0412.

Повний текст джерела
Анотація:
Both multiple exciton generation (MEG) in semiconductor nanocrystals and singlet fission (SF) in molecular chromophores have the potential to greatly increase the power conversion efficiency of solar cells for the production of solar electricity (photovoltaics) and solar fuels (artificial photosynthesis) when used in solar photoconverters. MEG creates two or more excitons per absorbed photon, and SF produces two triplet states from a single singlet state. In both cases, multiple charge carriers from a single absorbed photon can be extracted from the cell and used to create higher power conversion efficiencies for a photovoltaic cell or a cell that produces solar fuels, like hydrogen from water splitting or reduced carbon fuels from carbon dioxide and water (analogous to biological photosynthesis). The similarities and differences in the mechanisms and photoconversion cell architectures between MEG and SF are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Bittle, Emily G., Sebastian Engmann, Karl Thorley, and John Anthony. "Measuring the impact of spin-triplet exciton orientation on photocurrent in an organic transistor." Journal of Materials Chemistry C 9, no. 35 (2021): 11809–14. http://dx.doi.org/10.1039/d1tc01539g.

Повний текст джерела
Анотація:
Angle dependent magneto-photocurrent in organic single crystal transistors reveals the anisotropy of triplets, verified by a spin-Hamiltonian model with zero-field splitting, providing a basis for metrics of singlet fission–triplet fusion devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Carlotti, Benedetta, Ifeanyi K. Madu, Hyungjun Kim, Zhengxu Cai, Hanjie Jiang, Angelar K. Muthike, Luping Yu, Paul M. Zimmerman та Theodore Goodson. "Activating intramolecular singlet exciton fission by altering π-bridge flexibility in perylene diimide trimers for organic solar cells". Chemical Science 11, № 33 (2020): 8757–70. http://dx.doi.org/10.1039/d0sc03271a.

Повний текст джерела
Анотація:
We show via time resolved spectroscopy that triplet formation proceeds via intersystem crossing in a rigid-bridged perylene diimide trimer and via efficient and fast intramolecular singlet exciton fission in the analogous flexible-bridged trimer.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Kobori, Yasuhiro. "(Invited) Conformations of Exciton Pairs Associated with Spin-Entanglement Transports during Singlet Fissions." ECS Meeting Abstracts MA2022-01, no. 13 (July 7, 2022): 884. http://dx.doi.org/10.1149/ma2022-0113884mtgabs.

Повний текст джерела
Анотація:
Singlet fission (SF) is expected to exceed the Shockley–Queisser theoretical limit of efficiency of organic solar cells. Spin-entanglement in the triplet pair state via one singlet exciton is a promising phenomenon for several energy conversion applications including quantum information science. However, direct observation of the electron spin polarization by transports of entangled spin-states has not been demonstrated. Furthermore, vibronic mechanisms of the dissociation of the triplet excitons are poorly understood. In this study, time-resolved electron paramagnetic resonance has been utilized to observe the transportations of the singlet and quintet characters generating spin-correlated correlated triplet pair (SCTP) by probing the electron spin polarization (ESP) generated in thin films of 6,13-bis(triisopropylsilylethynyl)pentacene.[1] We have clearly demonstrated that the ESP detected in resonance field positions of the individual triplet excitons are dependent on morphology and on detection delay time after laser flash to cause SF. The ESPs were clearly explained by quantum superposition[1,2,3] of singlet-triplet-quintet wavefunctions via picosecond triplet-exciton dissociation as the electron spin polarization transfer from strongly exchange-coupled singlet TT states to the weakly-coupled SCTP via spin-spin dipolar couplings with preserving conformations of the excitons. Although the coherent superposition of the spin eigenstates was not directly detected, the present interpretation of the spin correlation of the separated T+T exciton pair may pave new avenues not only for elucidating the vibronic role on the de-coupling[2,3] between the two excitons but also for scalable quantum information processing using quick T+T dissociation via one-photon excitation. References Matsuda, S.; Oyama, S.; Kobori, Y. Sci. 2020, 11, 2934-2942. Kobori, Y.; Fuki, M.; Nakamura, S.; Hasobe, T. Phys. Chem. B 2020, 124, 9411-9419. Nakamura, S.; Sakai, H.; Nagashima, H.; Fuki, M.; Onishi, K.; Khan, R.; Kobori, Y.; Tkachenko, N. V.; Hasobe, T. Phys. Chem. C 2021, 125, 18287-18296.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Musser, Andrew J., Matz Liebel, Christoph Schnedermann, Torsten Wende, Tom B. Kehoe, Akshay Rao, and Philipp Kukura. "Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission." Nature Physics 11, no. 4 (March 16, 2015): 352–57. http://dx.doi.org/10.1038/nphys3241.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Tabachnyk, Maxim, Bruno Ehrler, Sam Bayliss, Richard H. Friend, and Neil C. Greenham. "Triplet diffusion in singlet exciton fission sensitized pentacene solar cells." Applied Physics Letters 103, no. 15 (October 7, 2013): 153302. http://dx.doi.org/10.1063/1.4824420.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Pensack, Ryan D., Evgeny E. Ostroumov, Andrew J. Tilley, Samuel Mazza, Christopher Grieco, Karl J. Thorley, John B. Asbury, Dwight S. Seferos, John E. Anthony, and Gregory D. Scholes. "Observation of Two Triplet-Pair Intermediates in Singlet Exciton Fission." Journal of Physical Chemistry Letters 7, no. 13 (June 13, 2016): 2370–75. http://dx.doi.org/10.1021/acs.jpclett.6b00947.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Wilson, Mark W. B., Akshay Rao, Bruno Ehrler, and Richard H. Friend. "Singlet Exciton Fission in Polycrystalline Pentacene: From Photophysics toward Devices." Accounts of Chemical Research 46, no. 6 (May 8, 2013): 1330–38. http://dx.doi.org/10.1021/ar300345h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії