Статті в журналах з теми "Single electron devices"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Single electron devices.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Single electron devices".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Oda, Shunri. "Single Electron Devices." IEEJ Transactions on Electronics, Information and Systems 121, no. 1 (2001): 19–22. http://dx.doi.org/10.1541/ieejeiss1987.121.1_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

SMITH, DORAN D. "SINGLE ELECTRON DEVICES." International Journal of High Speed Electronics and Systems 09, no. 01 (March 1998): 165–207. http://dx.doi.org/10.1142/s0129156498000099.

Повний текст джерела
Анотація:
In the mid 1980s Averin and Likharev predicted that with the use of ultrasmall tunnel junctions a time correlation of electron flow through a junction could be observed, and permit the measurement of the effect of a net charge of less than one electron on the junction. Both effects were soon experimentally verified, and since that time there has been an explosion of work in the filed of single electron devices. This chapter reviews the fundamental concepts behind the operation of such devices. it then describes some of the single electron effects studied in semiconductors. Superconducting devices are then constrasted to the semiconductor and the normal metal single electron devices. The details of some current applications are described, and a thumbnail sketch of current fabrication methods is given.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ahmed, Haroon, and Kazuo Nakazato. "Single-electron devices." Microelectronic Engineering 32, no. 1-4 (September 1996): 297–315. http://dx.doi.org/10.1016/0167-9317(95)00179-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

TAKAHASHI, YASUO, AKIRA FUJIWARA, MASAO NAGASE, HIDEO NAMATSU, KENJI KURIHARA, KAZUMI IWADATE, and KATSUMI MURASE. "Silicon single-electron devices." International Journal of Electronics 86, no. 5 (May 1999): 605–39. http://dx.doi.org/10.1080/002072199133283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Takahashi, Yasuo, Yukinori Ono, Akira Fujiwara, and Hiroshi Inokawa. "Silicon single-electron devices." Journal of Physics: Condensed Matter 14, no. 39 (September 20, 2002): R995—R1033. http://dx.doi.org/10.1088/0953-8984/14/39/201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

FLENSBERG, KARSTEN, ARKADI A. ODINTSOV, FEIKE LIEFRINK, and PAUL TEUNISSEN. "TOWARDS SINGLE-ELECTRON METROLOGY." International Journal of Modern Physics B 13, no. 21n22 (September 10, 1999): 2651–87. http://dx.doi.org/10.1142/s0217979299002587.

Повний текст джерела
Анотація:
We review the status of the understanding of single-electron transport (SET) devices with respect to their applicability in metrology. Their envisioned role as the basis of a high-precision electrical standard is outlined and is discussed in the context of other standards. The operation principles of single electron transistors, turnstiles and pumps are explained and the fundamental limits of these devices are discussed in detail. We describe the various physical mechanisms that influence the device uncertainty and review the analytical and numerical methods needed to calculate the intrinsic uncertainty and to optimise the fabrication and operation parameters. Recent experimental results are evaluated and compared with theoretical predictions. Although there are discrepancies between theory and experiments, the intrinsic uncertainty is already small enough to start preparing for the first SET-based metrological applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Li, Rui-Hao, Jun-Yang Liu, and Wen-Jing Hong. "Regulation strategies based on quantum interference in electrical transport of single-molecule devices." Acta Physica Sinica 71, no. 6 (2022): 067303. http://dx.doi.org/10.7498/aps.71.20211819.

Повний текст джерела
Анотація:
The quantum interference effect in single-molecule devices is a phenomenon in which electrons are coherently transported through different frontier molecular orbitals with multiple energy levels, and the interference will occur between different energy levels. This phenomenon results in the increase or decrease of the probability of electron transmission in the electrical transport of the single-molecule device, and it is manifested in the experiment when the conductance value of the single-molecule device increases or decreases. In recent years, the use of quantum interference effects to control the electron transport in single-molecule device has proved to be an effective method, such as single-molecule switches, single-molecule thermoelectric devices, and single-molecule spintronic devices. In this work, we introduce the related theories of quantum interference effects, early experimental observations, and their regulatory role in single-molecule devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Labra-Muñoz, Jacqueline A., Arie de Reuver, Friso Koeleman, Martina Huber, and Herre S. J. van der Zant. "Ferritin-Based Single-Electron Devices." Biomolecules 12, no. 5 (May 15, 2022): 705. http://dx.doi.org/10.3390/biom12050705.

Повний текст джерела
Анотація:
We report on the fabrication of single-electron devices based on horse-spleen ferritin particles. At low temperatures the current vs. voltage characteristics are stable, enabling the acquisition of reproducible data that establishes the Coulomb blockade as the main transport mechanism through them. Excellent agreement between the experimental data and the Coulomb blockade theory is demonstrated. Single-electron charge transport in ferritin, thus, establishes a route for further characterization of their, e.g., magnetic, properties down to the single-particle level, with prospects for electronic and medical applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Schupp, Felix J. "Single-electron devices in silicon." Materials Science and Technology 33, no. 8 (October 18, 2016): 944–62. http://dx.doi.org/10.1080/02670836.2016.1242826.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Abramov, I. I., and E. G. Novik. "Classification of single-electron devices." Semiconductors 33, no. 11 (November 1999): 1254–59. http://dx.doi.org/10.1134/1.1187860.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Mizuta, H., Y. Furuta, T. Kamiya, Y. T. Tan, Z. A. K. Durrani, S. Amakawa, K. Nakazato, and H. Ahmed. "Nanosilicon for single-electron devices." Current Applied Physics 4, no. 2-4 (April 2004): 98–101. http://dx.doi.org/10.1016/j.cap.2003.10.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Fujiwara, A., Y. Takahashi, K. Yamazaki, H. Namatsu, M. Nagase, K. Kurihara, and K. Murase. "Double-island single-electron devices. A useful unit device for single-electron logic LSI's." IEEE Transactions on Electron Devices 46, no. 5 (May 1999): 954–59. http://dx.doi.org/10.1109/16.760403.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Likharev, Konstantin K., and Alexander N. Korotkov. "Single-Electron Parametron." VLSI Design 6, no. 1-4 (January 1, 1998): 43–46. http://dx.doi.org/10.1155/1998/58268.

Повний текст джерела
Анотація:
We have suggested a novel family of wireless single-electron digital devices, based on the parametric excitation principle. The basic cell is a short array of small conducting islands separated by tunnel barriers with relatively low capacitance and conductance. External rf (clock) field creates conditions for spontaneous breaking of the charge symmetry of the cell. The symmetry may be broken by the signal field provided by the neighboring cell(s). This mode ensures robust operation of the parametron-based logic circuits. Moreover, these devices may be reversible, dissipating energy well below kBT 1n2 per logic operation.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Matsutani, Masahiro, Fujio Wakaya, Sadao Takaoka, Kazuo Murase, and Kenji Gamo. "Electron-Beam-Induced Oxidation for Single-Electron Devices." Japanese Journal of Applied Physics 36, Part 1, No. 12B (December 30, 1997): 7782–85. http://dx.doi.org/10.1143/jjap.36.7782.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Gunasekaran, Suman, Douglas A. Reed, Daniel W. Paley, Amymarie K. Bartholomew, Latha Venkataraman, Michael L. Steigerwald, Xavier Roy, and Colin Nuckolls. "Single-Electron Currents in Designer Single-Cluster Devices." Journal of the American Chemical Society 142, no. 35 (August 18, 2020): 14924–32. http://dx.doi.org/10.1021/jacs.0c04970.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Ahmed, H. "Single atom scale lithography for single electron devices." Physica B: Condensed Matter 227, no. 1-4 (September 1996): 259–63. http://dx.doi.org/10.1016/0921-4526(96)00415-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Goodnick, S. M., and J. Bird. "Quantum-effect and single-electron devices." IEEE Transactions On Nanotechnology 2, no. 4 (December 2003): 368–85. http://dx.doi.org/10.1109/tnano.2003.820773.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Mizugaki, Y., M. Takiguchi, S. Hayami, A. Kawai, M. Moriya, K. Usami, T. Kobayashi, and H. Shimada. "Single-Electron Devices With Input Discretizer." IEEE Transactions on Nanotechnology 7, no. 5 (September 2008): 601–6. http://dx.doi.org/10.1109/tnano.2008.2003352.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Likharev, K. K. "Single-electron devices and their applications." Proceedings of the IEEE 87, no. 4 (April 1999): 606–32. http://dx.doi.org/10.1109/5.752518.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

KOROTKOV, ALEXANDER N. "Single-electron logic and memory devices." International Journal of Electronics 86, no. 5 (May 1999): 511–47. http://dx.doi.org/10.1080/002072199133256.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Ono, Yukinori, Kenji Yamazaki, Masao Nagase, Seiji Horiguchi, Kenji Shiraishi, and Yasuo Takahashi. "Single-electron and quantum SOI devices." Microelectronic Engineering 59, no. 1-4 (November 2001): 435–42. http://dx.doi.org/10.1016/s0167-9317(01)00638-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Takahashi, Yasuo, Yukinori Ono, Akira Fujiwara, and Hiroshi Inokawa. "Development of silicon single-electron devices." Physica E: Low-dimensional Systems and Nanostructures 19, no. 1-2 (July 2003): 95–101. http://dx.doi.org/10.1016/s1386-9477(03)00314-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Korotkov, Alexander N., and Konstantin K. Likharev. "Single-electron-parametron-based logic devices." Journal of Applied Physics 84, no. 11 (December 1998): 6114–26. http://dx.doi.org/10.1063/1.368926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Dempsey, Kari J., David Ciudad, and Christopher H. Marrows. "Single electron spintronics." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1948 (August 13, 2011): 3150–74. http://dx.doi.org/10.1098/rsta.2011.0105.

Повний текст джерела
Анотація:
Single electron electronics is now well developed, and allows the manipulation of electrons one-by-one as they tunnel on and off a nanoscale conducting island. In the past decade or so, there have been concerted efforts in several laboratories to construct single electron devices incorporating ferromagnetic components in order to introduce spin functionality. The use of ferromagnetic electrodes with a non-magnetic island can lead to spin accumulation on the island. On the other hand, making the dot also ferromagnetic introduces new physics such as tunnelling magnetoresistance enhancement in the cotunnelling regime and manifestations of the Kondo effect. Such nanoscale islands are also found to have long spin lifetimes. Conventional spintronics makes use of the average spin-polarization of a large ensemble of electrons: this new approach offers the prospect of accessing the quantum properties of the electron, and is a candidate approach to the construction of solid-state spin-based qubits.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Bryant, Garnett W., D. B. Murray, and A. H. MacDonald. "Electronic structure of single ultrasmall electron devices and device arrays." Superlattices and Microstructures 3, no. 3 (January 1987): 211–15. http://dx.doi.org/10.1016/0749-6036(87)90060-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Barnes, C. H. W., J. M. Shilton, and A. M. Robinson. "Quantum computation using electrons trapped by surface acoustic waves." Quantum Information and Computation 1, Special (December 2001): 96–101. http://dx.doi.org/10.26421/qic1.s-9.

Повний текст джерела
Анотація:
We outline a set of ideas for implementing a quantum processor based on technology used in surface acoustic wave (SAW) single-electron transport devices. These devices allow single electrons to be captured from a two-dimensional electron gas by a SAW. We discuss how these devices can be adapted to capture electrons in pure spin states and how both single and two-qubit gates can be constructed. We give designs for readout gates and discuss possible sources of error and decoherence.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Li, Xinxing, Jinggao Sui, and Jingyue Fang. "Single-Electron Transport and Detection of Graphene Quantum Dots." Nanomaterials 13, no. 5 (February 27, 2023): 889. http://dx.doi.org/10.3390/nano13050889.

Повний текст джерела
Анотація:
The integrated structure of graphene single-electron transistor and nanostrip electrometer was prepared using the semiconductor fabrication process. Through the electrical performance test of the large sample number, qualified devices were selected from low-yield samples, which exhibited an obvious Coulomb blockade effect. The results show that the device can deplete the electrons in the quantum dot structure at low temperatures, thus, accurately controlling the number of electrons captured by the quantum dot. At the same time, the nanostrip electrometer coupled with the quantum dot can be used to detect the quantum dot signal, that is, the change in the number of electrons in the quantum dot, because of its quantized conductivity characteristics.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Yadav, Pooja, Hemant Arora, and Arup Samanta. "Nitrogen in silicon for room temperature single-electron tunneling devices." Applied Physics Letters 122, no. 8 (February 20, 2023): 083502. http://dx.doi.org/10.1063/5.0136182.

Повний текст джерела
Анотація:
Single-electron transistor (SET) has an advanced feature that can be exploited in quantum devices. For practical utilization of such devices, the room-temperature operation is highly essential. Dopant-based single-electron devices are well studied at low temperatures although a few devices are developed for high-temperature operation with certain limitations. Here, we propose and theoretically exhibit that nitrogen (N) donor in silicon is an important candidate for the effective designing of quantum devices. Theoretical calculation of the density of states using the semi-empirical density functional theory method indicates that N-donor in silicon has a deep ground state compared to a phosphorus (P) donor. The N-donor spectrum is explored in nano-silicon structure along with the P-donor. A comparative study of the Bohr radius of N-donor and P-donor is also reported. The simulated current–voltage characteristics confirm that the N-doped device is better suited for SET operation at room temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Visscher, E. H., S. M. Verbrugh, J. Lindeman, P. Hadley, and J. E. Mooij. "Fabrication of multilayer single‐electron tunneling devices." Applied Physics Letters 66, no. 3 (January 16, 1995): 305–7. http://dx.doi.org/10.1063/1.113526.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Vion, D., P. F. Orfila, P. Joyez, D. Esteve, and M. H. Devoret. "Miniature electrical filters for single electron devices." Journal of Applied Physics 77, no. 6 (March 15, 1995): 2519–24. http://dx.doi.org/10.1063/1.358781.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

García, N., and F. Guinea. "Nonequilibrium electronic distribution in single-electron devices." Physical Review B 57, no. 3 (January 15, 1998): 1398–401. http://dx.doi.org/10.1103/physrevb.57.1398.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Nagase, M., S. Horiguchi, K. Shiraishi, A. Fujiwara, and Y. Takahashi. "Single-electron devices formed by thermal oxidation." Journal of Electroanalytical Chemistry 559 (November 2003): 19–23. http://dx.doi.org/10.1016/s0022-0728(03)00420-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Altmeyer, S., K. Hofmann, A. Hamidi, S. Hu, B. Spangenberg, and H. Kurz. "Potential and challenges of single electron devices." Vacuum 51, no. 2 (October 1998): 295–99. http://dx.doi.org/10.1016/s0042-207x(98)00178-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Splettstoesser, Janine, and Rolf J. Haug. "Single-electron control in solid state devices." physica status solidi (b) 254, no. 3 (March 2017): 1770217. http://dx.doi.org/10.1002/pssb.201770217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Melnyk, Oleksandr, and Viktoriia Kozarevych. "SIMULATION OF PROGRAMMABLE SINGLE-ELECTRON NANOCIRCUITS." Bulletin of the National Technical University "KhPI". Series: Mathematical modeling in engineering and technologies, no. 1 (March 5, 2021): 64–68. http://dx.doi.org/10.20998/2222-0631.2020.01.05.

Повний текст джерела
Анотація:
The speed and specializations of large-scale integrated circuits always contradict their versatility, which expands their range and causes the rise in price of electronic devices. It is possible to eliminate the contradictions between universality and specialization by developing programmable nanoelectronic devices, the algorithms of which are changed at the request of computer hardware developers, i.e. by creating arithmetic circuits with programmable characteristics. The development of issues of theory and practice of the majority principle is now an urgent problem, since the nanoelectronic execution of computer systems with programmable structures will significantly reduce their cost and significantly simplify the design stage of automated systems. Today there is an important problem of developing principles for building reliable computer equipment. The use of mathematical and circuit modeling along with computer-aided design systems (CAD) can significantly increase the reliability of the designed devices. The authors prove the advantages of creating programmable nanodevices to overcome the physical limitations of micro-rominiatization. This continuity contributes to the accelerated introduction of mathematical modeling based on programmable nanoelectronics devices. The simulation and computer-aided design of reliable programmable nanoelectronic devices based on the technology of quantum automata is described. While constructing single-electron nanocircuits of combinational and sequential types the theory of majority logic is used. The order of construction and programming of various types of arithmetic-logic units is analyzed.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

TANIGUCHI, KENJI. "Frontier of Nanometer Devices. Electronic Devices Using Single Electron Tunneling Phenomena." Journal of the Institute of Electrical Engineers of Japan 114, no. 6 (1994): 371–75. http://dx.doi.org/10.1541/ieejjournal.114.371.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Likharev, Konstantin K., and Alexander N. Korotkov. "Analysis of Q0-Independent Single-Electron Systems." VLSI Design 6, no. 1-4 (January 1, 1998): 341–44. http://dx.doi.org/10.1155/1998/46535.

Повний текст джерела
Анотація:
The random distribution of the background charges is a serious problem for integrated digital single-electron devices with capacitive coupling. We propose the new principle of operation of the devices which does not suffer from this problem.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Stewart, M., and Neil Zimmerman. "Stability of Single Electron Devices: Charge Offset Drift." Applied Sciences 6, no. 7 (June 29, 2016): 187. http://dx.doi.org/10.3390/app6070187.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Sato, Shigeo, and Koji Nakajima. "Application of Single Electron Devices Utilizing Stochastic Dynamics." International Journal of Nanotechnology and Molecular Computation 1, no. 2 (April 2009): 29–42. http://dx.doi.org/10.4018/jnmc.2009040102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Mahdavi, Mojdeh, Sattar Mirzakuchaki, Mohammad Naser Moghaddasi, and Mohammad Amin Amiri. "Single Electron Fault Modeling in Basic Quantum Devices." Japanese Journal of Applied Physics 50, no. 9R (September 1, 2011): 094401. http://dx.doi.org/10.7567/jjap.50.094401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Allec, N., R. G. Knobel, and L. Shang. "SEMSIM: Adaptive Multiscale Simulation For Single-Electron Devices." IEEE Transactions on Nanotechnology 7, no. 3 (May 2008): 351–54. http://dx.doi.org/10.1109/tnano.2008.917794.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Hoekstra, Jaap. "On Circuit Theories for Single-Electron Tunneling Devices." IEEE Transactions on Circuits and Systems I: Regular Papers 54, no. 11 (November 2007): 2353–59. http://dx.doi.org/10.1109/tcsi.2007.907797.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Escott, C. C., F. E. Hudson, V. C. Chan, K. D. Petersson, R. G. Clark, and A. S. Dzurak. "Scaling of ion implanted Si:P single electron devices." Nanotechnology 18, no. 23 (May 8, 2007): 235401. http://dx.doi.org/10.1088/0957-4484/18/23/235401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Mahdavi, Mojdeh, Sattar Mirzakuchaki, Mohammad Naser Moghaddasi, and Mohammad Amin Amiri. "Single Electron Fault Modeling in Basic Quantum Devices." Japanese Journal of Applied Physics 50, no. 9 (September 20, 2011): 094401. http://dx.doi.org/10.1143/jjap.50.094401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Bułka, B. R., J. Martinek, G. Michałek, and J. Barnaś. "Shot noise in ferromagnetic single-electron tunneling devices." Physical Review B 60, no. 17 (November 1, 1999): 12246–55. http://dx.doi.org/10.1103/physrevb.60.12246.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Delsing, P., and D. B. Haviland. "A current mirror based on single electron devices." Applied Superconductivity 6, no. 10-12 (October 1999): 789–93. http://dx.doi.org/10.1016/s0964-1807(99)00043-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Ferry, D. K., M. Khoury, C. Gerousis, M. J. Rack, A. Gunther, and S. M. Goodnick. "Single-electron charging effects in Si MOS devices." Physica E: Low-dimensional Systems and Nanostructures 9, no. 1 (January 2001): 69–75. http://dx.doi.org/10.1016/s1386-9477(00)00179-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Groshev, Atanas. "Nontrival Coulomb staircase in single-electron turnstile devices." Physical Review B 46, no. 16 (October 15, 1992): 10289–94. http://dx.doi.org/10.1103/physrevb.46.10289.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Hoekstra, J. "On the delay of single-electron logic devices." International Journal of Circuit Theory and Applications 41, no. 6 (March 28, 2012): 563–72. http://dx.doi.org/10.1002/cta.1802.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Yamada, Takashi, and Yoshihito Amemiya. "Multiple-valued logic devices using single-electron circuits." Superlattices and Microstructures 27, no. 5-6 (May 2000): 607–11. http://dx.doi.org/10.1006/spmi.2000.0875.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії