Добірка наукової літератури з теми "Single-crystal Cu-Al-Be"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Single-crystal Cu-Al-Be".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Single-crystal Cu-Al-Be":

1

Xu, Hua Ping, Hui Hu, Gao Feng Song, Chong He Li, and Xie Min Mao. "Behavior and Preparation of Single Crystal of Cu-Al-Ni-Be SMA." Materials Science Forum 561-565 (October 2007): 1463–66. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.1463.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, single crystal of CuAlNiBe shape memory alloy (SMA) was prepared in a high temperature gradient directional solidification furnace with a selective growing crystallizer. And its performance characters were systematically studied. The results show that the mechanical and shape memory properties of the single crystal of CuAlNiBe SMA alloy has much better than that of the polycrystalline material. This may be explained that the stress concentration at grain boundary caused by the difference of bilateral strains is the dominant reason of deterioration of fatigue properties; therefore single crystal alloy possesses the excellent properties duo to its elimination of grain boundary.
2

Xu, Hua Ping, Gao Feng Song, and Xie Min Mao. "Influence of Be and Ni to Cu-Al Alloy Shape Memory Performance." Advanced Materials Research 197-198 (February 2011): 1258–62. http://dx.doi.org/10.4028/www.scientific.net/amr.197-198.1258.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
With Bridgeman directional solidification method the single crystal alloys of CuAl base shape memory alloy (SMA) with different components were prepared. And their shape memory performance characters were systematically investigated. The results show that the single crystal of CuAlNiBe quaternary shape memory alloy has much better shape memory properties than that of the CuAlBe and CuAlNi ternary alloy. That meant that in the CuAl base SMA alloy the mixed addition of Be and Ni changed the quenching microstructure has a strengthening effect to improve the shape memory performance of the SMA alloy.
3

Siredey, N., A. Hautcoeur, and A. Eberhardt. "Lifetime of superelastic Cu–Al–Be single crystal wires under bending fatigue." Materials Science and Engineering: A 396, no. 1-2 (April 2005): 296–301. http://dx.doi.org/10.1016/j.msea.2005.01.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Xu, Hua Ping, Gao Feng Song, and Xie Min Mao. "A Study on Shape Memory Performance of Cu-Al-Ni-Be Alloy Single Crystal." Advanced Materials Research 287-290 (July 2011): 21–25. http://dx.doi.org/10.4028/www.scientific.net/amr.287-290.21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, single crystal of CuAlNiBe quaternary shape memory alloy was prepared in a high temperature gradient directional solidification furnace with a selective growing crystallizer. And its shape memory performance characters were systematically compared with other series copper base shape memory alloys. The results show that the single crystal of CuAlNiBe quaternary shape memory alloy has better shape memory properties.
5

Gonzalez, C. H., C. J. De Araújo, N. F. Quadros, G. Guénin, and M. Morin. "Study of martensitic stabilisation under stress in Cu–Al–Be shape memory alloy single crystal." Materials Science and Engineering: A 378, no. 1-2 (July 2004): 253–56. http://dx.doi.org/10.1016/j.msea.2003.11.069.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Пульнев, С. А., А. И. Прядко, А. В. Чикиряка та В. И. Николаев. "Эффект локализации деформации в монокристаллах Cu-Al-Ni при изгибе продольной силой". Письма в журнал технической физики 44, № 21 (2018): 91. http://dx.doi.org/10.21883/pjtf.2018.21.46860.17425.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe behavior of a superelastic Cu−14.2% Al−4%Ni single crystal in the case of high reversible strains under a longitudinal bending force was investigated. The effect of strain confinement along the crystal length was revealed and studied. The highest reversible strains (up to 10%) were shown to be confined within the central part of the bent crystal.
7

Kortan, A. R., H. S. Chen, and J. V. Waszczak. "Single-crystal x-ray diffraction from an icosahedral quasicrystal." Journal of Materials Research 2, no. 3 (June 1987): 294–97. http://dx.doi.org/10.1557/jmr.1987.0294.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Single-crystal x-ray diffraction measurements made on a millimeter-size single icosahedral quasicrystal of an Al–Li–Cu alloy are reported. The point symmetries observed directly by real-time transmission Laue x-ray diffraction and the measured angles between the major symmetry axis are consistent with an icosahedral quasicrystal, and the peaks observed in the single-crystal diffraction scans are found to be indexable with six indices that belong to a primitive icosahedral Bravais quasilattice.
8

Siredey-Schwaller, N., A. Eberhardt, and P. Bastie. "Parameters influencing the fatigue life of a Cu–Al–Be single-crystal shape memory alloy under repeated bending." Smart Materials and Structures 18, no. 2 (January 22, 2009): 025014. http://dx.doi.org/10.1088/0964-1726/18/2/025014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ho, Ching Hwa, Chia Chi Pan, Jian Rong Cai, Guan Tzu Huang, Dumitru O. Dumcenco, Ying Sheng Huang, Kwong Kau Tiong, and Ching Cherng Wu. "Structural and Band-Edge Properties of Cu(AlxIn1-X)S2 (0≤x≤1) Series Chalcopyrite Semiconductors." Solid State Phenomena 194 (November 2012): 133–38. http://dx.doi.org/10.4028/www.scientific.net/ssp.194.133.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We have demonstrated structural and electronic properties of a series solar energy crystals Cu(AlxIn1-x)S2 (0<=x<=1) by using measurement techniques of X-ray diffraction, polarized thermoreflectance (PTR), and X-ray photoelectron spectroscopy (XPS). Single crystals of Cu(AlxIn1-x)S2 (0<=x<=1) (0 and E ^ polarizations. The PTR spectra clearly showed that the energy value of D increases with the increase of Al content x in the Cu(AlxIn1-x)S2 (0<=x<=1) series due to the enhanced strain in the lattice. The composition-dependent crystal-field-splitting energies can be evaluated and determined to be D(x)= (10±2)+( 139±5)×x meV. Based on the experimental analyses, the crystal structure and valence-band structure of the Cu(AlxIn1-x)S2 (0<=x<=1) (0<=x<=1) series are thus realized.
10

Pavlyuk, Nazar, Grygoriy Dmytriv, Volodymyr Pavlyuk, and Helmut Ehrenberg. "Li20Mg6Cu13Al42: a new ordered quaternary superstructure to the icosahedral T-Mg32(Zn,Al)49 phase with fullerene-like Al60 cluster." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 75, no. 2 (March 16, 2019): 168–74. http://dx.doi.org/10.1107/s2052520619000349.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The new quaternary aluminide Li20Mg6Cu13Al42 was synthesized from the elements in a sealed tantalum crucible. The crystal structure was studied by single crystal and confirmed by X-ray powder diffraction. Li20Mg6Cu13Al42 {cI162, Im{\overline 3}, a = 13.8451 (2), R[F 2 > 2σ(F 2)] = 0.023} crystallizes as an ordered version of Mg32(Al,Zn)49 and Li—Cu—X (X = Al, Ga, Si) periodic crystals containing icosahedral clusters. The Li20Mg6Cu13Al42 structure can also be described as three-shell icosahedral clusters of [CuAl12@Li20Cu12@Al60], enclosed inside a distorted triacontahedron. The electronic structure calculations were performed by means of the TB-LMTO-ASA program and confirm the core–shell packing of these clusters. The isostructural compound of Li20Mg6Cu13Ga42 was found in a Li–Mg–Cu–Ga quaternary system.

Дисертації з теми "Single-crystal Cu-Al-Be":

1

Xolin, Paul. "Contribution au développement d'une nouvelle génération de limes endodontiques en alliage à mémoire de forme monocristallin cuivreux." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0256.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les dernières avancées réalisées dans le domaine de l’instrumentation canalaire ont permis de rendre le traitement endodontique plus rapide et plus efficace. L’amélioration des limes endodontiques au travers des géométries instrumentales, mouvement de travail ou propriétés mécaniques du matériau constitutif de l’instrument ont rendu le traitement plus sûr dans la préservation de l’organe dentaire et des tissus parodontaux environnants. Néanmoins, peu de recherches se sont portées sur l’utilisation d’Alliage à Mémoire de Forme (AMF) différents du Nickel-Titane (Ni-Ti). Ce travail se propose d’étudier une potentielle utilisation en endodontie d’un nouvel AMF doté de propriétés antimicrobiennes très prometteuses : le Cuivre-Aluminium-Béryllium (Cu-Al-Be) monocristallin. Cette étude se fait au travers d’une approche expérimentale, au moyen d’un dispositif d’essais innovant, capable d’appliquer des chargements combinés ou séparés de flexion et de torsion. Ces chargements sont les principales sollicitations appliquées aux limes endodontiques lors du traitement canalaire. Une approche numérique vient compléter les études expérimentales, avec un modèle éléments-finis représentatif des chargements appliqués par le dispositif d’essais. Un programme de génération de modèles géométriques de limes endodontiques est développé et permet de représenter les réponses obtenues expérimentalement à l’aide de deux lois de comportement thermomécaniques adaptées aux AMF polycristallins et monocristallins. Enfin, à l’aide de ces deux outils, un plan d’expérience capable de déterminer l’influence des paramètres géométriques d’une lime endodontique sur sa réponse mécanique est réalisé et apporte une aide précieuse à la décision pour le choix d’une géométrie et d’une utilisation adaptée pour ces limes endodontiques en Cu-Al-Be monocristallin
Recent enhancements in canal instrumentation area have significantly improved the endodontic treatment making it faster and more efficient. The improvement of endodontic file quality through the instrument geometry, operating motion, and material properties made the endodontic treatment safer and thereby preserving the tooth and the surrounding periodontal tissues. Nevertheless, few research works investigated the possibility of using an alternative shape memory alloy (SMA) to the Nickel-Titanium (NiTi). This PhD work focuses on investigating the possibility of use in endodontic of Cu-based SMA having promising antimicrobial properties I.e. the Copper-Aluminum-Beryllium (Cu-Al-Be) single crystal SMA. The present study is based on an experimental approach using an original testing device able to apply bending and torsion loading in separate or combined way. Such solicitations are mainly induced by the curvature of the dental canal while the mechanical preparation. A numerical approach completes this experimental part by considering a finite element model representative of the file geometry, the thermomechanical behavior of the Cu-based single crystal or NiTi polycrystal SMAs and the bending- torsion loading and boundary conditions. A developed numerical tool allowed to build a parametrized geometry of an endodontic file and mesh it with tetrahedral finite elements in order to numerically analyze its response under combined bending-torsion loading. Based on these two approaches, an experience plan was carried out in order to analyze the influence of geometrical parameters on the response of endodontic files made of Cu-based single crystal SMA. It could be a precious tool for decision aid in choosing endodontic file geometry and its adapted use for root canal preparation

Частини книг з теми "Single-crystal Cu-Al-Be":

1

Xu, Hua Ping, Hui Hu, Gao Feng Song, Chong He Li, and Xie Min Mao. "Behavior and Preparation of Single Crystal of Cu-Al-Ni-Be SMA." In Materials Science Forum, 1463–66. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-462-6.1463.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Amireche, R., and M. Morin. "A New Stress-Induced Martensitic Transformation in a Cu-Al-Be Shape Memory Single Crystal." In ICOMAT, 577–80. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118803592.ch85.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Single-crystal Cu-Al-Be":

1

Siredey-Schwaller, N., A. Eberhardt, E. Patoor, and P. Bastie. "Relation between crystal quality and fatigue life of a Cu-Al-Be single crystal shape memory alloy under repeated bending." In ESOMAT 2009 - 8th European Symposium on Martensitic Transformations. Les Ulis, France: EDP Sciences, 2009. http://dx.doi.org/10.1051/esomat/200906032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vives, Eduard, Emma Valdés, Marcel Porta, Clàudia Pérez-Junyent, Lluís Mañosa, Antoni Planes, and Avadh Saxena. "Flexocaloric Effect in a Cu-Al-Ni Single Crystal." In SMST 2024. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.smst2024p0037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Caloric effects are reversible thermal changes that occur in a solid material in response to an external field, either magnetic, electric or mechanical. Materials with large caloric effects are candidates to be used for environmentally friendly, solid-state refrigerators. In the case of mechanocaloric effect, thermal changes are induced by a mechanical field. Most of the work to date has been carried out by the application and removal of uniaxial stress or hydrostatic pressure and the corresponding caloric effects are usually denoted as elastocaloric and barocaloric effects, respectively. Mechanocaloric effects are very large when they occur associated with a ferroelastic phase transition involving a collective atomic rearrangement as occurs in martensitic phase transitions that involve a change of symmetry of the unit cell. Recently, it has been theoretically suggested that the possibility of actuating with more complex mechanical fields such as bending or twisting should have a several advantages. In this work we present a study of flexocaloric effect in superelastic materials exhibiting structural transitions.

До бібліографії