Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Simulation des grandes structures.

Статті в журналах з теми "Simulation des grandes structures"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Simulation des grandes structures".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Duan, Yonggang, Frédéric Boitout, Jean-Baptiste Leblond, and Jean-Michel Bergheau. "Simulation numérique du soudage de grandes structures par une approche locale/globale." Mécanique & Industries 9, no. 2 (March 2008): 97–102. http://dx.doi.org/10.1051/meca:2008011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Besnier, François. "Simulation numérique et conception des structures de grands navires." Mécanique & Industries 7, no. 3 (May 2006): 213–21. http://dx.doi.org/10.1051/meca:2006035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rodrigues, Sérgio Paulo Jorge, and Pedro Caridade. "História da química computacional e do uso dos computadores em química." História da Ciência e Ensino: construindo interfaces 25 (September 29, 2022): 140–53. http://dx.doi.org/10.23925/2178-2911.2022v25espp140-153.

Повний текст джерела
Анотація:
Resumo Os computadores são omnipresentes na sociedade atual e são usados por todos em química de forma rotineira para escrever, desenhar estruturas, fazer pesquisas e comunicar, entre outras atividades. Mas em química, os computadores têm um papel mais profundo, havendo uma área de investigação conhecida como “química computacional”. A história desta área confunde-se, em parte, com a história da química quântica, mas os computadores são uma parte fundamental do seu sucesso. Só com os computadores se tornou possível fazer cálculos de estrutura eletrónica com números muito grandes de eletrões e átomos. Estes cálculos envolvem milhões de operações matemáticas que só esta ferramenta tornou realizáveis em tempo útil. Muitas vezes são também os aspectos computacionais que vão condicionar e fazer avançar este tipo de cálculos. Exemplos disso são as bases de funções que são atualmente de tipo Gaussiano quando se esperaria que fossem outro tipo de funções. Por outro lado, os resultados destes cálculos e as suas simplificações vão contribuir para as teorias e modelos atualmente existentes. Ao mesmo tempo, a realização de elevados números de cálculos ao mesmo tempo e a presença de grandes matrizes, deu origem à vetorização e à paralelização e aos métodos numéricos e de programação associados. A necessidade de catalogar grandes números de moléculas, reações químicas e dados (patentes, relatórios, artigos e outros), deu origem aos primeiros bancos de dados científicos. Por outro lado, a necessidade de representar grandes quantidades de moléculas originará novas formas de representação, apropriadas aos computadores. Paralelamente, a visualização da estrutura das moléculas terá grande avanço com os computadores. Não só a representação de grandes quantidades de dados se tornou possível, mas a animação dos movimentos moleculares vieram trazer um aspecto novo. Para além das metodologias de representação, temos hoje em dia acesso às ferramentas da realidade virtual e realidade aumentada. Estas ferramentas permitem abordagens ainda mais gerais, nomeadamente no ensino. Atualmente, os equipamentos laboratoriais são também quase todos controlados por computador, sendo os seus resultados tratados e analisados de forma computacional, ou como auxiliar, ou de forma mais profunda, recorrendo a redes neuronais e inteligência artificial. Paralelamente a isto, far-se-á uma breve referência à história do ensino desta matéria nas universidades de Portugal e Brasil. Palavras-chave: computadores, estrutura eletrónica, simulação computacional, ensino da química computacional Abstract Computers are ubiquitous in today's society and are routinely used by everyone in chemistry to write, design structures, do research, and communicate, among other activities. But in chemistry, computers play a deeper role, with an area of ​​investigation known as “computational chemistry”. The history of this field is, in part, intertwined with the history of quantum chemistry, but computers are a fundamental part of its success. Only with computers was it possible to make calculations of electronic structure with very large numbers of electrons and atoms. These calculations involve millions of mathematical operations that only this tool has made possible in a timely manner. Often, it is also the computational aspects that are conditional and advance these types of calculations. Examples of this are the bases of functions that are actually Gaussian in type when you would expect them to be other types of functions. On the other hand, the results of these calculations and their simplifications will contribute to the currently existing theories and models. At the same time, the performance of large numbers of calculations at the same time and the presence of large matrices gave rise to vectorization and parallelization and the associated numerical and programming methods. The need to catalog large numbers of molecules, chemical reactions, and data (patents, reports, articles, and others) gave rise to the first scientific databases. On the other hand, the need to represent large numbers of molecules will give rise to new forms of representation, suitable for computers. At the same time, the visualization of the structure of molecules will have a great advance with computers. Not only did the representation of large amounts of data become possible, but the animation of molecular movements brought a new aspect. In addition to representation methodologies, we still have access to virtual reality and augmented reality tools. These tools allow even more general approaches, particularly in teaching. Currently, laboratory equipment is also almost all computer-controlled, and its results are processed and analyzed in a computational way, either as an aid or in a more profound way, using neural networks and artificial intelligence. In parallel to this, a brief reference is made to the teaching of Computational Chemistry in the Universities of Portugal and Brazil. Keywords: Computers, Electronic structure, Computational simulation
Стилі APA, Harvard, Vancouver, ISO та ін.
4

de Carvalho, A. L. C., F. M. Leila, A. M. S. Dias, A. L. Christoforo, D. A. Lopes Silva, M. E. Silveira, and F. A. R. Lahr. "Numerical Analyses of Timber Columns Reinforced by Particulate Composite Material." Open Construction and Building Technology Journal 10, no. 1 (June 28, 2016): 442–49. http://dx.doi.org/10.2174/1874836801610010442.

Повний текст джерела
Анотація:
Beams are structural elements commonly used in structure for construction designs. Usually wood is applied as structural elements and its use is very important because it is a material of renewable source, low density and satisfactory mechanical performance. When the wood surface is not properly treated, the structure can be destroyed not only by environmental conditions but also the attack of insects, compromising the structural design. This research presents the use of a particulate composite material of epoxy resin reinforced with white Portland cement in order to be applied as repair in timber columns. The mechanical performance of this material is essentially numerical, based on the Finite Element Method. The wood used in the simulation was the Eucalyptus grandis. The elastic properties were obtained from the specialist literature in the field of timber structures. The results of numerical simulations in terms of tension and buckling loads, the inclusion of the composite in the damaged regions (for all dimensions of the defects studied) provided buckling load results significantly higher than the buckling load values for the conditions without composite, and near to the values of the buckling loads without defect, highlighting the good performance of the particulate composite material in the repair of timber columns.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hofer, Thomas. "Preface." Pure and Applied Chemistry 82, no. 10 (January 1, 2010): iv. http://dx.doi.org/10.1351/pac20108210iv.

Повний текст джерела
Анотація:
The 31st International Conference on Solution Chemistry (ICSC-31) was held 21-25 August 2009 in Innsbruck, Austria. This conference series covers a wide range of topics related to solution chemistry, such as spectroscopy, thermodynamics, and kinetics to name just a few, addressing experimentalists and theoreticians alike.Seventeen outstanding plenary and invited lectures were given by renowned scientists. The topics of the plenaries were solution NMR stuctures of proteins (J. Wüthrich), porous coordination polymers (S. Kitagawa), ab initio-based water potentials for simulation studies (S. Xantheas), and the hydration structures of metal ions in solution (I. Persson). Additionally, 33 oral contributions were presented and two poster sessions were held. A total of 29 countries were represented in this conference. The best poster award was given to Matjaz Boncina for his poster entitled "Thermodynamics of the ion–lysozyme association". Pierre Turq presented details of the next ICSC meeting to be held in 2011 in La Grande Motte, France.Eight papers based on lectures presented at the ICSC-31 are included in this issue of Pure and Applied Chemistry. The manuscripts cover investigations using different spectroscopic approaches, molecular simulation studies as well as thermodynamic measurements. The systems treated range from pure water and aqueous solution to ionic liquids and solutions containing polyelectrolytes. These contributions feature the major themes of the conference, serve as a representative view of current activities in the field of solution chemistry, and demonstrate that solutions still prove to be challenging targets for contemporary physical and chemical research alike.Thomas HoferBernhard RandolfConference Editors
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Aubouin, Jean. "Les grandes structures geologiques." Earth-Science Reviews 36, no. 3-4 (August 1994): 254–55. http://dx.doi.org/10.1016/0012-8252(94)90068-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Boutemy, Camille, Arthur Lebée, Mélina Skouras, Marc Mimram, and Olivier Baverel. "Modélisation et conception d’un coffrage réutilisable pour la fabrication de coques minces en béton de formes complexes." SHS Web of Conferences 147 (2022): 09003. http://dx.doi.org/10.1051/shsconf/202214709003.

Повний текст джерела
Анотація:
La construction de coques minces en béton est coûteuse en matériaux et en main d’œuvre à cause de la fabrication du coffrage qui génère une vaste quantité de déchets. Ces éléments non réutilisables ont un impact négatif sur l’ACV de la construction. Ces difficultés expliquent en partie pourquoi la construction de coques minces est devenue rare à la fin du XXème siècle malgré l’indéniable qualité architecturale qu’elles confèrent aux espaces créés. Cette recherche a pour objectif de modéliser et concevoir un nouveau système de coffrage économe en moyens, pour préfabriquer des éléments surfaciques en béton à partir de structures gonflables. Contrairement à des exemples historiques proposant des gonflables à simple peau, nous proposons de liaisonner deux membranes selon un motif. Composé de courbes, le motif est conçu afin qu’une fois les membranes gonflées, la métrique du plan varie de manière non uniforme et génère une surface en trois dimensions selon le theorema egregium de Gauss. Le dessin du motif d’assemblage est guidé par un outil numérique capable de simuler précisément une forme gonflée en 3D à partir d’un motif de soudure en 2D. Cette méthode de fabrication serait automatisable et transposable à plus grande échelle. L’article décrira les principes géométriques et l’outil de simulation numérique. Nous présenterons une application, la fabrication d’un coffrage gonflable et la construction d’une coque mince en béton.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Acaro R, José A., Jeannie L. Quispe E., and Mali I. Salas D. "COMPORTAMIENTO DE TORRE DE LAVADO A NIVEL DE ESCALA PARA LA REMOCIÓN DE H2S DE UN REACTOR ANAEROBICO DE FLUJO ASCENDENTE." Revista Cientifica TECNIA 27, no. 1 (January 8, 2018): 85. http://dx.doi.org/10.21754/tecnia.v27i1.130.

Повний текст джерела
Анотація:
Nuestro equipo en esta oportunidad hizo una simulación de una torre de lavado, la cual la aplicamos en el reactor UASB, a manera de escala construimos una torre de lavado compuesta por difusores, una cama de sólidos hecha de material de esponja, un tubo de acrílico y todas las conexiones que conducen el biogás con H2S. Los componentes a eliminar y/o remover fueron los gases que salen del reactor, en especial del H2S (gas odorífero y toxico que a grandes concentraciones pude llevar a la muerte y como resultado de sus reacciones con el ambiente puede causar daños en las estructuras con la cual este en contacto) mediante la oxidación con el oxígeno disuelto que proveen las microalgas presentes en el agua de la laguna terciara utilizada. Esta torre de lavado la montamos en las instalaciones de CITRAR‐UNI con el permiso del operador y vimos el comportamiento que tiene esta torre, mediante los monitoreos de oxígeno disuelto, temperatura, pH y sulfatos que realizamos durante tres semanas de monitoreo. Como resultados obtuvimos que la torre de lavado sí oxidaba y removía la contracción de H2S, ya que cuando pasaba el tiempo se consumía el oxígeno disuelto, además de esto también en el monitoreo de sulfatos pudimos observar un aumento de este parámetro es decir la torre si estaba consumiendo en H2S, y por esta razón también disminuyo el olor fétido que produce este gas. Palabras clave.- Torre de lavado, reactor UASB, remoción de sulfuro de hidrógeno. ABSTRACT The present work reports the simulation of a wet scrubber coupled to an UASB reactor. The scrubber consisted of baffles, packed bed of sponge material, an acrylic tube and all the connections necessary to bring the H2S‐ladden biogas. The purpose of the equipment is to eliminate some of the gases coming out of the reactor, through their oxidation by the dissolved oxygen provided by the microalgae present in the water from the tertiary lagoon. Hydrogen sulfide is a foul‐ smelling and toxic gas which can cause death at high concentrations, and can also cause damage to the structures with which it comes into contact. The scrubber was installed on the site of CITRAR‐UNI and the behavior of the equipment was monitored during three weeks by following the temperature, pH and the concentrations of sulfates and dissolved oxygen. The results have shown that the scrubber was effectively an oxidizing environment which was removing H2S, since the dissolved oxygen was actually consumed gradually. It was also observed that the sulfate concentration was increasing, indicating a consumption of H2S, which was also confirmed by a reduction in the odor of the gas. Keywords.- scrubber, UASB reactor, hydrogen sulfide removal .
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Roy, Denis W., and Pierre Cousineau. "Les Grandes Structures Géologiques. Jacques Debelmas , Georges Mascle." Journal of Geology 101, no. 1 (January 1993): 129. http://dx.doi.org/10.1086/648207.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Khalid, Syma, and Sarah L. Rouse. "Simulation of subcellular structures." Current Opinion in Structural Biology 61 (April 2020): 167–72. http://dx.doi.org/10.1016/j.sbi.2019.12.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Duprat, Cédric, Guillaume Balarac, Olivier Métais, and Thomas Laverne. "Simulation des grandes échelles d'un aspirateur de centrale hydraulique." Mécanique & Industries 10, no. 3-4 (May 2009): 211–15. http://dx.doi.org/10.1051/meca/2009055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Herold, Sven, Dirk Mayer, and Holger Hanselka. "Transient Simulation of Adaptive Structures." Journal of Intelligent Material Systems and Structures 15, no. 3 (March 2004): 215–24. http://dx.doi.org/10.1177/1045389x04041396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Deiters, Joan A., Judith C. Gallucci, Thomas E. Clark, and Robert R. Holmes. "COMPUTER SIMULATION OF PHOSPHORANE STRUCTURES." Phosphorus, Sulfur, and Silicon and the Related Elements 98, no. 1-4 (January 1995): 125–49. http://dx.doi.org/10.1080/10426509508036946.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Domingues, J. P., A. M. Manich, R. M. Sauri, and A. Barella. "Assembling textile structures: wear simulation." International Journal of Clothing Science and Technology 9, no. 1 (March 1997): 75–87. http://dx.doi.org/10.1108/09556229710157894.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Ibadinov, KH I., A. A. Rahmonov, and A. SH Bjasso. "Laboratory Simulation of Cometary Structures." International Astronomical Union Colloquium 116, no. 1 (1989): 299–311. http://dx.doi.org/10.1017/s025292110010973x.

Повний текст джерела
Анотація:
AbstractThe properties of a porous mineral crust on the surface of an icy cometary nucleus and the crust's influence on the thermal regime and gas production in the nucleus have been studied by laboratory simulation experiments. A nucleus model of H2O ice with the impurity of graphite particles has been shown to display the same temperature and surface albedo as those determined for Comet Halley’s nucleus by the VEGA 1, VEGA 2, and Giotto spacecraft. The effective thermal conductivity of a crust with a density of 0.5 × 102 kg m−3 to 0.7 × 102 kg m−3 is less than 10−1 W m−1 K−1, while the crust’s strength (103 to 104 Pa) is not sufficient to withstand its erosion by the sublimating gases. A crust that is 1 cm thick lowers the gas production of the nucleus model by one order of magnitude. The destruction of the crust, and the gas and dust production of Comet Halley’s nucleus can be explained either by a spotty surface on the nucleus or, more likely, by the presence of volatile impurities such as CO2 with concentrations of 1 × 10−2 to 3 × 10−2 in the H2O ice under the crust.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Hung, Chin Yuan, Yunn Lin Hwang, Wei Hsin Gau, and Kun Nan Chen. "Vibrothermographical Simulation of Cracked Structures." Key Engineering Materials 823 (September 2019): 97–104. http://dx.doi.org/10.4028/www.scientific.net/kem.823.97.

Повний текст джерела
Анотація:
This research performs finite element simulations of cracked structures undergoing the vibrothermography process, which is an experimental technique gaining popularity for structural damage identification. In vibrothermography, a vibration shaker is used to excite the test structure. If the structure has cracks or defects, frictional heat will be generated at those cracks and thermal images can be recorded by an infrared camera. The vibrothermographical simulation includes modal analysis, transient vibration and transient thermal analysis. Two simulated examples are presented in this work: the first one is an aluminum-alloy plate with a hairline crack; the second example is a brake rotor with a hairline crack on one of the bolt-hole surfaces. Although higher modes are usually more difficult to excite, they may be used in vibrothermography to detect structural cracks more efficiently.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Soules, Thomas F. "Computer simulation of glass structures." Journal of Non-Crystalline Solids 123, no. 1-3 (August 1990): 48–70. http://dx.doi.org/10.1016/0022-3093(90)90773-f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Ferreira, Antonio Quadros. "As structures molles e o factum est da pintura." Revista Visuais 10, no. 1 (June 29, 2024): 38–63. http://dx.doi.org/10.20396/visuais.v10i1.19175.

Повний текст джерела
Анотація:
Este ensaio pretende alcançar dois grandes objectivos: o da especulação acerca do estado da investigação artística, da investigação que, sendo de natureza prospectiva ou implícita, não deixa de aliar os sentidos da autoria e da teoria numa mesma dimensão, e o de um ponto de situação pós BCIP, Projecto Baees Conceptuais da Investigação em Pintura que teve, como grande propósito, o de procurar determinar e auto-determinar caminhos cruciais da investigação da pintura na escola de arte. Mas estes dois grandes objectivos e caminho têm como chão a compreensão da história e da teoria dos modelos de criação alicerçados no pensar, no fazer, e no dizer – isto é, sublinhados na perspectiva de que a teoria das structures molles (Sanouillet) nos concede e nos abre para os imaginários operativos do factum est como lição da pintura.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Mazure, A. "L'Univers à grande échelle Les grandes structures et leur formation." Annales de Physique 10, no. 5 (1985): 415–73. http://dx.doi.org/10.1051/anphys:01985001005041500.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Suzuki, Yoshitaka. "Structures d'organisation des entreprises japonaises. Analyse historique comparative." Annales. Histoire, Sciences Sociales 49, no. 3 (June 1994): 569–84. http://dx.doi.org/10.3406/ahess.1994.279281.

Повний текст джерела
Анотація:
La principale caractéristique des entreprises modernes est le développement considérable, nécessaire à leur activité, des hiérarchies de gestion qui, dès leur apparition, ont fait l'objet de multiples analyses. M. Weber a indiqué que l'organisation bureaucratique « ne se rencontre pas seulement dans l'État et les administrations publiques, mais aussi dans l'administration capitaliste privée où elle est devenue le principe structurel des grandes entreprises ».
Стилі APA, Harvard, Vancouver, ISO та ін.
21

de Toro Espejel, J. Fernandez, and Zahra Sharif Khodaei. "Lightning Strike Simulation in Composite Structures." Key Engineering Materials 754 (September 2017): 181–84. http://dx.doi.org/10.4028/www.scientific.net/kem.754.181.

Повний текст джерела
Анотація:
Lighting strike is one of the critical threats to the safety of composite aircrafts during flight. This work reports on numerical simulation of lightning strike in composite structures. Different modelling techniques using the commercial software ABAQUS, together with damage models are studied to find the most appropriate one in comparison to experimental results. Once the numerical model is validated, the effect of insertion of carbon nanotubes (CNTs) and metallic mesh in the composite is investigated. It is concluded that inserting CNTs in the top layer of the composite can improve its lightning strike protection noticeably.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Li, Jichun, and Yunqing Huang. "Mathematical Simulation of Cloaking Metamaterial Structures." Advances in Applied Mathematics and Mechanics 4, no. 1 (February 2012): 93–101. http://dx.doi.org/10.4208/aamm.10-m11109.

Повний текст джерела
Анотація:
AbstractIn this paper we present a rigorous derivation of the material parameters for both the cylinder and rectangle cloaking structures. Numerical results using these material parameters are presented to demonstrate the cloaking effect.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Wiedenhaus, M., A. Ahland, D. Schulz, and E. Voges. "Dynamical simulation of quantum-well structures." IEEE Journal of Quantum Electronics 37, no. 5 (May 2001): 684–90. http://dx.doi.org/10.1109/3.918582.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Shi, Shouyuan, Ge Jin, and Dennis W. Prather. "Electromagnetic simulation of quantum well structures." Optics Express 14, no. 6 (2006): 2459. http://dx.doi.org/10.1364/oe.14.002459.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Brunner, Dominik, Guido Lemoine, Harm Greidanus, and Lorenzo Bruzzone. "Radar Imaging Simulation for Urban Structures." IEEE Geoscience and Remote Sensing Letters 8, no. 1 (January 2011): 68–72. http://dx.doi.org/10.1109/lgrs.2010.2051214.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Titorov, D. B. "Simulation of various possible cementite structures." Physics of Metals and Metallography 103, no. 4 (April 2007): 395–400. http://dx.doi.org/10.1134/s0031918x07040126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Büki, A., É. Kárpáti‐Smidróczki, and M. Zrínyi. "Computer simulation of regular Liesegang structures." Journal of Chemical Physics 103, no. 23 (December 15, 1995): 10387–92. http://dx.doi.org/10.1063/1.469875.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Zheng, Jeffrey, and Chris Zheng. "Variant simulation system using quaternion structures." Journal of Modern Optics 59, no. 5 (March 10, 2012): 484–92. http://dx.doi.org/10.1080/09500340.2011.636152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Anderson, Richard J. "Tree Data Structures forN-Body Simulation." SIAM Journal on Computing 28, no. 6 (January 1999): 1923–40. http://dx.doi.org/10.1137/s0097539797326307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Gusarova, M. A., V. I. Kaminsky, L. V. Kravchuk, S. V. Kutsaev, M. V. Lalayan, N. P. Sobenin, and S. G. Tarasov. "Multipacting simulation in accelerating RF structures." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 599, no. 1 (February 2009): 100–105. http://dx.doi.org/10.1016/j.nima.2008.09.047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Nehrii, Serhii, Tetiana Nehrii, and Hanna Piskurska. "Physical simulation of integrated protective structures." E3S Web of Conferences 60 (2018): 00038. http://dx.doi.org/10.1051/e3sconf/20186000038.

Повний текст джерела
Анотація:
An effective way of protecting development workings by integrated rock wall structures is considered. The necessity of improving this method and its experimental verification is substantiated. Integrated rock wall structures are experimentally tested under laboratory conditions. On the basis of the results of physical modeling, parameters of integrated structures have been specified in terms of impact factors; their yield strength is also specified. The condition for ensuring the stability of the integrated protective structure, which allows calculating appropriate rock wall width, is determined.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Brandenburg, A., R. L. Jennings, Å. Nordlund, M. Rieutord, R. F. Stein, and I. Tuominen. "Magnetic structures in a dynamo simulation." Journal of Fluid Mechanics 306 (January 10, 1996): 325–52. http://dx.doi.org/10.1017/s0022112096001322.

Повний текст джерела
Анотація:
We use three-dimensional simulations to study compressible convection in a rotating frame with magnetic fields and overshoot into surrounding stable layers. The, initially weak, magnetic field is amplified and maintained by dynamo action and becomes organized into flux tubes that are wrapped around vortex tubes. We also observe vortex buoyancy which causes upward flows in the cores of extended downdraughts. An analysis of the angles between various vector fields shows that there is a tendency for the magnetic field to be parallel or antiparallel to the vorticity vector, especially when the magnetic field is strong. The magnetic energy spectrum has a short inertial range with a slope compatible with k+1/3 during the early growth phase of the dynamo. During the saturated state the slope is compatible with k−1. A simple analysis based on various characteristic timescales and energy transfer rates highlights important qualitative ideas regarding the energy budget of hydromagnetic dynamos.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Silvestre, Nuno, and Leroy Gardner. "Steel Structures: Mechanics, Simulation and Testing." Structures 4 (November 2015): 1. http://dx.doi.org/10.1016/j.istruc.2015.10.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

McCallen, D. B. "Computer simulation of large frame structures." Computers & Structures 52, no. 6 (September 1994): 1145–60. http://dx.doi.org/10.1016/0045-7949(94)90181-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Wittmann, F. H., P. E. Roelfstra, and H. Sadouki. "Simulation and analysis of composite structures." Materials Science and Engineering 68, no. 2 (January 1985): 239–48. http://dx.doi.org/10.1016/0025-5416(85)90413-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Hughes, Michael Pycraft. "Numerical simulation of dielectrophoretic ratchet structures." Journal of Physics D: Applied Physics 37, no. 8 (March 31, 2004): 1275–80. http://dx.doi.org/10.1088/0022-3727/37/8/017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Suess, D., T. Schrefl, W. Scholz, J. V. Kim, R. L. Stamps, and J. Fidler. "Micromagnetic simulation of antiferromagnetic/ferromagnetic structures." IEEE Transactions on Magnetics 38, no. 5 (September 2002): 2397–99. http://dx.doi.org/10.1109/tmag.2002.803594.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Dmitriev, Sergey V., Miki Yajima, Yoshiya Makita, Denis A. Semagin, Kohji Abe, and Takeshi Shigenari. "Simulation of Modulated Structures in Quartz." Journal of the Physical Society of Japan 70, no. 2 (February 15, 2001): 428–36. http://dx.doi.org/10.1143/jpsj.70.428.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Kim, Seung Jo, Chang Sung Lee, Hea Jin Yeo, Jeong Ho Kim, and Jin Yeon Cho. "Direct Numerical Simulation of Composite Structures." Journal of Composite Materials 36, no. 24 (December 2002): 2765–85. http://dx.doi.org/10.1177/002199802761675610.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Uhrmacher, A. M. "Dynamic structures in modeling and simulation." ACM Transactions on Modeling and Computer Simulation 11, no. 2 (April 2001): 206–32. http://dx.doi.org/10.1145/384169.384173.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Benjeddou, A., B. H. V. Topping, and C. A. Mota Soares. "Composite Adaptive Structures: Modelling and Simulation." Computers & Structures 84, no. 22-23 (September 2006): 1381–83. http://dx.doi.org/10.1016/j.compstruc.2006.03.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Ciampolini, Paolo, Anna Pierantoni, Massimo Rudan, and Giorgio Baccarani. "Three-dimensional simulation of VLSI structures." European Transactions on Telecommunications 1, no. 3 (May 1990): 301–6. http://dx.doi.org/10.1002/ett.4460010311.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

van den Broeke, Leo J. P. "Simulation of diffusion in zeolitic structures." AIChE Journal 41, no. 11 (November 1995): 2399–414. http://dx.doi.org/10.1002/aic.690411107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Colvin, Robert, Simon Doherty, and Lindsay Groves. "Verifying Concurrent Data Structures by Simulation." Electronic Notes in Theoretical Computer Science 137, no. 2 (July 2005): 93–110. http://dx.doi.org/10.1016/j.entcs.2005.04.026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Nguyen, M. Q., S. S. Jacombs, R. S. Thomson, D. Hachenberg, and M. L. Scott. "Simulation of impact on sandwich structures." Composite Structures 67, no. 2 (February 2005): 217–27. http://dx.doi.org/10.1016/j.compstruct.2004.09.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Viola, Marcelo Ribeiro, Carlos Rogério de Mello, Samuel Beskow, and Lloyd Darrell Norton. "Applicability of the LASH Model for Hydrological Simulation of the Grande River Basin, Brazil." Journal of Hydrologic Engineering 18, no. 12 (December 2013): 1639–52. http://dx.doi.org/10.1061/(asce)he.1943-5584.0000735.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Boxberger, Lukas, Linda Weisheit, Sebastian Hensel, Julia Schellnock, Danilo Mattheß, Frank Riedel, and Welf-Guntram Drossel. "Development of Everting Tubular Net Structures Using Simulation for Growing Structures." Applied Sciences 10, no. 18 (September 17, 2020): 6466. http://dx.doi.org/10.3390/app10186466.

Повний текст джерела
Анотація:
Many living beings show the ability and necessity to develop invertible, tubular structures to enable additional functions temporarily. The biological archetypes always demonstrate a high change of volume of the structure between an inactive and active state. This makes the principle interesting for many technical applications, where a certain geometry or an additional volume has to be generated situationally for a task and can only be accepted temporarily, for example, in minimally invasive robotics. A possibility was sought to transfer the archetype into the technical context and to evaluate geometric-constructive dependencies based on an inversion of the structure. The result is a practicable design for repeatedly invertible net structures, which can be used for products with temporary additional functions and volumes.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Nakaza, Eizo, Tsunakiyo Iribe, and Muhammad Abdur Rouf. "NUMERICAL SIMULATION OF TSUNAMI CURRENTS." Coastal Engineering Proceedings 1, no. 32 (February 1, 2011): 6. http://dx.doi.org/10.9753/icce.v32.currents.6.

Повний текст джерела
Анотація:
The paper aims to simulate Tsunami currents around moving and fixed structures using the moving-particle semi-implicit method. An open channel with four different sets of structures is employed in the numerical model. The simulation results for the case with one structure indicate that the flow around the moving structure is faster than that around the fixed structure. The flow becomes more complex for cases with additional structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Quéméré, Patrick, Pierre Sagaut, and Vincent Couaillier. "Une méthode multidomaine/ multirésolution avec application à la simulation des grandes échelles." Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy 328, no. 1 (January 2000): 87–90. http://dx.doi.org/10.1016/s1287-4620(00)88421-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Vinkovic, Ivana, Cesar Aguirre, Serge Simoëns, and Jean-Noël Gence. "Couplage d'un modèle stochastique lagrangien sous-maille avec une simulation grandes échelles." Comptes Rendus Mécanique 333, no. 4 (April 2005): 325–30. http://dx.doi.org/10.1016/j.crme.2005.01.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії