Статті в журналах з теми "Silver Sulfide Quantum Dots"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Silver Sulfide Quantum Dots.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Silver Sulfide Quantum Dots".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Zvyagin, A. I., T. A. Chevychelova, I. G. Grevtseva, M. S. Smirnov, A. S. Selyukov, O. V. Ovchinnikov, and R. A. Ganeev. "Nonlinear Refraction in Colloidal Silver Sulfide Quantum Dots." Journal of Russian Laser Research 41, no. 6 (November 2020): 670–80. http://dx.doi.org/10.1007/s10946-020-09923-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Purushothaman, Baskaran, and Joon Myong Song. "Ag2S quantum dot theragnostics." Biomaterials Science 9, no. 1 (2021): 51–69. http://dx.doi.org/10.1039/d0bm01576h.

Повний текст джерела
Анотація:
Silver sulfide quantum dots (Ag2S QDs) as a theragnostic agent have received much attention because they provide excellent optical and chemical properties to facilitate diagnosis and therapy simultaneously.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhao, Dong-Hui, Xiao-Quan Yang, Xiao-Lin Hou, Yang Xuan, Xian-Lin Song, Yuan-Di Zhao, Wei Chen, Qiong Wang, and Bo Liu. "In situ aqueous synthesis of genetically engineered polypeptide-capped Ag2S quantum dots for second near-infrared fluorescence/photoacoustic imaging and photothermal therapy." Journal of Materials Chemistry B 7, no. 15 (2019): 2484–92. http://dx.doi.org/10.1039/c8tb03043j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ouyang, Wenzhu, and Jie Sun. "Biosynthesis of silver sulfide quantum dots in wheat endosperm cells." Materials Letters 164 (February 2016): 397–400. http://dx.doi.org/10.1016/j.matlet.2015.11.040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xu, Kai, and Jong Heo. "Lead sulfide quantum dots in glasses controlled by silver diffusion." Journal of Non-Crystalline Solids 358, no. 5 (March 2012): 921–24. http://dx.doi.org/10.1016/j.jnoncrysol.2012.01.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sadovnikov, S. I., and A. I. Gusev. "Recent progress in nanostructured silver sulfide: from synthesis and nonstoichiometry to properties." Journal of Materials Chemistry A 5, no. 34 (2017): 17676–704. http://dx.doi.org/10.1039/c7ta04949h.

Повний текст джерела
Анотація:
This review is focused on recent progress in the synthesis and design of different forms of nanostructured silver sulfide from nanopowders to colloidal solutions, quantum dots and heteronanostructures.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chen, Siqi, Mojtaba Ahmadiantehrani, Nelson G. Publicover, Kenneth W. Hunter, and Xiaoshan Zhu. "Thermal decomposition based synthesis of Ag-In-S/ZnS quantum dots and their chlorotoxin-modified micelles for brain tumor cell targeting." RSC Advances 5, no. 74 (2015): 60612–20. http://dx.doi.org/10.1039/c5ra11250h.

Повний текст джерела
Анотація:
High quality cadmium-free silver-indium-sulfide (Ag-In-S or AIS) quantum dots (QDs) and their core–shell structures (AIS/ZnS QDs) were synthesized in a thermal decomposition system and applied for cellular imaging.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Masmali, N. A., Z. Osman, and A. K. Arof. "Comparison between silver sulfide and cadmium sulfide quantum dots in ZnO and ZnO/ZnFe2O4 photoanode of quantum dots sensitized solar cells." Ionics 28, no. 4 (January 31, 2022): 2007–20. http://dx.doi.org/10.1007/s11581-022-04471-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Santhosh, Chella, and R. S. Ernest Ravindran. "Surface Modified Chitosan with Cadmium Sulfide Quantum Dots as Luminescent Probe for Detection of Silver Ions." Asian Journal of Chemistry 33, no. 5 (2021): 1025–30. http://dx.doi.org/10.14233/ajchem.2021.23003.

Повний текст джерела
Анотація:
In present work, the surface modified cadmium sulfide quantum dots (CdS QDs) was synthesized with chitosan for the detection of silver ions. Chitosan was employed as matrix medium to fabricate CdS QDs, resulting in the formation of novel QDs/chitosan composite. The CdS quantum dots surface coated with chitosan were analyzed using UV-vis spectrophotometer, X-ray diffraction and transmission electron microscope. The chitosan + CdS QDs exhibited high aqueous solubility with better steadiness. By using chitosan + CdS, the silver ions were not only detected but also reduced to nanosize due to the reducing property of chitosan. The mechanism of fluorescence quenching of chitosan + CdS by Ag+ was investigated using photoluminescence spectroscopy.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chen, Jin-Long, and Chang-Qing Zhu. "Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination." Analytica Chimica Acta 546, no. 2 (August 2005): 147–53. http://dx.doi.org/10.1016/j.aca.2005.05.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Hoisang, Watcharaporn, Taro Uematsu, Takahisa Yamamoto, Tsukasa Torimoto, and Susumu Kuwabata. "Core Nanoparticle Engineering for Narrower and More Intense Band-Edge Emission from AgInS2/GaSx Core/Shell Quantum Dots." Nanomaterials 9, no. 12 (December 11, 2019): 1763. http://dx.doi.org/10.3390/nano9121763.

Повний текст джерела
Анотація:
Highly luminescent silver indium sulfide (AgInS2) nanoparticles were synthesized by dropwise injection of a sulfur precursor solution into a cationic metal precursor solution. The two-step reaction including the formation of silver sulfide (Ag2S) nanoparticles as an intermediate and their conversion to AgInS2 nanoparticles, occurred during the dropwise injection. The crystal structure of the AgInS2 nanoparticles differed according to the temperature of the metal precursor solution. Specifically, the tetragonal crystal phase was obtained at 140 °C, and the orthorhombic crystal phase was obtained at 180 °C. Furthermore, when the AgInS2 nanoparticles were coated with a gallium sulfide (GaSx) shell, the nanoparticles with both crystal phases emitted a spectrally narrow luminescence, which originated from the band-edge transition of AgInS2. Tetragonal AgInS2 exhibited narrower band-edge emission (full width at half maximum, FWHM = 32.2 nm) and higher photoluminescence (PL) quantum yield (QY) (49.2%) than those of the orthorhombic AgInS2 nanoparticles (FWHM = 37.8 nm, QY = 33.3%). Additional surface passivation by alkylphosphine resulted in higher PL QY (72.3%) with a narrow spectral shape.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Wen, Shengwu, Tianhua Wu, Hui Long, Liying Ke, Suiping Deng, Langhuan Huang, Jingxian Zhang, and Shaozao Tan. "Mechanism Insight into Rapid Photodriven Sterilization Based on Silver Bismuth Sulfide Quantum Dots." ACS Applied Materials & Interfaces 13, no. 18 (May 3, 2021): 21979–93. http://dx.doi.org/10.1021/acsami.1c02761.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Zhang, Jing, Chunhong Hu, and Bingbo Zhang. "Facile synthesis of paramagnetic silver sulfide quantum dots for tumor targeted bimodal imaging." Nanomedicine: Nanotechnology, Biology and Medicine 12, no. 2 (February 2016): 505. http://dx.doi.org/10.1016/j.nano.2015.12.167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Lu, Feng, Yi Gong, Wenwen Ju, Feng Cheng, Kaiwei Zhang, Qi Wang, Wenjun Wang, Junbo Zhong, Quli Fan, and Wei Huang. "Facile one-pot synthesis of monodispersed NIR-II emissive silver sulfide quantum dots." Inorganic Chemistry Communications 106 (August 2019): 233–39. http://dx.doi.org/10.1016/j.inoche.2019.06.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Ovchinnikov O.V., Smirnov M.S., Aslanov S.V., and Perepelitsa A.S. "Luminescent properties of colloidal Ag-=SUB=-2-=/SUB=-S quantum dots for photocatalytic applications." Physics of the Solid State 63, no. 13 (2022): 1632. http://dx.doi.org/10.21883/pss.2022.13.52302.19s.

Повний текст джерела
Анотація:
The structural and optical properties of colloidal Ag2S quantum dots in various environments are investigated. With the help of transmission electron microscopy, X-ray diffraction and energy-dispersive X-ray analysis the formation of colloidal Ag2S quantum dots with an average size of 2-3 nm with a monoclinic crystal lattice, and Ag2S/SiO2 core-shell systems based on them, has been established. The change in the luminescence quantum yield of quantum dots with the change of the surface environment state is shown. The decoration of TiO2 nanoparticles of 10-15 nm in size with Ag2S quantum dots was performed and the influence of the structure of the interfaces of quantum dots and their environment (2-mercaptopropionic acid, water, ethylene glycol, SiO2 dielectric shell with a thickness of 0.6 nm and 2.0 nm) on the formation of TiO2-Ag2S heterosystems was analyzed. For Ag2S quantum dots passivated with 2-mercaptopropionic acid, signs of charge phototransfer after adsorption on TiO2 nanoparticles surface have been established. Signs of reactive oxygen species appearance due to charge phototransfer in heterosystem are enstablished, based on methylene blue photobleaching under excitation of heterosystem outside of TiO2 fundamental absorption region, Keywords: Quantum dots, photocatalysis, luminescence, titanium dioxide, silver sulfide.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Ovchinnikov O.V., Smirnov M.S., Aslanov S.V., and Perepelitsa A.S. "Luminescent properties of colloidal Ag-=SUB=-2-=/SUB=-S quantum dots for photocatalytic applications." Physics of the Solid State 63, no. 13 (2022): 2096. http://dx.doi.org/10.21883/pss.2022.13.53973.19s.

Повний текст джерела
Анотація:
The structural and optical properties of colloidal Ag2S quantum dots in various environments are investigated. With the help of transmission electron microscopy, X-ray diffraction and energy-dispersive X-ray analysis the formation of colloidal Ag2S quantum dots with an average size of 2-3 nm with a monoclinic crystal lattice, and Ag2S/SiO2 core-shell systems based on them, has been established. The change in the luminescence quantum yield of quantum dots with the change of the surface environment state is shown. The decoration of TiO2 nanoparticles of 10-15 nm in size with Ag2S quantum dots was performed and the influence of the structure of the interfaces of quantum dots and their environment (2-mercaptopropionic acid, water, ethylene glycol, SiO2 dielectric shell with a thickness of 0.6 nm and 2.0 nm) on the formation of TiO2-Ag2S heterosystems was analyzed. For Ag2S quantum dots passivated with 2-mercaptopropionic acid, signs of charge phototransfer after adsorption on TiO2 nanoparticles surface have been established. Signs of reactive oxygen species appearance due to charge phototransfer in heterosystem are enstablished, based on methylene blue photobleaching under excitation of heterosystem outside of TiO2 fundamental absorption region, Keywords: Quantum dots, photocatalysis, luminescence, titanium dioxide, silver sulfide.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Daibagya, D. S., S. A. Ambrozevich, A. S. Perepelitsa, I. A. Zakharchuk, M. S. Smirnov, O. V. Ovchinnikov, S. V. Aslanov, A. V. Osadchenko, and A. S. Selyukov. "Electric Field Influence on the Recombination Luminescence of the Colloidal Silver Sulfide Quantum Dots." Herald of the Bauman Moscow State Technical University. Series Natural Sciences, no. 3 (108) (June 2023): 100–117. http://dx.doi.org/10.18698/1812-3368-2023-3-100-117.

Повний текст джерела
Анотація:
The paper studies the effect of external electric field on the optical properties of the spherical Ag2S quantum dots. Colloidal Ag2S nanoparticles passivated with 2-mercaptopropionic acid were obtained by photoinduced synthesis in the ethylene glycol. The nanoparticles shape and characteristic size were determined using the transmission electron microscopy. To analyze the external electric field influence, a series of samples was prepared based on the optically passive polymer film, where the nanoparticles were embedded. The films were placed between two glasses coated with the transparent electrodes based on the indium tin oxide (ITO). Intensity value of the external electric field created in such structures reached 500 kV/cm. The photoluminescence signal was registered using the CCD fiber spectrometer with spectral resolution of 1.16 nm. Spectrally resolved nanoparticles photoluminescence kinetics was measured by time-corre-lated counting of the separate photons. It was found that the presence of a field led to an increase in intensity and rate of the photoluminescence relaxation due to the surface states. This fact is related to acceleration of the free holes transportation to the recombination centers in the external electric field. It is shown that under long-term exposure to laser radiation with a wavelength of 405 nm and the average power of 5 mW, the nanocrystal photoluminescent properties could degrade, as it occurs due to formation of new centers of non-radiative recombination and photoionization of the quantum dots
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Daibagya, D. S., S. A. Ambrozevich, A. S. Perepelitsa, I. A. Zakharchuk, A. V. Osadchenko, D. M. Bezverkhnyaya, A. I. Avramenko, and A. S. Selyukov. "Spectral and kinetic properties of silver sulfide quantum dots in an external electric field." Scientific and Technical Journal of Information Technologies, Mechanics and Optics 22, no. 6 (December 1, 2022): 1098–103. http://dx.doi.org/10.17586/2226-1494-2022-22-6-1098-1103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Ren, Qiaoli, Yuheng Ma, Shumin Zhang, Lu Ga, and Jun Ai. "One-Step Synthesis of Water-Soluble Silver Sulfide Quantum Dots and Their Application to Bioimaging." ACS Omega 6, no. 9 (February 25, 2021): 6361–67. http://dx.doi.org/10.1021/acsomega.0c06276.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Bao, Wenhui, Lu Ga, Ruiguo Zhao, and Jun Ai. "Microwave synthesis of silver sulfide near-infrared fluorescent quantum dots and their detection of dopamine." Biosensors and Bioelectronics: X 10 (May 2022): 100112. http://dx.doi.org/10.1016/j.biosx.2022.100112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Xu, Kai, and Jong Heo. "Effect of Silver Ion-Exchange on the Precipitation of Lead Sulfide Quantum Dots in Glasses." Journal of the American Ceramic Society 95, no. 9 (June 21, 2012): 2880–84. http://dx.doi.org/10.1111/j.1551-2916.2012.05313.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Zheng, Chenghui, Zhenming Qi, and Guoqiang Chen. "Silver sulfide quantum dots as sensitizer in self-cleaning ofBombyx morisilk fabrics with nano-titania." Journal of The Textile Institute 107, no. 12 (January 19, 2016): 1501–10. http://dx.doi.org/10.1080/00405000.2015.1128227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Xue, Jing, Hailong Li, Jixian Liu, Yao Wang, Yuanmeng Liu, Dong Sun, Wei Wang, Linjun Huang, and Jianguo Tang. "Facile synthesis of silver sulfide quantum dots by one pot reverse microemulsion under ambient temperature." Materials Letters 242 (May 2019): 143–46. http://dx.doi.org/10.1016/j.matlet.2019.01.121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Horstmann, Cullen Michael, Daniel Kim, and Kyoungtae Kim. "Comparing Transcriptome Profiles of Silver, Cadmium Selenide/Zinc Sulfide, Indium Phosphide/Zinc Sulfide, and Palladium Quantum Dots in Saccharomyces cerevisiae." FASEB Journal 34, S1 (April 2020): 1. http://dx.doi.org/10.1096/fasebj.2020.34.s1.06860.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Awasthi, Pragati, Xinyi An, Jiajia Xiang, Nagendra Kalva, Youqing Shen, and Chunyan Li. "Facile synthesis of noncytotoxic PEGylated dendrimer encapsulated silver sulfide quantum dots for NIR-II biological imaging." Nanoscale 12, no. 9 (2020): 5678–84. http://dx.doi.org/10.1039/c9nr10918h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Zhang, Bao-Hua, Li Qi, and Fang-Ying Wu. "Functionalized manganese-doped zinc sulfide core/shell quantum dots as selective fluorescent chemodosimeters for silver ion." Microchimica Acta 170, no. 1-2 (June 25, 2010): 147–53. http://dx.doi.org/10.1007/s00604-010-0381-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Lai, Shoujun, Xijun Chang, Jie Mao, Yunhui Zhai, Ning Lian, and Hong Zheng. "Determination of Silver Ion with Cadmium Sulfide Quantum Dots Modified by Bismuthiol II as Fluorescence Probe." Annali di Chimica 97, no. 1-2 (January 2007): 109–21. http://dx.doi.org/10.1002/adic.200690080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Tang, Rui, Jianpeng Xue, Baogang Xu, Duanwen Shen, Gail P. Sudlow, and Samuel Achilefu. "Tunable Ultrasmall Visible-to-Extended Near-Infrared Emitting Silver Sulfide Quantum Dots for Integrin-Targeted Cancer Imaging." ACS Nano 9, no. 1 (January 7, 2015): 220–30. http://dx.doi.org/10.1021/nn5071183.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Hunt, Nicholas J., Glen P. Lockwood, Frank H. Le Couteur, Peter A. G. McCourt, Nidhi Singla, Sun Woo Sophie Kang, Andrew Burgess, Zdenka Kuncic, David G. Le Couteur, and Victoria C. Cogger. "Rapid Intestinal Uptake and Targeted Delivery to the Liver Endothelium Using Orally Administered Silver Sulfide Quantum Dots." ACS Nano 14, no. 2 (January 24, 2020): 1492–507. http://dx.doi.org/10.1021/acsnano.9b06071.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Liu, Qing, Yuan Pu, Zhijian Zhao, Jiexin Wang, and Dan Wang. "Synthesis of Silver Sulfide Quantum Dots Via the Liquid–Liquid Interface Reaction in a Rotating Packed Bed Reactor." Transactions of Tianjin University 26, no. 4 (December 27, 2019): 273–82. http://dx.doi.org/10.1007/s12209-019-00228-5.

Повний текст джерела
Анотація:
AbstractWe developed the high-gravity coupled liquid–liquid interface reaction technique on the basis of the rotating packed bed (RPB) reactor for the continuous and ultrafast synthesis of silver sulfide (Ag2S) quantum dots (QDs) with near-infrared (NIR) luminescence. The formation of Ag2S QDs occurs at the interface of microdroplets, and the average size of Ag2S QDs was 4.5 nm with a narrow size distribution. Ag2S QDs can disperse well in various organic solvents and exhibit NIR luminescence with a peak wavelength at 1270 nm under 980-nm laser excitation. The mechanism of the process intensification was revealed by both the computational fluid dynamics simulation and fluorescence imaging, and the mechanism is attributed to the small and uniform droplet formation in the RPB reactor. This study provides a novel approach for the continuous and ultrafast synthesis of NIR Ag2S QDs for potential scale-up.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Shahri, Nurulizzatul Ningsheh M., Hussein Taha, Malai Haniti S. A. Hamid, Eny Kusrini, Jun-Wei Lim, Jonathan Hobley, and Anwar Usman. "Antimicrobial activity of silver sulfide quantum dots functionalized with highly conjugated Schiff bases in a one-step synthesis." RSC Advances 12, no. 5 (2022): 3136–46. http://dx.doi.org/10.1039/d1ra08296e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Zhao, Yanxia, and Zhenmin Song. "Phase transfer-based synthesis of highly stable, biocompatible and the second near-infrared-emitting silver sulfide quantum dots." Materials Letters 126 (July 2014): 78–80. http://dx.doi.org/10.1016/j.matlet.2014.04.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Butwong, Nutthaya, Supalax Srijaranai, and John H. T. Luong. "Fluorometric determination of hydrogen sulfide via silver-doped CdS quantum dots in solution and in a test strip." Microchimica Acta 183, no. 3 (January 27, 2016): 1243–49. http://dx.doi.org/10.1007/s00604-016-1755-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Ozkan Vardar, Deniz, Sevtap Aydin, Ibrahim Hocaoglu, Funda Havva Yagci Acar, and Nursen Basaran. "Effects of silver sulfide quantum dots coated with 2-mercaptopropionic acid on genotoxic and apoptotic pathways in vitro." Chemico-Biological Interactions 291 (August 2018): 212–19. http://dx.doi.org/10.1016/j.cbi.2018.06.032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Fu, Yue, Rashid A. Ganeev, Ganjaboy S. Boltaev, Sandeep Kumar Maurya, Vyacheslav V. Kim, Chen Zhao, Anuradha Rout, and Chunlei Guo. "Low- and high-order nonlinear optical properties of Ag2S quantum dot thin films." Nanophotonics 8, no. 5 (March 15, 2019): 849–58. http://dx.doi.org/10.1515/nanoph-2018-0213.

Повний текст джерела
Анотація:
AbstractThin films containing small-sized quantum dots (QDs) and nanoparticles have shown strong optical nonlinearities caused by the confinement effect. Here, we report the study of third-order optical nonlinearities of silver sulfide (Ag2S) QD thin films using 800 and 400 nm, 30 fs pulses. The absorption spectrometry and transmission electron microscopy are used to characterize the synthesized 80 and 500 nm Ag2S QD films. The giant enhancement of nonlinearities is observed up to three to six orders of magnitude larger compared to those for the bulk and liquid Ag2S samples. We also demonstrate the efficient high-order harmonic generation in the plasmas produced during ablation of the Ag2S QD thin films. The analysis of the dynamics of the QD-containing plasma spreading allowed optimization of the delay between the heating and the driving pulses for an enhancement of harmonics conversion efficiency.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Sun, Yue, Xiaodong Zhai, Xiaobo Zou, Jiyong Shi, Xiaowei Huang, and Zhihua Li. "A Ratiometric Fluorescent Sensor Based on Silicon Quantum Dots and Silver Nanoclusters for Beef Freshness Monitoring." Foods 12, no. 7 (March 29, 2023): 1464. http://dx.doi.org/10.3390/foods12071464.

Повний текст джерела
Анотація:
A ratiometric fluorescent sensor with hydrogen sulfide (H2S) and methanthiol (CH3SH) sensitivity was developed to real-time monitor beef freshness. A silicon quantum dots (SiQD) and silver nanoclusters (AgNC) complex, namely SiQD-AgNC, was used as the dual emission fluorescence materials. Due to the fluorescence resonance energy transfer (FRET) effect between SiQD and AgNC, when the fluorescence of AgNC (610 nm) was quenched by H2S or CH3SH, the fluorescence of SiQD (468 nm) recovered, resulting in an increase of the fluorescent intensity ratio (I468/I610). I468/I610 showed a linear relationship with the H2S concentration within the concentration range of 1.125–17 μM, with a limit of detection (LOD) value of 53.6 nM. Meanwhile, I468/I610 presented two linear relationships with the CH3SH concentration within the concentration range of 1.125–17 μM and 23.375–38.25 μM, respectively, with a LOD value of 56.5 nM. The SiQD-AgNC complex was coated on a polyvinylidene fluoride (PVDF) film to form a portable SiQD-AgNC/PVDF film sensor. This film showed purplish red-to-cyan color changes in response to H2S and CH3SH, with LOD values of 224 nM and 233 nM to H2S and CH3SH, respectively. When the film was used to monitor beef freshness at 4 °C, its fluorescent color gradually changed from purplish red to cyan. Hence, this study presented a new ratiometric fluorescent sensor for intelligent food packaging.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Cheng, Kai-Chun, Wing-Cheung Law, Ken-Tye Yong, Jeremy S. Nevins, David F. Watson, Ho-Pui Ho, and Paras N. Prasad. "Synthesis of near-infrared silver-indium-sulfide (AgInS2) quantum dots as heavy-metal free photosensitizer for solar cell applications." Chemical Physics Letters 515, no. 4-6 (October 2011): 254–57. http://dx.doi.org/10.1016/j.cplett.2011.09.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Abdrshin, A. N., Zh O. Lipatova, E. V. Kolobkova, E. M. Sgibnev, and N. V. Nikonorov. "The influence of silver ion exchange on the formation and luminescent properties of lead sulfide molecular clusters and quantum dots." Optics and Spectroscopy 121, no. 6 (December 2016): 826–30. http://dx.doi.org/10.1134/s0030400x1612002x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Tan, Lianjiang, Ajun Wan, and Huili Li. "Conjugating S-Nitrosothiols with Glutathiose Stabilized Silver Sulfide Quantum Dots for Controlled Nitric Oxide Release and Near-Infrared Fluorescence Imaging." ACS Applied Materials & Interfaces 5, no. 21 (October 24, 2013): 11163–71. http://dx.doi.org/10.1021/am4034153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Jiao, Mingxia, Yun Li, Yuxiu Jia, Chenxi Li, Hao Bian, Liting Gao, Peng Cai, and Xiliang Luo. "Strongly emitting and long-lived silver indium sulfide quantum dots for bioimaging: Insight into co-ligand effect on enhanced photoluminescence." Journal of Colloid and Interface Science 565 (April 2020): 35–42. http://dx.doi.org/10.1016/j.jcis.2020.01.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Sadovnikov, Stanislav I., and Aleksandr I. Gusev. "Universal Approach to the Synthesis of Silver Sulfide in the Forms of Nanopowders, Quantum Dots, Core-Shell Nanoparticles, and Heteronanostructures." European Journal of Inorganic Chemistry 2016, no. 31 (October 7, 2016): 4944–57. http://dx.doi.org/10.1002/ejic.201600881.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Kaewprajak, Anusit, Pisist Kumnorkaew, and Takashi Sagawa. "Silver–indium–sulfide quantum dots in titanium dioxide as electron transport layer for highly efficient and stable perovskite solar cells." Journal of Materials Science: Materials in Electronics 30, no. 4 (January 10, 2019): 4041–55. http://dx.doi.org/10.1007/s10854-019-00691-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Qin, Meng-Yao, Xiao-Quan Yang, Kan Wang, Xiao-Shuai Zhang, Ji-Tao Song, Ming-Hao Yao, Dong-Mei Yan, Bo Liu, and Yuan-Di Zhao. "In vivo cancer targeting and fluorescence-CT dual-mode imaging with nanoprobes based on silver sulfide quantum dots and iodinated oil." Nanoscale 7, no. 46 (2015): 19484–92. http://dx.doi.org/10.1039/c5nr05620a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Al-Bluwi, S. A. E., A. Al-Ghamdi, and G. Baell. "The charge transport mechanism of a photodiode made of silver sulfide quantum dots decorated graphene for selective detection of blue light." Optik 205 (March 2020): 164264. http://dx.doi.org/10.1016/j.ijleo.2020.164264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Badawi, Ali, Nasser Y. Mostafa, Najm M. Al-Hosiny, Amar Merazga, Ateyyah M. Albaradi, F. Abdel-Wahab, and A. A. Atta. "The photovoltaic performance of Ag2S quantum dots-sensitized solar cells using plasmonic Au nanoparticles/TiO2 working electrodes." Modern Physics Letters B 32, no. 16 (June 5, 2018): 1850172. http://dx.doi.org/10.1142/s0217984918501725.

Повний текст джерела
Анотація:
The photovoltaic performance of silver sulfide (Ag2S) quantum dots-sensitized solar cells (QDSSCs) using different concentrations (0, 0.05, 0.1, 0.3 and 0.5 wt.%) of plasmonic Au nanoparticles (NPs)/titania (TiO2) electrodes has been investigated. Ag2S quantum dots (QDs) were adsorbed onto the Au NPs/titania electrodes using the successive ionic layer adsorption and reaction (SILAR) deposition technique. The morphological properties of the Au NPs and the prepared titania electrodes were characterized using transmission electron microscope (TEM) and scanning electron microscope (SEM), respectively. The energy-dispersive X-ray (EDX) spectra of the bare titania and Ag2S QDs-sensitized titania electrodes were recorded. The optical properties of the prepared Ag2S QDs-sensitized titania electrodes were measured using a UV–visible spectrophotometer. The estimated energy band gap of Ag2S QDs-sensitized titania electrodes is 1.96 eV. The photovoltaic performance of the assembled Ag2S QDSSCs was measured under 100 mW/cm2 solar illumination. The optimal photovoltaic parameters were obtained as follows: open circuit voltage [Formula: see text] = 0.50 V, current density [Formula: see text] = 3.18 mA/cm2, fill factor (FF) = 0.35 and energy conversion efficiency [Formula: see text] = 0.55% for 0.3 wt.% of Au NPs/titania electrode. These results are attributed to the enhancement in the absorption and decrease in the electron–hole pairs recombination rate. The open circuit voltage decay (OCVD) measurements of the assembled Ag2S QDSSCs were measured. The calculated electron lifetime [Formula: see text] in Ag2S QDSSCs with Au NPs/titania electrodes is at least one order of magnitude more than that with bare titania electrode. The cut-on–cut-off cycles of the solar illumination measurements show the rapid sensitivity and good reproducibility of the assembled Ag2S QDSSCs.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Tan, Lianjiang, Ajun Wan, and Huili Li. "Retraction of “Conjugating S-Nitrosothiols with Glutathiose Stabilized Silver Sulfide Quantum Dots for Controlled Nitric Oxide Release and Near-Infrared Fluorescence Imaging”." ACS Applied Materials & Interfaces 13, no. 15 (April 7, 2021): 18392. http://dx.doi.org/10.1021/acsami.1c05348.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

ÖZKAN VARDAR, Deniz, Sevtap AYDIN, İbrahim HOCAOĞLU, Havva YAĞCI ACAR, and Nursen BAŞARAN. "An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid." Turkish Journal of Pharmaceutical Sciences 16, no. 3 (July 11, 2019): 282–91. http://dx.doi.org/10.4274/tjps.galenos.2018.85619.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Wang, Guang-Li, Huan-Jun Jiao, Xiao-Ying Zhu, Yu-Ming Dong, and Zai-Jun Li. "Novel switchable sensor for phosphate based on the distance-dependant fluorescence coupling of cysteine-capped cadmium sulfide quantum dots and silver nanoparticles." Analyst 138, no. 7 (2013): 2000. http://dx.doi.org/10.1039/c3an36878e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Li, Hongxia, Xiang Gao, Xiaohui Niu, Deyi Zhang, Haiyan Fan, and Kunjie Wang. "Preparation of g-C3N4/CQDs/Ag2S Composite Material and Its Antibacterial Properties." Journal of Biomaterials and Tissue Engineering 12, no. 9 (September 1, 2022): 1683–91. http://dx.doi.org/10.1166/jbt.2022.3122.

Повний текст джерела
Анотація:
The emergence of bacterial resistance to traditional antibiotics and its global spread has brought huge threats to human life and health, and the need for new alternative antibacterial agents has become increasingly urgent. The rapid development of nanoscience provides a potential alternative to antibacterial therapy. In this study, g-C3N4 was synthesized using melamine as the raw material. It was then successfully combined with carbon quantum dots (CQDs) and silver sulfide to synthesize a g-C3N4/CQDs/Ag2S composite material. Such combination narrows the band gap of g-C3N4 from 2.53 eV to 2.21 eV and enhances the photocatalytic efficiency. Consequently, it indicated photocatalytic antimicrobial effects against three strands of bacteria, Shylococcus aureus (Grampositive), Escherichia coli (Gram-negative) and Methicillin-resistant Staphylococcus aureus under the irradiation of visible light. Other than the common pathogens, g-C3N4/CQDs/Ag2S exhibited an appreciable inhibition against the well-known drug-resistant bacteria. With its antimicrobial features and excellent photoelectric properties, the as prepared nanocomposites show its potential in the development of new antimicrobial and photocatalytic materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Sharma, Sheetal, Vishal Dutta, Pankaj Raizada, Vijay Kumar Thakur, Adesh K. Saini, Divya Mittal, Van-Huy Nguyen, et al. "Synergistic photocatalytic dye mitigation and bacterial disinfection using carbon quantum dots decorated dual Z-scheme Manganese Indium Sulfide/Cuprous Oxide/Silver oxide heterojunction." Materials Letters 313 (April 2022): 131716. http://dx.doi.org/10.1016/j.matlet.2022.131716.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії