Добірка наукової літератури з теми "Silicon recycling"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Silicon recycling".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Silicon recycling"
Ikhmayies, Shadia J. "Recycling Silicon and Silicon Compounds." JOM 72, no. 7 (May 29, 2020): 2612–14. http://dx.doi.org/10.1007/s11837-020-04218-0.
Повний текст джерелаKwon, Woo Teck, Soo Ryong Kim, Y. Kim, Jee Ban Poudel, and Sea Cheon Oh. "Recovery of Silicon and Silicon Carbide Powder from Waste Silicon Wafer Sludge." Materials Science Forum 761 (July 2013): 65–68. http://dx.doi.org/10.4028/www.scientific.net/msf.761.65.
Повний текст джерелаJia-Yan, LI, CAI Min, WU Xiao-Wei, and TAN Yi. "Recycling Polycrystalline Silicon Solar Cells." Journal of Inorganic Materials 33, no. 9 (2018): 987. http://dx.doi.org/10.15541/jim20170547.
Повний текст джерелаShevko, Viktor М., Yerbol Ye Akylbekov, Gulnara Ye Karataeva, and Alexandra D. Badikova. "Recycling of chrysotile-asbestos production waste." Metallurgical Research & Technology 119, no. 4 (2022): 410. http://dx.doi.org/10.1051/metal/2022050.
Повний текст джерелаRiech, Ines, Carlos Castro-Montalvo, Loïs Wittersheim, Germán Giácoman-Vallejos, Avel González-Sánchez, Cinthia Gamboa-Loira, Milenis Acosta, and José Méndez-Gamboa. "Experimental Methodology for the Separation Materials in the Recycling Process of Silicon Photovoltaic Panels." Materials 14, no. 3 (January 27, 2021): 581. http://dx.doi.org/10.3390/ma14030581.
Повний текст джерелаWei, Donghui, Shuaibo Gao, Jian Kong, Xing Jin, Shengnan Jiang, Shibo Zhou, Yanxin Zhuang, Huayi Yin, and Pengfei Xing. "Recycling silicon from silicon cutting waste by Al–Si alloying." Journal of Cleaner Production 251 (April 2020): 119647. http://dx.doi.org/10.1016/j.jclepro.2019.119647.
Повний текст джерелаZhu, Jing Jing, Qun Qun Huang, Shui Qing Yang, Wei Luo, and Jun Lin. "Recycling of SiC in Crystalline Silicon Cutting Fluid." Advanced Materials Research 622-623 (December 2012): 504–7. http://dx.doi.org/10.4028/www.scientific.net/amr.622-623.504.
Повний текст джерелаXiao, Yan Ping, and Yong Xiang Yang. "Potential Routes for Recycling and Reuse of Silicon Kerf." Advanced Materials Research 295-297 (July 2011): 2235–40. http://dx.doi.org/10.4028/www.scientific.net/amr.295-297.2235.
Повний текст джерелаHe, Qian, Hongming Zhao, Shuangfeng Qian, Qiang Zhou, Jijun Wu, and Wenhui Ma. "Separating and Recycling of Elemental Silicon from Wasted Industrial Silicon Slag." Metallurgical and Materials Transactions B 53, no. 1 (December 2, 2021): 442–53. http://dx.doi.org/10.1007/s11663-021-02381-6.
Повний текст джерелаDuran, Solco Samantha Faye, Danwei Zhang, Wei Yang Samuel Lim, Jing Cao, Hongfei Liu, Qiang Zhu, Chee Kiang Ivan Tan, Jianwei Xu, Xian Jun Loh, and Ady Suwardi. "Potential of Recycled Silicon and Silicon-Based Thermoelectrics for Power Generation." Crystals 12, no. 3 (February 22, 2022): 307. http://dx.doi.org/10.3390/cryst12030307.
Повний текст джерелаДисертації з теми "Silicon recycling"
Demchikhin, Sergey. "Alternativy likvidace fotovoltaických článků jako potenciální ekologické zátěže." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219643.
Повний текст джерелаNdzogha, Cyrille. "Etudes des phénomènes d’échange dans la purification du silicium par plasma et induction." Grenoble INPG, 2005. https://theses.hal.science/tel-01340596.
Повний текст джерелаThis thesis focuses on a plasma process of purification of silicon for photovoltaic applications. It is applied to two types of materials: metallurgical silicon and recycling products from sawing sludge ingots and from wafers of photovoltaic industry. Platelet sawing sludge consist mainly of cutting fluid, SiC particles (abrasive), silicon microparticles and iron micro-particles from the cutting wire. Silicon sludge is a high-purity silicon, which is already of photovoltaic quality. It can represent 60% of the original weight of the ingot. The present process comprises a SiC phase separation by centrifugation, followed by chemical elimination phase of the iron, then a reactive plasma treatment for removing residual SiC. This work deals with this last phase. A more complex treatment than originally planned was made necessary by the existence in the SiC particles of sawing sludge from the initial breaking of the abrasive grains. Separation of SiC is incomplete, the plasma treatment had to remove much larger quantities than originally planned. This required a significant modification of the original process, and the setting of a pre-treatment phase point intended to make it usable by the product of the plasma separation. This work combines theoretical studies, numerical modeling and experimentation. Thermodynamic modeling to determine the best conditions for the removal of pollutants (adapted reactive gases, flow rates, temperatures, pressures) whereas modeling the electromagnetic measurement brewing efficiency renewing the surface of the liquid bath during treatment
Argonz, Raquel. "Purificação de rejeitos de lascas de quartzo das industrias de silicio." [s.n.], 2001. http://repositorio.unicamp.br/jspui/handle/REPOSIP/264918.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-07-31T20:22:15Z (GMT). No. of bitstreams: 1 Argonz_Raquel_D.pdf: 6011460 bytes, checksum: 288a8671c5c8ed96310d3c57226ce9c8 (MD5) Previous issue date: 2001
Resumo: O Brasil é na atualidade um dos principais produtores de silício para o mundo, sendo que a quantidade de quartzo extraído para a sua produção incluindo o ferro-silício, é da ordem de 2 milhões de toneladas/ano. Para a obtenção do quartzo destinado à redução carbotérmica em silício, nos diversos estágios de extração, britagem, seleção, transporte, e lavagem, cerca de 300.000 toneladas/ano de lascas de quartzo tomam-se rejeitos. Neste trabalho foi desenvolvida uma metodologia ambientalmente correta, denominada "quench-Ieaching" e "crush-leaching", que se utiliza da lixiviação aquosa para a purificação deste material. Os resultados mostram que ocorre uma remoção efetiva de impurezas majoritárias nas lascas de quartzo, tais como, AI, Fe, Na, K, Ca, Mn, ..., dando-lhe uma pureza de 99,9% de SI 'O IND 2'. Uma comparação com diversos insumos de quartzo produzidos no exterior para uso em tecnologia avançada, como para produção de sílica vítrea translucente e "fillers" de "micro-chips", revela que este material purificado com esta tecnologia toma-se de qualidade equivalente ao pó de quartzo internacional
Abstract: Nowadays, Brazil is one of the main silicon metal and iron-silicon producer in the world. But on the other hand, the amount of natural quartz that has been extracted for this purpose is up to 2 milliontons/year. The key-point is the large quantity of rejected quartz lascas, approximately 300,000 tons/year, generated during the various stages of extraction, crushing, selection, transportation, and washing. A new environrnentally mendly purification methodology denominated "quench-Ieaching" and "crush-leaching, that only uses aqueous leaching, has been developed. The result shows an effective elimination of major quartz impurities, such as Al, Fe, Na, K, Ca, Mn, ... , that transforms this rejected material into a 99.9% purity SI 'O IND 2'. The quality of this material is as high as the quartz powder commercially available in the intemational market for use as "fillers" and translucent silica glass raw material for semiconductor industries
Doutorado
Materiais e Processos de Fabricação
Doutor em Engenharia Mecânica
Li, Hao. "Functionalized silica nanoparticles for catalysis, nanomedicine and rare earth metal recycling." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670613.
Повний текст джерелаDurante la última década, las nanopartículas de sílice han encontrado aplicaciones en catálisis, purificación de agua, campos biomédicos, agrícolas e industriales ... debido a sus características químicas y físicas únicas, tales como alta superficie, excelente biocompatibilidad, buena estabilidad térmica, mecánica y química, tamaño y forma de poro ajustable, superficie enriquecida con grupos silanol que permiten una fácil modificación superficial. Nuestra investigación en esta tesis se ha centrado en la preparación y caracterización de varios tipos de nanopartículas de sílice funcionalizadas novedosas, así como su aplicación en catálisis, biomedicina y recuperación de elementos de tierras raras. Se prepararon nuevas nanopartículas de sílice mesoporosa derivadas de amidas de prolina-valinol mono y disililadas y se usaron como catalizadores reciclables para la reacción aldólica asimétrica con elevada actividad y selectividad. Estos nanomateriales se pueden recuperar con éxito y reutilizar hasta seis veces (Capítulo 2). Por el contrario, nuestros esfuerzos en la preparación de nanopartículas de organosílice reciclables como catalizadores o ligandos quirales para la α-trifuorometilación y α-fluoración enantioselectivas de compuestos carbonílicos no tuvieron éxito (Capítulo 2). Se preparó una serie de nanopartículas de organosilica mesoporosas mixtas periódicas que poseen grupos Boc y éster de terc-butilo como posibles agentes sensibles al ultrasonido focalizado de alta intensidad (High Intensity Focused Ultrasound, HIFU). Se esperaba que estos nanomateriales liberaran CO2 y / o isobuteno del grupo COOtBu sensible a la temperatura. Sin embargo, se encontró que el grupo Boc era bastante estable y no podía eliminarse en condiciones HIFU a 80 ºC, sino que se requería además la adición de ácido. Sin embargo, el concepto es prometedor para futuros agentes de contraste para terapias basadas en HIFU (Capítulo 3). Fármacos antiinflamatorios no esteroideos como ibuprofeno y diclofenaco se unieron de forma covalente a nanopartículas de sílice a través de un grupo funcional amida para su posible aplicación en formulaciones tópicas (pomadas y cremas). Además, el recubrimiento de telas de algodón con estas nanopartículas de sílice funcionalizadas proporcionó telas hidrófobas para posibles aplicaciones cutáneas tópicas en apósitos destinados a tratar heridas crónicas. El fármaco antiinflamatorio correspondiente se libera in situ mediante la escisión enzimática selectiva del enlace amida en presencia de proteasas (Capítulo 4). Se prepararon nanopartículas de sílice mesoporosas con núcleo magnético funcionalizadas con fragmentos de cyclen como adsorbentes novedosos para la recuperación específica y selectiva de diferentes iones de tierras raras (RE) del agua residual (Capítulo 5).
During the last decade, silica nanoparticles have found applications in catalysis, water purification, biomedical, agricultural and industrial fields… due to their unique chemical and physical characteristics, such as high surface area, excellent biocompatibility, good thermal, mechanical and chemical stability, adjustable pore size and shape, enriched surface silanol groups with easy surface modification. Our research in this thesis has been focused on the preparation and characterization of various types of novel functionalized silica nanoparticles, as well as their application in catalysis, biomedicine and rare earth elements recovery. Novel mesoporous silica nanoparticles derived from mono- and bis-silylated proline-valinol amides were prepared and used as recyclable catalysts for the asymmetric aldol reaction with high activity and selectivity. These nanomaterials can be successfully recovered and reused for up to six runs (Chapter 2). Conversely, our efforts in the preparation of recyclable organosilica nanoparticles as chiral catalysts or ligands for the enantioselective α-trifuoromethylation and α-fluorination of carbonyl compounds were not successful (Chapter 2). A series of mixed periodic mesoporous organosilica nanoparticles possessing Boc and tert-butyl ester groups were prepared as potential high intensity focused ultrasound (HIFU) responsive agents. These nanomaterials were expected to release CO2 and/or isobutene from the temperature-sensitive COOtBu group. However, Boc group was found to be quite stable and could not be removed under HIFU conditions at 80 ºC, requiring the addition of acid. The concept is nevertheless promising for future contrast agents for HIFU based therapies (Chapter 3). Non-steroidal anti-inflammatory drugs such as ibuprofen and diclofenac were grafted to silica nanoparticles through an amide functional group for potential application in ointment and cream topical formulations. Furthermore, coating of cotton fabrics with these functionalized silica nanoparticles provided hydrophobic fabrics for potential topical cutaneous applications in dressings intended to treat chronic wounds. The corresponding anti-inflammatory drug is released in situ by the selective enzymatic cleavage of the amide bond in the presence of proteases (Chapter 4). Two functionalized magnetic core-shell mesoporous silica nanoparticles containing cyclen moieties were prepared as novel adsorbents for the specific and selective recovery of different rare earth (REs) ions from wastewater (Chapter 5).
Andersson, Stephanie. "Återvinning av solcellsmoduler i Sverige : En undersökning av de energitekniska, ekonomiska och politiska förutsättningarna." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-53341.
Повний текст джерелаDi, Domenica Eleonora. "Recycling of end of life concrete fines (0 - 4 mm) into silica and cement." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8622/.
Повний текст джерелаSILVA, ANTONIO C. da. "Vidros e vitroceramicos com alta concentracao de metais obtidos a partir de residuos industriais." reponame:Repositório Institucional do IPEN, 2008. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11765.
Повний текст джерелаMade available in DSpace on 2014-10-09T14:05:06Z (GMT). No. of bitstreams: 0
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Nguyen, Joseph Vu. "Design, synthesis, and optimization of recoverable and recyclable silica-immobilized atom transfer radical polymerization catalystal." Available online, Georgia Institute of Technology, 2005, 2005. http://etd.gatech.edu/theses/available/etd-03072005-105351/unrestricted/nguyen%5Fjoseph%5Fv%5F200505%5Fphd.pdf.
Повний текст джерелаJones, Christopher, Committee Chair ; Eckert, Charles, Committee Member ; Schork, Joseph, Committee Member ; Weck, Marcus, Committee Member ; Zhang, John, Committee Member. Includes bibliographical references.
Santos, Maria de Lourdes dos. "Reutilização de resíduo SiO2 como potencial na confecção de massa refratária de sílica." Universidade do Estado de Santa Catarina, 2013. http://tede.udesc.br/handle/handle/1642.
Повний текст джерелаCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The silica refractory is nowadays one of the most used linings in the world due to its excellent cost/benefit ratio. The silica sand is available in abundance in the market for use as a raw material for production of ordinary applications refractories, and this does not encourage the search for new usages of its wastes. However, in some industrial sectors where the natural raw materials are used, it has been noticed an increased difficulty to find materials with adequate purity grades to its applications. Furthermore, most of the productive sector is looking for alternatives to reduce the generation of industrial wastes that must be disposed in specific landfills. In this study one aimed to evaluate the potential use of a waste from the synthesis of SiO2 refractory for the application with Alkaline Sodium Silicate and Silica Refractory Paste. This paste is utilized as lining for Ingots and Pouring Ladles in the Foundry Process. This proposal is supported by the demand of Tupy S/A to recover that waste. This company is totally committed to the environment care of your productive processes, always aiming the reduction of wastes generation and its discard. In this proposal it was considered an initial processing stage to partially remove the excess iron present in the wastes that is deleterious to the silica lining. The refractories were produced making waste additions up to 100% in weight. The obtained refractories characterizations, as well as each process step efficiency evaluation, were done through techniques like thermal analysis, X-ray diffraction analysis, grain size distribution curves and ambient temperature compression strength measurements. The results showed good performance with the addition of silica waste, especially a significant increase in ambient temperature compression strength; provided by incorporation of the waste with higher amount of grain small, medium and large. The economic viability of the economy is considerable and preservation of raw materials, conventional silica sand, and the reuse of waste silica mix, avoiding disposal at a landfill.
O refratário de sílica é hoje um dos revestimentos mais utilizados no mundo pelo seu excelente custo/benefício. A areia de sílica como matéria prima para a obtenção de refratários de uso convencional está disponível no mercado em abundância, o que não incentiva a busca por alternativas para a reutilização de seus resíduos. Entretanto, em diversos setores industriais onde matérias primas naturais são utilizadas tem notado o aumento na dificuldade de obtenção de materiais com grau de pureza adequado a suas aplicações. Além disso, todo o setor produtivo tem buscado por alternativas para redução da geração de resíduos industriais a serem descartados em aterros específicos. O presente trabalho busca avaliar o potencial do uso de um resíduo refratário na síntese de refratário de SiO2 para aplicação com Massa Refratária de Silica e Silicato de Sódio Alcalino (MRSNA) para revestimentos de lingoteiras e panelas de vazamento utilizados no processo de Fundição. Esta proposta está baseada na necessidade da reutilização desse resíduo pela empresa Tupy S. A. Esta empresa tem como premissa a constante preocupação ambiental nos seus processos produtivos, buscando sempre a redução da geração de resíduos ou descarte destes. Para o desenvolvimento desta proposta foi considerada inicialmente uma etapa de beneficiamento para a remoção parcial do excesso de ferro presente no resíduo que é um contaminante para o revestimento de sílica. Os refratários foram produzidos considerados adições de resíduos em teores em peso de resíduo de até 100%. Para a caracterização dos refratários obtidos, assim como para avaliação da eficiência das diferentes etapas de processamento foram utilizadas ferramentas como análise térmica, difratometria de raios-X, construção de curvas de distruibuição granulométrica e medidas de resistência à compressão a tempertura ambiente. Os resultados mostraram um bom desempenho com a adição do resíduo de sílica, especialmente um aumento significativo na resistência à compressão à temperatura ambiente; proporcionado por uma curva de distribuição granulométrica heterogênea (grãos pequenos, médios e grandes). A viabilidade econômica é considerável pela economia e preservação da matéria prima, areia de sílica convencional, e pela reutilização do resíduo de sílica mix, evitando o seu descarte em aterro industrial.
Nguyen, Joseph Vu. "Design, synthesis, and optimization of recoverable and recyclable silica-immobilized atom transfer radical polymerization catalysts." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6860.
Повний текст джерелаКниги з теми "Silicon recycling"
Stark, D. The use of recycled-concrete aggregate from concrete exhibiting alkali-silica reactivity. Skokie, Ill: Portland Cement Association, 1996.
Знайти повний текст джерелаKirk-Othmer. Kirk-Othmer Encyclopedia of Chemical Technology, Recycling, Oil, to Silicon (Encyclopedia of Chemical Technology). 4th ed. Wiley-Interscience, 1996.
Знайти повний текст джерелаFisher, David. Recycling of Rare Earths. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901793.
Повний текст джерелаЧастини книг з теми "Silicon recycling"
Smith, York R., and Pamela Bogust. "Review of Solar Silicon Recycling." In Energy Technology 2018, 463–70. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72362-4_42.
Повний текст джерелаHusain, Dilawar, Kirti Tewari, Manish Sharma, Akbar Ahmad, and Ravi Prakash. "Ecological Footprint of Multi-silicon Photovoltaic Module Recycling." In Environmental Footprints of Recycled Products, 65–82. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8426-5_3.
Повний текст джерелаCosnita, Mihaela, Cristina Cazan, Anca Duta, and Ion Visa. "Recycling Silicon-PV Modules in Composites with PVC, HDPE and Rubber Wastes." In Springer Proceedings in Energy, 375–94. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63215-5_27.
Повний текст джерелаIyen, C., B. O. Ayomanor, and V. Mbah. "Extraction and Processing of Crystalline Metallurgical-Grade Silicon Prepared from Rice Husk Byproduct." In Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies, 219–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36830-2_21.
Повний текст джерелаMarins, E. M., E. F. Lucena, F. P. Santos, Élson de Campos, M. Zacharias, and J. A. J. Rodrigues. "Recycling of Silicon Carbide and Corn Starch as Binder Originating from Commercial Starch Consolidation." In Advanced Powder Technology IV, 425–29. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-984-9.425.
Повний текст джерелаEl-Salamony, Radwa A., and Asmaa M. El Shafey. "Extraction of Silica and Lignin-Based Nanocomposite Materials from Agricultural Waste for Wastewater Treatment Using Photocatalysis Technique." In Waste Recycling Technologies for Nanomaterials Manufacturing, 363–84. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68031-2_13.
Повний текст джерелаMaier, Matthias, Benjamin Forster, Nancy Beuntner, and Karl-Christian Thienel. "Potential of Calcined Recycling Kaolin from Silica Sand Processing as Supplementary Cementitious Material." In RILEM Bookseries, 75–83. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2806-4_9.
Повний текст джерелаBahrami, Homa, and Stuart Evans. "8. Flexible Recycling and High-Technology Entrepreneurship." In Understanding Silicon Valley, 163–89. Stanford University Press, 2000. http://dx.doi.org/10.1515/9781503618381-011.
Повний текст джерела"Silicon Production, Purification and Recycling for Photovoltaic Cells." In Supplemental Proceedings, 643. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118062111.part14.
Повний текст джерелаEngh, Thorvald Abel, Geoffrey K. Sigworth, and Anne Kvithyld. "Solidification and Refining." In Principles of Metal Refining and Recycling, 365–404. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198811923.003.0006.
Повний текст джерелаТези доповідей конференцій з теми "Silicon recycling"
Kleymenova, L. V., I. S. Korodyuk, O. V. Arkhipkin, A. V. Gorban, and A. S. Bovkun. "Analysis of trends in the recycling of housing and communal services waste in various countries." In SiliconPV 2021, The 11th International Conference on Crystalline Silicon Photovoltaics. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0091571.
Повний текст джерелаTao, Meng, Vasilis Fthenakis, Burcak Ebin, Evelyn Butler, Parikhit Sinha, Richard Corkish, Karsten Wambach, and Ethan Simon. "Major Challenges and Opportunities in Silicon Solar Panel Recycling." In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300650.
Повний текст джерелаWang, Teng-Yu, Jui-Chung Hsiao, and Chen-Hsun Du. "Recycling of materials from silicon base solar cell module." In 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC). IEEE, 2012. http://dx.doi.org/10.1109/pvsc.2012.6318071.
Повний текст джерелаBragagnolo, Julio A., Charles E. Bucher, John R. Mott, and Michael Hayes. "Low cost solar grade silicon by recycling cast ingot rejects." In 2011 37th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2011. http://dx.doi.org/10.1109/pvsc.2011.6186374.
Повний текст джерелаTao, Meng. "Technologies to Improve the Profitability of Silicon PV Module Recycling." In 2021 28th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD). IEEE, 2021. http://dx.doi.org/10.23919/am-fpd52126.2021.9499168.
Повний текст джерелаKoller, Stefan, Harald Kren, Martin Schmuck, Bernd Fuchsbichler, Christoph Stangl, Colin God, and Jürgen Garche. "Next-generation materials for electrochemical energy storage – Silicon and magnesium." In ELECTROCHEMICAL STORAGE MATERIALS: SUPPLY, PROCESSING, RECYCLING AND MODELLING: Proceedings of the 2nd International Freiberg Conference on Electrochemical Storage Materials. Author(s), 2016. http://dx.doi.org/10.1063/1.4961899.
Повний текст джерелаYamashita, Katsuya, Akira Miyazawa, and Hitoshi Sannomiya. "Reserch and Development on Recycling and Reuse Treatment Technologies for Crystalline Silicon Photovoltaic Modules." In 2006 IEEE 4th World Conference on Photovoltaic Energy Conference. IEEE, 2006. http://dx.doi.org/10.1109/wcpec.2006.279621.
Повний текст джерелаPalitzsch, Wolfram, and Ulrich Loser. "A new and intelligent de-metalization step of broken silicon cells and silicon cell production waste in the recycling procedure of crystalline si modules." In 2011 37th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2011. http://dx.doi.org/10.1109/pvsc.2011.6186635.
Повний текст джерелаShin, J., and J. Jeong. "Optimization of Etching Paste Process by Screen Printing for Recycling Crystalline Silicon Solar Wafer from End-of-life Photovoltaic Modules." In 2015 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2015. http://dx.doi.org/10.7567/ssdm.2015.ps-15-20l.
Повний текст джерелаCzornomaz, L., N. Daix, D. Caimi, M. Sousa, R. Erni, M. D. Rossell, M. El-Kazzi, et al. "An integration path for gate-first UTB III-V-on-insulator MOSFETs with silicon, using direct wafer bonding and donor wafer recycling." In 2012 IEEE International Electron Devices Meeting (IEDM). IEEE, 2012. http://dx.doi.org/10.1109/iedm.2012.6479088.
Повний текст джерелаЗвіти організацій з теми "Silicon recycling"
Zhang, Lifeng, Anping Dong, and Lucas Nana Wiredu Damoah. Development of Solar Grade Silicon (SoG-Si) Feedstock by Recycling SoG-Si Wastes. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1060507.
Повний текст джерела