Добірка наукової літератури з теми "Silicon recycling"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Silicon recycling".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Silicon recycling"

1

Ikhmayies, Shadia J. "Recycling Silicon and Silicon Compounds." JOM 72, no. 7 (May 29, 2020): 2612–14. http://dx.doi.org/10.1007/s11837-020-04218-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kwon, Woo Teck, Soo Ryong Kim, Y. Kim, Jee Ban Poudel, and Sea Cheon Oh. "Recovery of Silicon and Silicon Carbide Powder from Waste Silicon Wafer Sludge." Materials Science Forum 761 (July 2013): 65–68. http://dx.doi.org/10.4028/www.scientific.net/msf.761.65.

Повний текст джерела
Анотація:
In an environmental and economic point of view, recycling of silicon wafer sludge is important. The aim of this work is to investigate the recycling method of silicon wafer sludge. Therefore, drying rate of silicon wafer sludge has been studied for separation of liquid and solid from sludge. Silicon and silicon carbide powder obtained from silicon wafer sludge were analyzed by SEM, XFR, XRD and particle size analyzer. The recovered oil was also characterized using GC-MS. From this work, it can be seen that the falling drying rate of silicon wafer sludge is linear equation. Various metal components have been found in recovered solid powder caused by wire sawing processing.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jia-Yan, LI, CAI Min, WU Xiao-Wei, and TAN Yi. "Recycling Polycrystalline Silicon Solar Cells." Journal of Inorganic Materials 33, no. 9 (2018): 987. http://dx.doi.org/10.15541/jim20170547.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shevko, Viktor М., Yerbol Ye Akylbekov, Gulnara Ye Karataeva, and Alexandra D. Badikova. "Recycling of chrysotile-asbestos production waste." Metallurgical Research & Technology 119, no. 4 (2022): 410. http://dx.doi.org/10.1051/metal/2022050.

Повний текст джерела
Анотація:
The article examines results of studies on the effect of temperature, amount of carbon and pressure on the possibility of obtaining iron silicides and gaseous magnesium by carbon-thermal reduction of silicon and magnesium oxides containing in chrysotile-asbestos waste products. The studies were carried out using the HSC-6.0 software package (Outokumpy) and the second-order rotatable designs (Box-Hunter plans). It has been established that technology allows us to increase αSi(al), for example, at 1400 °C from 89.6 to 96.75%, reduce undesirable losses of silicon with gaseous SiO from 8.97 to 2.08% and slightly increase αMg(gas) from 97.41 to 97.54%. The alloy formed at 1300 °C contains 28.7% of silicon and corresponds to FS25 grade ferrosilicon.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Riech, Ines, Carlos Castro-Montalvo, Loïs Wittersheim, Germán Giácoman-Vallejos, Avel González-Sánchez, Cinthia Gamboa-Loira, Milenis Acosta, and José Méndez-Gamboa. "Experimental Methodology for the Separation Materials in the Recycling Process of Silicon Photovoltaic Panels." Materials 14, no. 3 (January 27, 2021): 581. http://dx.doi.org/10.3390/ma14030581.

Повний текст джерела
Анотація:
As the use of photovoltaic installations becomes extensive, it is necessary to look for recycling processes that mitigate the environmental impact of damaged or end-of-life photovoltaic panels. There is no single path for recycling silicon panels, some works focus on recovering the reusable silicon wafers, others recover the silicon and metals contained in the panel. In the last few years, silicon solar cells are thinner, and it becomes more difficult to separate them from the glass, so the trend is towards the recovery of silicon. In this paper, we investigate the experimental conditions to delaminate and recovery silicon in the recycling process, using a combination of mechanical, thermal, and chemical methods. The conditions of thermal treatment to remove the ethylene-vinyl acetate (EVA) layer were optimized to 30 min at 650 °C in the furnace. To separate silicon and metals, the composition of HF/HNO3 solution and the immersion time were adjusted considering environmental aspects and cost. Under the selected conditions, panels from different manufacturers were tested, obtaining similar yields of recovered silicon but differences in the metal concentrations.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wei, Donghui, Shuaibo Gao, Jian Kong, Xing Jin, Shengnan Jiang, Shibo Zhou, Yanxin Zhuang, Huayi Yin, and Pengfei Xing. "Recycling silicon from silicon cutting waste by Al–Si alloying." Journal of Cleaner Production 251 (April 2020): 119647. http://dx.doi.org/10.1016/j.jclepro.2019.119647.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhu, Jing Jing, Qun Qun Huang, Shui Qing Yang, Wei Luo, and Jun Lin. "Recycling of SiC in Crystalline Silicon Cutting Fluid." Advanced Materials Research 622-623 (December 2012): 504–7. http://dx.doi.org/10.4028/www.scientific.net/amr.622-623.504.

Повний текст джерела
Анотація:
Both merits and demerits of existing recovery techniques of crystalline silicon scrap cutting fluid were analyzed and compared in this paper. In the thesis, a new separation process for separating and recovering SiC in crystalline silicon cutting fluid was presented. The performance index of recycled SiC powder is equal/familiar to the new one, and that can replace the use of new one completely.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Xiao, Yan Ping, and Yong Xiang Yang. "Potential Routes for Recycling and Reuse of Silicon Kerf." Advanced Materials Research 295-297 (July 2011): 2235–40. http://dx.doi.org/10.4028/www.scientific.net/amr.295-297.2235.

Повний текст джерела
Анотація:
In photovoltaic industry during wafer sawing significant amount of solar grade silicon is getting lost into sawing slurry. In the present paper, potential approach and routes for recycling and reuse of silicon wafer sawing slurry are explored. Various techniques were used including distillation, heavy liquid separation, acid leaching and high temperature processing. After distillation, the polyethylene glycol (PEG) can be separated and reused as lubricant. By dissolving silicon at high temperatures from the kerf into a clean molten pool of silicon metal or scrap, or into an alloying metal like Cu, SiC can also be separated and recovered. Depending on the impurity level, solar grade silicon can be finally produced from this waste stream in combination with necessary refining treatment for the applications in the PV industry. Furthermore, converting the kerf into SiC or Si3N4 particles as technical ceramic products is also explored. It is expected that the present research can pave a way to develop a total recycling route for an optimum use of this resource, and to minimize the environmental risk of the waste disposal.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

He, Qian, Hongming Zhao, Shuangfeng Qian, Qiang Zhou, Jijun Wu, and Wenhui Ma. "Separating and Recycling of Elemental Silicon from Wasted Industrial Silicon Slag." Metallurgical and Materials Transactions B 53, no. 1 (December 2, 2021): 442–53. http://dx.doi.org/10.1007/s11663-021-02381-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Duran, Solco Samantha Faye, Danwei Zhang, Wei Yang Samuel Lim, Jing Cao, Hongfei Liu, Qiang Zhu, Chee Kiang Ivan Tan, Jianwei Xu, Xian Jun Loh, and Ady Suwardi. "Potential of Recycled Silicon and Silicon-Based Thermoelectrics for Power Generation." Crystals 12, no. 3 (February 22, 2022): 307. http://dx.doi.org/10.3390/cryst12030307.

Повний текст джерела
Анотація:
Thermoelectrics can convert waste heat to electricity and vice versa. The energy conversion efficiency depends on materials figure of merit, zT, and Carnot efficiency. Due to the higher Carnot efficiency at a higher temperature gradient, high-temperature thermoelectrics are attractive for waste heat recycling. Among high-temperature thermoelectrics, silicon-based compounds are attractive due to the confluence of light weight, high abundance, and low cost. Adding to their attractiveness is the generally defect-tolerant nature of thermoelectrics. This makes them a suitable target application for recycled silicon waste from electronic (e-waste) and solar cell waste. In this review, we summarize the usage of high-temperature thermoelectric generators (TEGs) in applications such as commercial aviation and space voyages. Special emphasis is placed on silicon-based compounds, which include some recent works on recycled silicon and their thermoelectric properties. Besides materials design, device designing considerations to further maximize the energy conversion efficiencies are also discussed. The insights derived from this review can be used to guide sustainable recycling of e-waste into thermoelectrics for power harvesting.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Silicon recycling"

1

Demchikhin, Sergey. "Alternativy likvidace fotovoltaických článků jako potenciální ekologické zátěže." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219643.

Повний текст джерела
Анотація:
The first part of this master’s thesis contain the history of photovoltaic technology and types of PV cells. Gave a consideration to advantages and disadvantages of solar cells. Compared their effectiveness and important parameters. In the next part described the recycling technology of modules at the end of their lifetime. Described certain recycled materials. At the end of the work described possible improvements to existing technologies used for encapsulating of cell. And wich would improve the recycling process.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ndzogha, Cyrille. "Etudes des phénomènes d’échange dans la purification du silicium par plasma et induction." Grenoble INPG, 2005. https://theses.hal.science/tel-01340596.

Повний текст джерела
Анотація:
Ce travail de thèse porte sur un procédé plasma de purification de silicium pour usages photovoltaïque. Il est appliqué à deux types de matériaux : du silicium d’origine métallurgique et des produits de recyclage des boues de sciage des lingots et des plaquettes de la filière photovoltaïque. Les boues de sciage des plaquettes sont essentiellement constituées de liquide de coupe, de particules de SiC (abrasif), de microparticules de silicium et de microparticules de fer provenant du fil de découpe. Le silicium de ces boues est un silicium de haute pureté, qui est déjà de qualité photovoltaïque. Il peut représenter jusqu’`a 60 % du poids initial du lingot. Le procédé objet du projet comporte une phase de séparation du SiC par centrifugation, suivi d’une phase d’élimination chimique du fer, puis d’un traitement par plasma réactif pour l’élimination du SiC résiduel. Ce travail porte sur cette dernière phase. Un traitement plus complexe que celui initialement prévu a été rendu nécessaire par l’existence dans les boues de sciage de particules de SiC provenant du bris des grains de l’abrasif initial. La séparation du SiC étant incomplète, le traitement par plasma a dû éliminer des quantités beaucoup plus importantes qu’initialement prévu. Cela a nécessité une modification importante du procédé initial, et la mise au point de phase de pré-traitement destiné à rendre exploitable par le plasma le produit issu de la séparation. Ce travail combine études théoriques, modélisations numériques et expérimentation. La modélisation thermodynamique permet de déterminer les meilleures conditions d’élimination des polluants (gaz réactifs adaptés, débits, températures, pressions) tandis que la modélisation du brassage électromagnétique mesure l’efficacité du renouvellement de la surface du bain liquide au cours du traitement
This thesis focuses on a plasma process of purification of silicon for photovoltaic applications. It is applied to two types of materials: metallurgical silicon and recycling products from sawing sludge ingots and from wafers of photovoltaic industry. Platelet sawing sludge consist mainly of cutting fluid, SiC particles (abrasive), silicon microparticles and iron micro-particles from the cutting wire. Silicon sludge is a high-purity silicon, which is already of photovoltaic quality. It can represent 60% of the original weight of the ingot. The present process comprises a SiC phase separation by centrifugation, followed by chemical elimination phase of the iron, then a reactive plasma treatment for removing residual SiC. This work deals with this last phase. A more complex treatment than originally planned was made necessary by the existence in the SiC particles of sawing sludge from the initial breaking of the abrasive grains. Separation of SiC is incomplete, the plasma treatment had to remove much larger quantities than originally planned. This required a significant modification of the original process, and the setting of a pre-treatment phase point intended to make it usable by the product of the plasma separation. This work combines theoretical studies, numerical modeling and experimentation. Thermodynamic modeling to determine the best conditions for the removal of pollutants (adapted reactive gases, flow rates, temperatures, pressures) whereas modeling the electromagnetic measurement brewing efficiency renewing the surface of the liquid bath during treatment
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Argonz, Raquel. "Purificação de rejeitos de lascas de quartzo das industrias de silicio." [s.n.], 2001. http://repositorio.unicamp.br/jspui/handle/REPOSIP/264918.

Повний текст джерела
Анотація:
Orientador: Carlos K. Suzuki
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-07-31T20:22:15Z (GMT). No. of bitstreams: 1 Argonz_Raquel_D.pdf: 6011460 bytes, checksum: 288a8671c5c8ed96310d3c57226ce9c8 (MD5) Previous issue date: 2001
Resumo: O Brasil é na atualidade um dos principais produtores de silício para o mundo, sendo que a quantidade de quartzo extraído para a sua produção incluindo o ferro-silício, é da ordem de 2 milhões de toneladas/ano. Para a obtenção do quartzo destinado à redução carbotérmica em silício, nos diversos estágios de extração, britagem, seleção, transporte, e lavagem, cerca de 300.000 toneladas/ano de lascas de quartzo tomam-se rejeitos. Neste trabalho foi desenvolvida uma metodologia ambientalmente correta, denominada "quench-Ieaching" e "crush-leaching", que se utiliza da lixiviação aquosa para a purificação deste material. Os resultados mostram que ocorre uma remoção efetiva de impurezas majoritárias nas lascas de quartzo, tais como, AI, Fe, Na, K, Ca, Mn, ..., dando-lhe uma pureza de 99,9% de SI 'O IND 2'. Uma comparação com diversos insumos de quartzo produzidos no exterior para uso em tecnologia avançada, como para produção de sílica vítrea translucente e "fillers" de "micro-chips", revela que este material purificado com esta tecnologia toma-se de qualidade equivalente ao pó de quartzo internacional
Abstract: Nowadays, Brazil is one of the main silicon metal and iron-silicon producer in the world. But on the other hand, the amount of natural quartz that has been extracted for this purpose is up to 2 milliontons/year. The key-point is the large quantity of rejected quartz lascas, approximately 300,000 tons/year, generated during the various stages of extraction, crushing, selection, transportation, and washing. A new environrnentally mendly purification methodology denominated "quench-Ieaching" and "crush-leaching, that only uses aqueous leaching, has been developed. The result shows an effective elimination of major quartz impurities, such as Al, Fe, Na, K, Ca, Mn, ... , that transforms this rejected material into a 99.9% purity SI 'O IND 2'. The quality of this material is as high as the quartz powder commercially available in the intemational market for use as "fillers" and translucent silica glass raw material for semiconductor industries
Doutorado
Materiais e Processos de Fabricação
Doutor em Engenharia Mecânica
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Li, Hao. "Functionalized silica nanoparticles for catalysis, nanomedicine and rare earth metal recycling." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670613.

Повний текст джерела
Анотація:
Durant la darrera dècada, les nanopartícules de sílice han trobat aplicacions en catàlisi, depuració d’aigua, camps biomèdics, agrícoles i industrials ... per les seves característiques físiques i químiques úniques, com ara una gran superfície, una excel·lent biocompatibilitat, una bona estabilitat tèrmica, mecànica i química, mida i forma de porus regulable, riquesa en grups silanol a la superfície que permeten una fàcil modificació superficial. La nostra recerca en aquesta tesi s’ha centrat en la preparació i caracterització de diversos tipus de nanopartícules de sílice funcionalitzades i la seva aplicació en catàlisi, biomedicina i recuperació d’elements de terres rares. Es van preparar noves nanopartícules de sílice mesoporoses derivades d’amides de prolina-valinol mono i disililades i es van utilitzar com a catalitzadors reciclables per a la reacció aldòlica asimètrica amb elevada activitat i selectivitat. Aquests nanomaterials es poden recuperar i reutilitzar amb èxit fins a sis vegades (capítol 2). Per contra, els nostres esforços en la preparació de nanopartícules d’organosílice reciclables com a catalitzadors quirals o lligands per a la α-trifuorometilació i α-fluorinació enantioselectives de compostos carbonílics no van tenir èxit (capítol 2). Es van preparar una sèrie de nanopartícules d’organosílice mesoporoses periòdiques mixtes que posseïen grups Boc i tert-butil èster com a agents potencials per ultrasons focalitzat d’alta intensitat (High Intensity Focused Ultrasound, HIFU). Es preveia que aquests nanomaterials alliberessin CO2 i / o isobutè del grup COOtBu sensible a la temperatura. Tanmateix, es va trobar que el grup Boc era bastant estable i no es podia eliminar en condicions de HIFU a 80 ºC, requerint l’addició d’àcid. El concepte no deixa de ser prometedor per futurs agents de contrast per a teràpies basades en HIFU (Capítol 3). Medicaments antiinflamatoris no esteroides com l’ibuprofè i el diclofenac es van unir de forma covalent a nanopartícules de sílice a través d’un grup funcional amida per a aplicacions potencials en formulacions tòpiques (pomades i cremes). A més, el recobriment de teixits de cotó amb aquestes nanopartícules de sílice funcionalitzades va proporcionar teixits hidrofòbics per a potencials aplicacions cutànies tòpiques en apòsits destinats a tractar ferides cròniques. El medicament antiinflamatori corresponent s’allibera in situ mitjançant el trencament enzimàtic selectiu de l’enllaç amida en presència de proteases (capítol 4). Es van preparar nanopartícules de sílice mesoporoses amb nucli magnètic funcionalitzades amb fragments de cyclen com a adsorbents nous per a la recuperació específica i selectiva de diferents ions de terres rares (RE) de les aigües residuals (Capítol 5).
Durante la última década, las nanopartículas de sílice han encontrado aplicaciones en catálisis, purificación de agua, campos biomédicos, agrícolas e industriales ... debido a sus características químicas y físicas únicas, tales como alta superficie, excelente biocompatibilidad, buena estabilidad térmica, mecánica y química, tamaño y forma de poro ajustable, superficie enriquecida con grupos silanol que permiten una fácil modificación superficial. Nuestra investigación en esta tesis se ha centrado en la preparación y caracterización de varios tipos de nanopartículas de sílice funcionalizadas novedosas, así como su aplicación en catálisis, biomedicina y recuperación de elementos de tierras raras. Se prepararon nuevas nanopartículas de sílice mesoporosa derivadas de amidas de prolina-valinol mono y disililadas y se usaron como catalizadores reciclables para la reacción aldólica asimétrica con elevada actividad y selectividad. Estos nanomateriales se pueden recuperar con éxito y reutilizar hasta seis veces (Capítulo 2). Por el contrario, nuestros esfuerzos en la preparación de nanopartículas de organosílice reciclables como catalizadores o ligandos quirales para la α-trifuorometilación y α-fluoración enantioselectivas de compuestos carbonílicos no tuvieron éxito (Capítulo 2). Se preparó una serie de nanopartículas de organosilica mesoporosas mixtas periódicas que poseen grupos Boc y éster de terc-butilo como posibles agentes sensibles al ultrasonido focalizado de alta intensidad (High Intensity Focused Ultrasound, HIFU). Se esperaba que estos nanomateriales liberaran CO2 y / o isobuteno del grupo COOtBu sensible a la temperatura. Sin embargo, se encontró que el grupo Boc era bastante estable y no podía eliminarse en condiciones HIFU a 80 ºC, sino que se requería además la adición de ácido. Sin embargo, el concepto es prometedor para futuros agentes de contraste para terapias basadas en HIFU (Capítulo 3). Fármacos antiinflamatorios no esteroideos como ibuprofeno y diclofenaco se unieron de forma covalente a nanopartículas de sílice a través de un grupo funcional amida para su posible aplicación en formulaciones tópicas (pomadas y cremas). Además, el recubrimiento de telas de algodón con estas nanopartículas de sílice funcionalizadas proporcionó telas hidrófobas para posibles aplicaciones cutáneas tópicas en apósitos destinados a tratar heridas crónicas. El fármaco antiinflamatorio correspondiente se libera in situ mediante la escisión enzimática selectiva del enlace amida en presencia de proteasas (Capítulo 4). Se prepararon nanopartículas de sílice mesoporosas con núcleo magnético funcionalizadas con fragmentos de cyclen como adsorbentes novedosos para la recuperación específica y selectiva de diferentes iones de tierras raras (RE) del agua residual (Capítulo 5).
During the last decade, silica nanoparticles have found applications in catalysis, water purification, biomedical, agricultural and industrial fields… due to their unique chemical and physical characteristics, such as high surface area, excellent biocompatibility, good thermal, mechanical and chemical stability, adjustable pore size and shape, enriched surface silanol groups with easy surface modification. Our research in this thesis has been focused on the preparation and characterization of various types of novel functionalized silica nanoparticles, as well as their application in catalysis, biomedicine and rare earth elements recovery. Novel mesoporous silica nanoparticles derived from mono- and bis-silylated proline-valinol amides were prepared and used as recyclable catalysts for the asymmetric aldol reaction with high activity and selectivity. These nanomaterials can be successfully recovered and reused for up to six runs (Chapter 2). Conversely, our efforts in the preparation of recyclable organosilica nanoparticles as chiral catalysts or ligands for the enantioselective α-trifuoromethylation and α-fluorination of carbonyl compounds were not successful (Chapter 2). A series of mixed periodic mesoporous organosilica nanoparticles possessing Boc and tert-butyl ester groups were prepared as potential high intensity focused ultrasound (HIFU) responsive agents. These nanomaterials were expected to release CO2 and/or isobutene from the temperature-sensitive COOtBu group. However, Boc group was found to be quite stable and could not be removed under HIFU conditions at 80 ºC, requiring the addition of acid. The concept is nevertheless promising for future contrast agents for HIFU based therapies (Chapter 3). Non-steroidal anti-inflammatory drugs such as ibuprofen and diclofenac were grafted to silica nanoparticles through an amide functional group for potential application in ointment and cream topical formulations. Furthermore, coating of cotton fabrics with these functionalized silica nanoparticles provided hydrophobic fabrics for potential topical cutaneous applications in dressings intended to treat chronic wounds. The corresponding anti-inflammatory drug is released in situ by the selective enzymatic cleavage of the amide bond in the presence of proteases (Chapter 4). Two functionalized magnetic core-shell mesoporous silica nanoparticles containing cyclen moieties were prepared as novel adsorbents for the specific and selective recovery of different rare earth (REs) ions from wastewater (Chapter 5).
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Andersson, Stephanie. "Återvinning av solcellsmoduler i Sverige : En undersökning av de energitekniska, ekonomiska och politiska förutsättningarna." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-53341.

Повний текст джерела
Анотація:
The solar industry is one of the fastest-growing energy industries in the global market. The reason is a combination of the falling prices of modules and inverters and increased conversion to fossil-free energy production. When a photovoltaic module reaches the end of its life it needs to be replaced and discarded, which can create a sustainability problem depending on how this is managed. Today, less than 10% of the global photovoltaic waste is recycled. Only the European Union has implemented photovoltaic waste regulations in the form of the WEEE Directive, which requires that 85% of the waste is collected and at least 80% of waste collected must be prepared for reuse or recycling. This master thesis examines the energy technical, economic, and political conditions for a Swedish photovoltaic recycling plant. This is done through a literary study that is enhanced with calculations of future potential waste volumes and their economic value. As an alternative to a Swedish plant, the energy consumption for transporting waste to existing recycling plants in Europe is evaluated. The photovoltaic technologies included in this work are silicon-based mono-and polycrystalline modules, cadmium tellurium (CdTe) and copper indium gallium selenide (CIGS). Based on the calculations and the literature study, the energy technical conditions are good and not a barrier for a potential facility, the political conditions are deficient, and regulations need further development. The economic conditions constitute the largest barrier as waste volumes are not large enough for a Swedish facility to be economically profitable until 2042. The energy consumption for transport to existing recycling plants in Europe was 22 MJ/module for silicon-based mono-and polycrystalline modules and 10 MJ/module for CdTe modules. Which is a good alternative to a Swedish plant as collection processes and recycling processes are already in place.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Di, Domenica Eleonora. "Recycling of end of life concrete fines (0 - 4 mm) into silica and cement." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8622/.

Повний текст джерела
Анотація:
The purpose of this work is to find a methodology in order to make possible the recycling of fines (0 - 4 mm) in the Construction and Demolition Waste (CDW) process. At the moment this fraction is a not desired by-product: it has high contaminant content, it has to be separated from the coarse fraction, because of its high water absorption which can affect the properties of the concrete. In fact, in some countries the use of fines recycled aggregates is highly restricted or even banned. This work is placed inside the European project C2CA (from Concrete to Cement and Clean Aggregates) and it has been held in the Faculty of Civil Engineering and Geosciences of the Technical University of Delft, in particular, in the laboratory of Resources And Recycling. This research proposes some procedures in order to close the loop of the entire recycling process. After the classification done by ADR (Advanced Dry Recovery) the two fractions "airknife" and "rotor" (that together constitute the fraction 0 - 4 mm) are inserted in a new machine that works at high temperatures. The temperatures analysed in this research are 600 °C and 750 °C, cause at that temperature it is supposed that the cement bounds become very weak. The final goal is "to clean" the coarse fraction (0,250 - 4 mm) from the cement still attached to the sand and try to concentrate the cement paste in the fraction 0 - 0,250 mm. This new set-up is able to dry the material in very few seconds, divide it into two fractions (the coarse one and the fine one) thanks to the air and increase the amount of fines (0 - 0,250 mm) promoting the attrition between the particles through a vibration device. The coarse fraction is then processed in a ball mill in order to improve the result and reach the final goal. Thanks to the high temperature it is possible to markedly reduce the milling time. The sand 0 - 2 mm, after being heated and milled is used to replace 100% of norm sand in mortar production. The results are very promising: the mortar made with recycled sand reaches an early strength, in fact the increment with respect to the mortar made with norm sand is 20% after three days and 7% after seven days. With this research it has been demonstrated that once the temperature is increased it is possible to obtain a clean coarse fraction (0,250 - 4 mm), free from cement paste that is concentrated in the fine fraction 0 - 0,250 mm. The milling time and the drying time can be largely reduced. The recycled sand shows better performance in terms of mechanical properties with respect to the natural one.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

SILVA, ANTONIO C. da. "Vidros e vitroceramicos com alta concentracao de metais obtidos a partir de residuos industriais." reponame:Repositório Institucional do IPEN, 2008. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11765.

Повний текст джерела
Анотація:
Made available in DSpace on 2014-10-09T12:55:33Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:05:06Z (GMT). No. of bitstreams: 0
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nguyen, Joseph Vu. "Design, synthesis, and optimization of recoverable and recyclable silica-immobilized atom transfer radical polymerization catalystal." Available online, Georgia Institute of Technology, 2005, 2005. http://etd.gatech.edu/theses/available/etd-03072005-105351/unrestricted/nguyen%5Fjoseph%5Fv%5F200505%5Fphd.pdf.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Chemical and Biomolecular Engineering, Georgia Institute of Technology, 2005.
Jones, Christopher, Committee Chair ; Eckert, Charles, Committee Member ; Schork, Joseph, Committee Member ; Weck, Marcus, Committee Member ; Zhang, John, Committee Member. Includes bibliographical references.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Santos, Maria de Lourdes dos. "Reutilização de resíduo SiO2 como potencial na confecção de massa refratária de sílica." Universidade do Estado de Santa Catarina, 2013. http://tede.udesc.br/handle/handle/1642.

Повний текст джерела
Анотація:
Made available in DSpace on 2016-12-08T17:19:20Z (GMT). No. of bitstreams: 1 resumo.pdf: 33365 bytes, checksum: c0d79b06b712dd7d33a99ff2c405578a (MD5) Previous issue date: 2013-02-26
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
The silica refractory is nowadays one of the most used linings in the world due to its excellent cost/benefit ratio. The silica sand is available in abundance in the market for use as a raw material for production of ordinary applications refractories, and this does not encourage the search for new usages of its wastes. However, in some industrial sectors where the natural raw materials are used, it has been noticed an increased difficulty to find materials with adequate purity grades to its applications. Furthermore, most of the productive sector is looking for alternatives to reduce the generation of industrial wastes that must be disposed in specific landfills. In this study one aimed to evaluate the potential use of a waste from the synthesis of SiO2 refractory for the application with Alkaline Sodium Silicate and Silica Refractory Paste. This paste is utilized as lining for Ingots and Pouring Ladles in the Foundry Process. This proposal is supported by the demand of Tupy S/A to recover that waste. This company is totally committed to the environment care of your productive processes, always aiming the reduction of wastes generation and its discard. In this proposal it was considered an initial processing stage to partially remove the excess iron present in the wastes that is deleterious to the silica lining. The refractories were produced making waste additions up to 100% in weight. The obtained refractories characterizations, as well as each process step efficiency evaluation, were done through techniques like thermal analysis, X-ray diffraction analysis, grain size distribution curves and ambient temperature compression strength measurements. The results showed good performance with the addition of silica waste, especially a significant increase in ambient temperature compression strength; provided by incorporation of the waste with higher amount of grain small, medium and large. The economic viability of the economy is considerable and preservation of raw materials, conventional silica sand, and the reuse of waste silica mix, avoiding disposal at a landfill.
O refratário de sílica é hoje um dos revestimentos mais utilizados no mundo pelo seu excelente custo/benefício. A areia de sílica como matéria prima para a obtenção de refratários de uso convencional está disponível no mercado em abundância, o que não incentiva a busca por alternativas para a reutilização de seus resíduos. Entretanto, em diversos setores industriais onde matérias primas naturais são utilizadas tem notado o aumento na dificuldade de obtenção de materiais com grau de pureza adequado a suas aplicações. Além disso, todo o setor produtivo tem buscado por alternativas para redução da geração de resíduos industriais a serem descartados em aterros específicos. O presente trabalho busca avaliar o potencial do uso de um resíduo refratário na síntese de refratário de SiO2 para aplicação com Massa Refratária de Silica e Silicato de Sódio Alcalino (MRSNA) para revestimentos de lingoteiras e panelas de vazamento utilizados no processo de Fundição. Esta proposta está baseada na necessidade da reutilização desse resíduo pela empresa Tupy S. A. Esta empresa tem como premissa a constante preocupação ambiental nos seus processos produtivos, buscando sempre a redução da geração de resíduos ou descarte destes. Para o desenvolvimento desta proposta foi considerada inicialmente uma etapa de beneficiamento para a remoção parcial do excesso de ferro presente no resíduo que é um contaminante para o revestimento de sílica. Os refratários foram produzidos considerados adições de resíduos em teores em peso de resíduo de até 100%. Para a caracterização dos refratários obtidos, assim como para avaliação da eficiência das diferentes etapas de processamento foram utilizadas ferramentas como análise térmica, difratometria de raios-X, construção de curvas de distruibuição granulométrica e medidas de resistência à compressão a tempertura ambiente. Os resultados mostraram um bom desempenho com a adição do resíduo de sílica, especialmente um aumento significativo na resistência à compressão à temperatura ambiente; proporcionado por uma curva de distribuição granulométrica heterogênea (grãos pequenos, médios e grandes). A viabilidade econômica é considerável pela economia e preservação da matéria prima, areia de sílica convencional, e pela reutilização do resíduo de sílica mix, evitando o seu descarte em aterro industrial.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nguyen, Joseph Vu. "Design, synthesis, and optimization of recoverable and recyclable silica-immobilized atom transfer radical polymerization catalysts." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6860.

Повний текст джерела
Анотація:
Despite the growing interest in heterogeneous polymerization catalysis, the majority of the polymerization catalysts used industrially are single-use entities that are left in the polymer product. Recoverable and recyclable polymerization catalysts have not reached the industrial utility of single-use catalysts because the catalyst and product separation have not become economical. The successful development of recyclable transition metal polymerization catalysts must take a rational design approach, hence academic and industrial researchers need to further expand the fundamental science and engineering of recyclable polymerization catalysis to gain an understanding of critical parameters that allow for the design of economically viable, recoverable solid polymerization catalysts. Unfortunately, the rapid development of Atom Transfer Radical Polymerization over the past 10 years has not resulted in its wide spread industrial practice. Numerous reports regarding the immobilization of transition metal ATRP catalysts, in attempts to increase its applicability, have extended the fundamentals of recyclable polymerization catalysis. However, for industrial viability, more research is required in the area of how the catalyst complex immobilization methodology and support structure affect the catalyst polymerization performance, regeneration, and recyclability. A comprehensive rational catalyst design approach of silica-immobilized ATRP catalyst was undertaken to answer these questions and are discussed here.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Silicon recycling"

1

Stark, D. The use of recycled-concrete aggregate from concrete exhibiting alkali-silica reactivity. Skokie, Ill: Portland Cement Association, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kirk-Othmer. Kirk-Othmer Encyclopedia of Chemical Technology, Recycling, Oil, to Silicon (Encyclopedia of Chemical Technology). 4th ed. Wiley-Interscience, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fisher, David. Recycling of Rare Earths. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901793.

Повний текст джерела
Анотація:
The recycling of rare earth elements is one of the great challenges for establishing a green economy. Rare earths play an essential role in a great many high-tech products and processes: electronic display screens , computer monitors, cell phones, rechargeable batteries, high-strength magnets, catalytic converters, fluorescent lamps etc. Recycling these materials not only results in valuable materials for new products; it also helps in reducing mountains of discarded products. The recycling methods discussed include bioleaching, biosorption, siderophores, algae and seaweed. carbon-based nanomaterials, silica, pyrometallurgy, electrochemistry, hydrometallurgy, solvent extraction and the use of various absorbents. The book references 253 original resources with their direct web links for in-depth reading.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Silicon recycling"

1

Smith, York R., and Pamela Bogust. "Review of Solar Silicon Recycling." In Energy Technology 2018, 463–70. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72362-4_42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Husain, Dilawar, Kirti Tewari, Manish Sharma, Akbar Ahmad, and Ravi Prakash. "Ecological Footprint of Multi-silicon Photovoltaic Module Recycling." In Environmental Footprints of Recycled Products, 65–82. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8426-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cosnita, Mihaela, Cristina Cazan, Anca Duta, and Ion Visa. "Recycling Silicon-PV Modules in Composites with PVC, HDPE and Rubber Wastes." In Springer Proceedings in Energy, 375–94. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63215-5_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Iyen, C., B. O. Ayomanor, and V. Mbah. "Extraction and Processing of Crystalline Metallurgical-Grade Silicon Prepared from Rice Husk Byproduct." In Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies, 219–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36830-2_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Marins, E. M., E. F. Lucena, F. P. Santos, Élson de Campos, M. Zacharias, and J. A. J. Rodrigues. "Recycling of Silicon Carbide and Corn Starch as Binder Originating from Commercial Starch Consolidation." In Advanced Powder Technology IV, 425–29. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-984-9.425.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

El-Salamony, Radwa A., and Asmaa M. El Shafey. "Extraction of Silica and Lignin-Based Nanocomposite Materials from Agricultural Waste for Wastewater Treatment Using Photocatalysis Technique." In Waste Recycling Technologies for Nanomaterials Manufacturing, 363–84. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68031-2_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Maier, Matthias, Benjamin Forster, Nancy Beuntner, and Karl-Christian Thienel. "Potential of Calcined Recycling Kaolin from Silica Sand Processing as Supplementary Cementitious Material." In RILEM Bookseries, 75–83. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2806-4_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bahrami, Homa, and Stuart Evans. "8. Flexible Recycling and High-Technology Entrepreneurship." In Understanding Silicon Valley, 163–89. Stanford University Press, 2000. http://dx.doi.org/10.1515/9781503618381-011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

"Silicon Production, Purification and Recycling for Photovoltaic Cells." In Supplemental Proceedings, 643. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118062111.part14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Engh, Thorvald Abel, Geoffrey K. Sigworth, and Anne Kvithyld. "Solidification and Refining." In Principles of Metal Refining and Recycling, 365–404. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198811923.003.0006.

Повний текст джерела
Анотація:
Solidification involves a phase change from liquid to solid. Most impurities have a lower solubility in solid than in the liquid phase. Consequently, solidification presents an opportunity to refine or purify metals. The redistribution of impurities during freezing (called segregation) also has a considerable influence on the properties of the solidified casting. This chapter deals primarily with three subjects: removal of impurities during solidification; transferral of unwanted elements to parts of the casting where they do not harm the finished product; and grain refinement, where a nucleant is added to achieve a small (refined) grain structure. The segregation coefficient is defined. The mass transfer coefficient of impurities from solid to liquid is considered and used to model macrosegregation. Two important industrial processes are described in detail: the refining of silicon for solar cells, and the grain refinement of aluminium.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Silicon recycling"

1

Kleymenova, L. V., I. S. Korodyuk, O. V. Arkhipkin, A. V. Gorban, and A. S. Bovkun. "Analysis of trends in the recycling of housing and communal services waste in various countries." In SiliconPV 2021, The 11th International Conference on Crystalline Silicon Photovoltaics. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0091571.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tao, Meng, Vasilis Fthenakis, Burcak Ebin, Evelyn Butler, Parikhit Sinha, Richard Corkish, Karsten Wambach, and Ethan Simon. "Major Challenges and Opportunities in Silicon Solar Panel Recycling." In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300650.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Teng-Yu, Jui-Chung Hsiao, and Chen-Hsun Du. "Recycling of materials from silicon base solar cell module." In 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC). IEEE, 2012. http://dx.doi.org/10.1109/pvsc.2012.6318071.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bragagnolo, Julio A., Charles E. Bucher, John R. Mott, and Michael Hayes. "Low cost solar grade silicon by recycling cast ingot rejects." In 2011 37th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2011. http://dx.doi.org/10.1109/pvsc.2011.6186374.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tao, Meng. "Technologies to Improve the Profitability of Silicon PV Module Recycling." In 2021 28th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD). IEEE, 2021. http://dx.doi.org/10.23919/am-fpd52126.2021.9499168.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Koller, Stefan, Harald Kren, Martin Schmuck, Bernd Fuchsbichler, Christoph Stangl, Colin God, and Jürgen Garche. "Next-generation materials for electrochemical energy storage – Silicon and magnesium." In ELECTROCHEMICAL STORAGE MATERIALS: SUPPLY, PROCESSING, RECYCLING AND MODELLING: Proceedings of the 2nd International Freiberg Conference on Electrochemical Storage Materials. Author(s), 2016. http://dx.doi.org/10.1063/1.4961899.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yamashita, Katsuya, Akira Miyazawa, and Hitoshi Sannomiya. "Reserch and Development on Recycling and Reuse Treatment Technologies for Crystalline Silicon Photovoltaic Modules." In 2006 IEEE 4th World Conference on Photovoltaic Energy Conference. IEEE, 2006. http://dx.doi.org/10.1109/wcpec.2006.279621.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Palitzsch, Wolfram, and Ulrich Loser. "A new and intelligent de-metalization step of broken silicon cells and silicon cell production waste in the recycling procedure of crystalline si modules." In 2011 37th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2011. http://dx.doi.org/10.1109/pvsc.2011.6186635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shin, J., and J. Jeong. "Optimization of Etching Paste Process by Screen Printing for Recycling Crystalline Silicon Solar Wafer from End-of-life Photovoltaic Modules." In 2015 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2015. http://dx.doi.org/10.7567/ssdm.2015.ps-15-20l.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Czornomaz, L., N. Daix, D. Caimi, M. Sousa, R. Erni, M. D. Rossell, M. El-Kazzi, et al. "An integration path for gate-first UTB III-V-on-insulator MOSFETs with silicon, using direct wafer bonding and donor wafer recycling." In 2012 IEEE International Electron Devices Meeting (IEDM). IEEE, 2012. http://dx.doi.org/10.1109/iedm.2012.6479088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Silicon recycling"

1

Zhang, Lifeng, Anping Dong, and Lucas Nana Wiredu Damoah. Development of Solar Grade Silicon (SoG-Si) Feedstock by Recycling SoG-Si Wastes. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1060507.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії