Добірка наукової літератури з теми "Signature hyperspectrale"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Signature hyperspectrale".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Signature hyperspectrale"
Papp, Adam, Julian Pegoraro, Daniel Bauer, Philip Taupe, Christoph Wiesmeyr, and Andreas Kriechbaum-Zabini. "Automatic Annotation of Hyperspectral Images and Spectral Signal Classification of People and Vehicles in Areas of Dense Vegetation with Deep Learning." Remote Sensing 12, no. 13 (July 1, 2020): 2111. http://dx.doi.org/10.3390/rs12132111.
Повний текст джерелаGromov, V. P., L. I. Lebedev, and V. E. Turlapov. "Analysis and object markup of hyperspectral images for machine learning methods." Information Technology and Nanotechnology, no. 2391 (2019): 309–17. http://dx.doi.org/10.18287/1613-0073-2019-2391-309-317.
Повний текст джерелаHartfield, Kyle, Jeffrey K. Gillan, Cynthia L. Norton, Charles Conley, and Willem J. D. van Leeuwen. "A Novel Spectral Index to Identify Cacti in the Sonoran Desert at Multiple Scales Using Multi-Sensor Hyperspectral Data Acquisitions." Land 11, no. 6 (May 26, 2022): 786. http://dx.doi.org/10.3390/land11060786.
Повний текст джерелаMESSINGER, DAVID W., CARL SALVAGGIO, and NATALIE M. SINISGALLI. "DETECTION OF GASEOUS EFFLUENTS FROM AIRBORNE LWIR HYPERSPECTRAL IMAGERY USING PHYSICS-BASED SIGNATURES." International Journal of High Speed Electronics and Systems 17, no. 04 (December 2007): 801–12. http://dx.doi.org/10.1142/s0129156407004990.
Повний текст джерелаLebedev, L. I., Yu V. Yasakov, T. H. Utesheva, V. P. Gromov, A. V. Borusjak, and V. E. Turlapov. "Complex analysis and monitoring of the environment based on earth sensing data." Computer Optics 43, no. 2 (April 2019): 282–95. http://dx.doi.org/10.18287/2412-6179-2019-43-2-282-295.
Повний текст джерелаJamaludin, Muhammad Ikhwan, Abdul Nasir Matori, Mohammad Faize Kholik, and Munirah Mohd Mokhtar. "Development Spectral Library of Vegetation Stress for Hydrocarbon Seepage." Applied Mechanics and Materials 567 (June 2014): 693–98. http://dx.doi.org/10.4028/www.scientific.net/amm.567.693.
Повний текст джерелаLicciardi, Giorgio, Costantino Del Gaudio, and Jocelyn Chanussot. "Non-Linear Spectral Unmixing for the Estimation of the Distribution of Graphene Oxide Deposition on 3D Printed Composites." Applied Sciences 10, no. 21 (November 3, 2020): 7792. http://dx.doi.org/10.3390/app10217792.
Повний текст джерелаMa, Pengfei, Jiaoli Li, Ying Zhuo, Pu Jiao, and Genda Chen. "Coating Condition Detection and Assessment on the Steel Girder of a Bridge through Hyperspectral Imaging." Coatings 13, no. 6 (May 29, 2023): 1008. http://dx.doi.org/10.3390/coatings13061008.
Повний текст джерелаSrinivas, Umamahesh, Yi Chen, Vishal Monga, Nasser Nasrabadi, and Trac Tran. "Exploiting Sparsity in Hyperspectral Image Classification via Graphical Models." Geoscience and Remote Sensing Letters, IEEE 10, no. 3 (November 2012): 505–9. http://dx.doi.org/10.1109/lgrs.2012.2211858.
Повний текст джерелаSCHAUM, A. "ADVANCED HYPERSPECTRAL ALGORITHMS FOR TACTICAL TARGET DETECTION AND DISCRIMINATION." International Journal of High Speed Electronics and Systems 18, no. 03 (September 2008): 531–44. http://dx.doi.org/10.1142/s0129156408005540.
Повний текст джерелаДисертації з теми "Signature hyperspectrale"
Hemissi, Selim. "Modélisation multidimensionnelle de signature spectrale pour le démixage et la classification en imagerie hyperspectrale multi-temporelle." Télécom Bretagne, 2014. http://www.theses.fr/2014TELB0307.
Повний текст джерелаHyperspectral imaging transcribes each specific spectrum of the received energy from a material in a specific pixel of the image. Since heterogeneous land occupation types exhibit different spectral signatures, hyperspectral imaging can be considered as an effective technology for precise image classification. Nevertheless, the temporal variability of spectral signatures complicates the image analysis task due to the interlacement of spectral properties of different land occupation types throughout the year. Standard classification approaches treat each date separately whereas recent research has proven that modelling hyperspectral images incorporating time dimension is crucial. In this dissertation, we propose new methods and algorithms for the classification of time series of hyperspectral images. Our first contribution in the inclusion the temporal dimension into the classical model of spectral signature using the Delaunay reconstruction. This investigation allows us to develop a 3D multi-temporal model of spectral signatures incorporating spectral, temporal and spatial facets of objects. Indeed, we have proposed a new set of spectral signatures based on the above-mentioned model and have developed an appropriate conceptual schema. The database of satellite images is supported by a hierarchical indexing model using Kohonen's Self Organizing Feature Maps. We also studied boosting learning techniques for the selection of the most relevant features. This proposal is based on the Rankboost algorithm. Our second contribution is tackling the problem of mixed pixels in hyperspectral imagery for time series images. Indeed, for the extraction of multi-temporal endmembers, we developed two approaches: a matrix-based approach and a tensor-based approach which has its roots in the multilinear algebra. Moreover, for the purpose of the classification of non-linearly separable data and modelling imperfect data, we used the Fisher discriminant analysis and the Dempster-Shafer theory, respectively. We also proposed a new classification algorithm that is an evidential extension of the discriminant analysis. Our third contribution consists in modelling the spectral unmixing problem as a constrained optimization problem. Experimental results show that the new methods and algorithms proposed in our work improve the classification results compared to standard methods, and thus reveal a real potential for various scenarios of image sequences interpretation
Al, Hayek Marianne. "Modélisation optique de signatures spectrales et polarimétriques d'objets pour augmenter les performances d'un système de reconnaissance." Electronic Thesis or Diss., Brest, 2023. http://www.theses.fr/2023BRES0101.
Повний текст джерелаConventional imaging, limited to object shapes and colors, faces limitations in object recognition. To enhance imaging system performance, hyperspectral and polarimetric imaging provides a wealth of information, includingchallenging-to-obtain physical parameters. This facilitates improved object detection, quantitative characterization, and classification. However, the processing of complex data from these modalities remains a challenge. The aim of this work is to propose a generic methodology for the analysis of optical signals, with a primary focus on hyperspectral imaging (HSI). An original classification of invertible physics-based hyperspectral models is presented, along with descriptions of recent diverse models for various applications: MPBOM for algae and bacteria biofilm, MARMIT for soil, PROSPECT for plant leaves, Farrell for turbid biological tissues, Schmitt for human skin, and Hapke for objects in the solar system. A convergence between the PROSPECT and Farrell models for intermediate objects (green apple and leek) paves the way for the development of a new generic and comprehensive modeling approach.Particularly in the field of biology, in collaboration with the ANSES laboratory, we conducted early detection ollowed by quantification of biofilms forming in fish farming basins using hyperspectral and polarimetric imaging. This is crucial as the current visual detection method is not efficient in preventing biofilm accumulation and implementingcleaning and disinfection procedures. Hence, an initial version of a dedicated physical modeling approach called "DNA-HSI" has been established
Mathur, Abhinav. "DIMENSIONALITY REDUCTION OF HYPERSPECTRAL SIGNATURES FOR OPTIMIZED DETECTION OF INVASIVE SPECIES." MSSTATE, 2003. http://sun.library.msstate.edu/ETD-db/theses/available/etd-07112003-160125/.
Повний текст джерелаSirois, Jean-Philippe. "Impact et suivi de la variabilité climatique sur la production viticole dans le sud du Québec à l’aide de la télédétection hyperspectrale." Mémoire, Université de Sherbrooke, 2015. http://hdl.handle.net/11143/6011.
Повний текст джерелаRousseau, Sylvain. "Détection de points d'intérêts dans une image multi ou hyperspectral par acquisition compressée." Thesis, Poitiers, 2013. http://www.theses.fr/2013POIT2269/document.
Повний текст джерелаMulti- and hyper-spectral sensors generate a huge stream of data. A way around thisproblem is to use a compressive acquisition of the multi- and hyper-spectral object. Theobject is then reconstructed when needed. The next step is to avoid this reconstruction and towork directly with compressed data to achieve a conventional treatment on an object of thisnature. After introducing a first approach using Riemannian tools to perform edge detectionin multispectral image, we present the principles of the compressive sensing and algorithmsused to solve its problems. Then we devote an entire chapter to the detailed study of one ofthem, Bregman type algorithms which by their flexibility and efficiency will allow us to solvethe minimization encountered later. We then focuses on the detection of signatures in amultispectral image relying on an original algorithm of Guo and Osher based on minimizingL1. This algorithm is generalized in connection with the acquisition compressed. A secondgeneralization will help us to achieve the pattern detection in a multispectral image. Andfinally, we introduce new matrices of measures that greatly simplifies calculations whilemaintaining a good quality of measurements
TENG, Chih-Heng, and 鄧至亨. "A spectral signature based non-local mean for hyperspectral image denoising." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/5wtabh.
Повний текст джерела國立臺灣大學
電信工程學研究所
106
A new spectral signature method for hyperspectral images denoising named as hyperspectral non-local mean is proposed in this thesis. This method uses spectral information and spatial information to denoise hyperspectral images. Traditionally, spectral information and spatial information are used separately. Thus, there are two different groups of methods to denoise hyperspectral images, spatial algorithms and spectral algorithms. The spatial denoising methods such as smoothing filter, non-local mean and non-local Bayesian consider the correlation in an image. The spectral denoising methods such as PCA (Principal component analysis), HySime (Hyperspectral subspace identification by minimum error) and MNF (Minimum noise fraction) consider the correlation in spectral. Hyperspectral non-local mean takes the advantages of these two groups of algorithms and processes spectral information and spatial information in the same time. Our contributions are 1) reduction of the processing complexity of algorithm. 2) choice of the proper algorithm parameters according to the properties of hyperspectral images. 3) combination and comparison with state-of-the-art.
Feng, Siwei. "Wavelet-Based Non-Homogeneous Hidden Markov Chain Model For Hyperspectral Signature Classification." 2015. https://scholarworks.umass.edu/masters_theses_2/145.
Повний текст джерелаHoffman, Forrest McCoy. "Analysis of reflected spectral signatures and detection of geophysical disturbance using hyperspectral imagery." 2004. http://etd.utk.edu/2004/HoffmanForrest.pdf.
Повний текст джерелаTitle from title page screen (viewed Jan. 14, 2005). Thesis advisor: William E. Blass. Document formatted into pages (xi, 197 p. : ill. (some col.), maps)). Vita. Includes bibliographical references (p. 81-85).
HSIEH, MINGCHE, and 謝明哲. "Study on the Modeling and Classification of the Mixed Pixel Analysis on Vegetation Hyperspectral Signatures." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/63526429667807224219.
Повний текст джерела國立嘉義大學
森林暨自然資源學系研究所
99
Accurate measurement and characterization of fluctuations in the remote sensing data from satellite, airborne or in situ measurement. The adjacency effect increases the reflection of the target pixel from nearby pixels and path scattering. When substances with different spectral properties in the same pixel within the time, there will be mixed pixel. Mixed pixel is not entirely belong to a particular surface features, in order to make image classification more precise, It is necessary to divide into a variety of features in the percentage of pixel. There are many mathematic models and atmospheric correction methods, which could remove the adjacency effect from the satellite and airborne imaginary, but few discusses are made about the influence of adjacency effect on field spectroscopy, especially the variable come from the measure distance, which means the size of the target pixel, and furthermore. As long as the measure distance increases, it may cause the path scattering unpolarized reflectance come from nearby pixels. Owing to the atmosphere and solar irradiance change varyingly in outdoor measurements, the research is indoor test under artificial light source to reduce the effect of uncertainties by measuring the reflectance of light energy from spectroradiometer. We evaluate the influence of pixel sizes on the adjacency effect from different background canopy density and selective absorption by polarizer. In this study, we discuss the contribution from differerent ratio of the vegetation and soil spectral reflectance and spectral characteristics, and the use of polarized lens that filter polarized light outside the pixal to find out the contribution to spectral reflectance, the results show a quadratic function can model its response mode.
Книги з теми "Signature hyperspectrale"
1968-, Rajendran S., ed. Hyperspectral remote sensing & spectral signature applications. New Delhi: New India Pub. Agency, 2009.
Знайти повний текст джерелаPonder, Henley J., and U.S. Army Engineer Topographic Laboratories., eds. Hyperspectral signatures (400 to 2500 nm) of vegetation, minerals, soils, rocks, and cultural features: Laboratory and field measurements. Fort Belvoir, Va: U.S. Army Corps of Engineers, Engineer Topographic Laboratories, 1990.
Знайти повний текст джерелаЧастини книг з теми "Signature hyperspectrale"
Chang, Chein-I. "Target Signature-Constrained Mixed Pixel Classification (TSCMPC): LCMV Classifiers." In Hyperspectral Imaging, 207–27. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9170-6_11.
Повний текст джерелаChang, Chein-I. "Target Signature-Constrained Subpixel Detection: Linearly Constrained Minimum Variance (LCMV)." In Hyperspectral Imaging, 51–71. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9170-6_4.
Повний текст джерелаChang, Chein-I. "Target Signature-Constrained Mixed Pixel Classification (TSCMPC): Linearly Constrained Discriminant Analysis (LCDA)." In Hyperspectral Imaging, 229–42. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9170-6_12.
Повний текст джерелаPatil, Trunal, Claudia Pagano, Roberto Marani, Tiziana D’Orazio, Giacomo Copani, and Irene Fassi. "Hyperspectral Imaging for Non-destructive Testing of Composite Materials and Defect Classification." In Lecture Notes in Mechanical Engineering, 404–12. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18326-3_39.
Повний текст джерелаLeshem, Guy, and Menachem Domb. "Face Authentication Using Image Signature Generated from Hyperspectral Inner Images." In Advances in Intelligent Systems and Computing, 113–25. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0637-6_9.
Повний текст джерелаTurra, Giovanni, Simone Arrigoni, and Alberto Signoroni. "CNN-Based Identification of Hyperspectral Bacterial Signatures for Digital Microbiology." In Image Analysis and Processing - ICIAP 2017, 500–510. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68548-9_46.
Повний текст джерелаCarmona-Zuluaga, Pablo, Maria C. Torres-Madronero, Manuel Goez, Tatiana Rondon, Manuel Guzman, and Maria Casamitjana. "Abiotic Maize Stress Detection Using Hyperspectral Signatures and Band Selection." In Smart Technologies, Systems and Applications, 480–93. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-32213-6_35.
Повний текст джерелаAppice, Annalisa, and Pietro Guccione. "Exploiting Spatial Correlation of Spectral Signature for Training Data Selection in Hyperspectral Image Classification." In Discovery Science, 295–309. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46307-0_19.
Повний текст джерела"Binary Coding for Spectral Signatures." In Hyperspectral Data Processing, 719–40. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118269787.ch24.
Повний текст джерела"Vector Coding for Hyperspectral Signatures." In Hyperspectral Data Processing, 741–71. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118269787.ch25.
Повний текст джерелаТези доповідей конференцій з теми "Signature hyperspectrale"
Settouti, Nesma, Olga Assainova, Nadine Abdallah Saab, and Marwa El Bouz. "Automated Hyperspectral Apple Variety Identification Based on Patch-wise Classification." In Applied Industrial Spectroscopy. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ais.2023.jw2a.28.
Повний текст джерелаBárta, Vojtech, and František Racek. "Hyperspectral discrimination of camouflaged target." In Target and Background Signatures, edited by Karin U. Stein and Ric Schleijpen. SPIE, 2017. http://dx.doi.org/10.1117/12.2278578.
Повний текст джерелаBárta, Vojtech, František Racek, and Jaroslav Krejcí. "NATO hyperspectral measurement of natural background." In Target and Background Signatures, edited by Karin U. Stein and Ric Schleijpen. SPIE, 2018. http://dx.doi.org/10.1117/12.2325468.
Повний текст джерелаCropper, A. D., David C. Mann, and Milton O. Smith. "Target detection performance of hyperspectral imagers." In Target and Background Signatures V, edited by Karin U. Stein and Ric Schleijpen. SPIE, 2019. http://dx.doi.org/10.1117/12.2532406.
Повний текст джерелаAmann, Simon, Mazen Mel, Pietro Zanuttigh, Tobias Haist, Markus Kamm, and Alexander Gatto. "Material Characterization using a Compact Computed Tomography Imaging Spectrometer with Super-resolution Capability." In OCM 2023 - 6th International Conference on Optical Characterization of Materials, March 22nd – 23rd, 2023, Karlsruhe, Germany : Conference Proceedings. KIT Scientific Publishing, 2023. http://dx.doi.org/10.58895/ksp/1000155014-13.
Повний текст джерелаGross, Wolfgang, Florian Queck, Simon Schreiner, Marius Vögtli, Jannick Kuester, Jonas Mispelhorn, Mathias Kneubühler, and Wolfgang Middelmann. "A multi-temporal hyperspectral camouflage detection and transparency experiment." In Target and Background Signatures VIII, edited by Karin Stein and Ric Schleijpen. SPIE, 2022. http://dx.doi.org/10.1117/12.2636132.
Повний текст джерелаIto, Takaaki, Daiki Nakaya, Shin Satori, Mitsuharu Shiwa, and Tomonori Ito. "Detection technology of foreign matter on the ocean for MDA with hyperspectral imaging." In Target and Background Signatures, edited by Karin U. Stein and Ric Schleijpen. SPIE, 2018. http://dx.doi.org/10.1117/12.2324647.
Повний текст джерелаGross, Wolfgang, Florian Queck, Marius Vögtli, Simon Schreiner, Jannick Kuester, Jonas Böhler, Jonas Mispelhorn, Mathias Kneubühler, and Wolfgang Middelmann. "A multi-temporal hyperspectral target detection experiment: evaluation of military setups." In Target and Background Signatures VII, edited by Karin U. Stein and Ric Schleijpen. SPIE, 2021. http://dx.doi.org/10.1117/12.2597991.
Повний текст джерелаMorgan, Seldon O., Richard B. Gomez, and William E. Roper. "Squeezed signature analysis hyperspectral classification." In AeroSense 2003, edited by Nickolas L. Faust and William E. Roper. SPIE, 2003. http://dx.doi.org/10.1117/12.502414.
Повний текст джерелаShah, Dharambhai, Y. N. Trivedi, and Tanish Zaveri. "Non-Linear Spectral Unmixing: A Case Study On Mangalore Aviris-Ng Hyperspectral Data." In 2020 IEEE Bombay Section Signature Conference (IBSSC). IEEE, 2020. http://dx.doi.org/10.1109/ibssc51096.2020.9332215.
Повний текст джерелаЗвіти організацій з теми "Signature hyperspectrale"
Chang, Chein-I., Jing Wang, Chein-Chi Chang, and Chinsu Lin. Progressive Coding for Hyperspectral Signature Characterization. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada455705.
Повний текст джерелаPokrzywinski, Kaytee, Cliff Morgan, Scott Bourne, Molly Reif, Kenneth Matheson, and Shea Hammond. A novel laboratory method for the detection and identification of cyanobacteria using hyperspectral imaging : hyperspectral imaging for cyanobacteria detection. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/40966.
Повний текст джерелаWhite, H. P., L. Sun, K. Staenz, R. A. Fernandes, and C. Champagne. Determining the Contribution of Shaded Elements of a Canopy to Remotely Sensed Hyperspectral Signatures. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2002. http://dx.doi.org/10.4095/219961.
Повний текст джерелаLesser, Michael P. Coastal Benthic Optical Properties (CoBOP) of Coral Reef Environments: Small Scale Fluorescent Optical Signatures and Hyperspectral Remote Sensing of Coral Reef Habitats. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada627969.
Повний текст джерелаLesser, Michael P. Coastal Benthic Optical Properties (CoBOP) of Coral Reef Environments: Small Scale Fluorescent Optical Signatures and Hyperspectral Remote Sensing of Coral Reef Habitats. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada628422.
Повний текст джерелаBudkewitsch, P., K. Staenz, J. Secker, A. Rencz, and D. Sangster. Spectral Signatures of Carbonate Rocks Surrounding the Nanisivik MVT Zn-Pb Mine and Implications of Hyperspectral Imaging for Exploration in Arctic Environments. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2000. http://dx.doi.org/10.4095/219736.
Повний текст джерелаHodul, M., H. P. White, and A. Knudby. A report on water quality monitoring in Quesnel Lake, British Columbia, subsequent to the Mount Polley tailings dam spill, using optical satellite imagery. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330556.
Повний текст джерела