Дисертації з теми "Signals classification"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Signals classification".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Rida, Imad. "Temporal signals classification." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMIR01/document.
Повний текст джерелаNowadays, there are a lot of applications related to machine vision and hearing which tried to reproduce human capabilities on machines. These problems are mainly amenable to a temporal signals classification problem, due our interest to this subject. In fact, we were interested to two distinct problems, humain gait recognition and audio signal recognition including both environmental and music ones. In the former, we have proposed a novel method to automatically learn and select the dynamic human body-parts to tackle the problem intra-class variations contrary to state-of-art methods which relied on predefined knowledge. To achieve it a group fused lasso algorithm is applied to segment the human body into parts with coherent motion value across the subjects. In the latter, while no conventional feature representation showed its ability to tackle both environmental and music problems, we propose to model audio classification as a supervised dictionary learning problem. This is done by learning a dictionary per class and encouraging the dissimilarity between the dictionaries by penalizing their pair- wise similarities. In addition the coefficients of a signal representation over these dictionaries is sought as sparse as possible. The experimental evaluations provide performing and encouraging results
楊永生 and Yongsheng Yang. "Fuzzy classification of biomedical signals." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31213832.
Повний текст джерелаAlty, Stephen Robert. "The classification of voiceband signals." Thesis, Liverpool John Moores University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242312.
Повний текст джерелаYang, Yongsheng. "Fuzzy classification of biomedical signals /." Hong Kong : University of Hong Kong, 1996. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19669549.
Повний текст джерелаProper, Ethan R. "Automated classification of power signals." Thesis, (7 MB), 2008. http://handle.dtic.mil/100.2/ADA488187.
Повний текст джерела"June 2008." Description based on title screen as viewed on August 26, 2009. DTIC Descriptor(s): Reverse Osmosis, Shipboard, Electronic Equipment, Electronics, Waste Disposal, Voltage, Graphical User Interface, Electromagnetic Radiation, Computer Programs, Classification, Measurement, Expert Systems, Transients, Waste Collection. DTIC Identifier(s): Non-Intrusive Load Monitors, Electromagnetic Systems, Electronic Systems, Power Signals, NILM (Non-Intrusive Load Monitor), Shipboard Systems, Spectral Power Envelopes, Prep (Preprocessed Power Data), CHT (Classification Of Waste Disposal). Includes bibliographical references. Also available in CR-ROM format.
Proper, Ethan R. (Ethan Richard). "Automated classification of power signals." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44842.
Повний текст джерелаIncludes bibliographical references (p. 106-107).
The Non-Intrusive Load Monitor (NILM) is a device that utilizes voltage and current measurements to monitor an entire system from a single reference point. The NILM and associated software convert the V/I signal to spectral power envelopes that can be searched to determine when a transient occurs. The identification of this signal can then be determined by an expert classifier and a series of these classifications can be used to diagnose system failures or improper operation. Current NILM research conducted at Massachusetts Institute of Technology's Laboratory for Electromagnetic and Electronic Systems (LEES) is exploring the application and expansion of NILM technology for the use of monitoring shipboard systems. This thesis presents the ginzu application that implements a detect-classify-verify loop that locates the indexes of transients, identifies them using a decision-tree based expert classifier, and then generates a summary event file containing relevant information. The ginzu application provides a command-line interface between streaming preprocessed power data (PREP) and an included graphical user interface. This software was developed using thousands of hours of archived data from the Coast Guard Cutters ESCANABA (WMEC-907) and SENECA (WMEC-906). A validation of software effectiveness was conducted as the software was installed onboard ESCANABA.
by Ethan R. Proper.
S.M.
Nav.E.
VanDerKamp, Martha M. "Modeling and classification of biological signals." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School; Available from the National Technical Information Service, 1992. http://edocs.nps.edu/npspubs/scholarly/theses/1992/Dec/92Dec_VanDerKamp.pdf.
Повний текст джерелаAtsma, Willem Jentje. "Classification of myoelectric signals using neural networks." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ29968.pdf.
Повний текст джерелаJu, Peter M. (Peter Ming-Wei) 1977. "Classification of finger gestures from myoelectric signals." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/9074.
Повний текст джерелаIncludes bibliographical references (p. 73-75).
Electromyographic signals may provide an important new class of user interface for consumer electronics. In order to make such interfaces effective, it will be crucial to map EMG signals to user gestures in real time. The mapping from signals to gestures will vary from user to user, so it must be acquired adaptively. In this thesis, I describe and compare three methods for static classification of EMG signals. I then go on to explore methods for adapting the classifiers over time and for sequential analysis of the gesture stream by combining the static classification algorithm with a hidden Markov model. I conclude with an evaluation of the combined model on an unsegmented stream of gestures.
by Peter M. Ju.
S.B.and M.Eng.
Hannaske, Roland. "Fast Digitizing and Digital Signal Processing of Detector Signals." Forschungszentrum Dresden-Rossendorf, 2009. https://hzdr.qucosa.de/id/qucosa%3A21615.
Повний текст джерелаYagci, Tayfun. "Target Classification And Recognition Using Underwater Acoustic Signals." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606373/index.pdf.
Повний текст джерелаvisual&rdquo
target detection methods left the stage to the computerized acoustic signature detection and evaluation methods. Despite this, the research projects have not sufficiently addressed in the field of acoustic signature evaluation. This thesis work mainly investigates classification and recognition techniques with TRN / LOFAR signals, which are emitted from surface and subsurface platforms and proposes possible adaptations of existing methods that may give better results if they are used with these signals. Also a detailed comparison has been made about the experimental results with underwater acoustic signals.
Duzenli, Ozhan. "Classification of underwater signals using wavelet-based decompositions." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1998. http://handle.dtic.mil/100.2/ADA349588.
Повний текст джерела"June 1998." Thesis advisor(s): Monique P. Farques, Ralph D. Hippenstiel. Includes bibliographical references (p. 161-163). Also available online.
Bissinger, Brett Bose N. K. Culver R. Lee. "Minimum hellinger distance classification of underwater acoustic signals." [University Park, Pa.] : Pennsylvania State University, 2009. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-4677/index.html.
Повний текст джерелаClemedson, Johan. "Audio Generation from Radar signals, for target classification." Thesis, KTH, Optimeringslära och systemteori, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215502.
Повний текст джерелаKlassificering är ofta av stort intresse inom radarapplikation, eftersom man inte bara vill veta var ett mål befinner sig men också vad för typ av mål det är. Denna uppsats fokuserar på att omvandla radarekot från ett mål till en ljudsignal. Så att klassificeringen kan ske med mänskliga sinnen, i detta fall hörseln. Syftet med dessa klassificeringsmetoder är att kunna klassificera två typer av mål med ungefär samma storlek, nämligen fåglar och mindre obemannade flygfordon (UAV). Det är möjligt att med radarn mäta målets hastighet med hjälp av Doppler-effekten. För att kunna avgöra i vilken riktning målet rör sig används en I/Q-representation, som är en komplex representation av radar signalen. Med signalbehandling är det möjligt att extrahera radar signaler som målet generar. Genom att använda spektrala transformationer är det möjligt att generera reellvärda signaler från de extraherade målsignalerna. Det är nödvändigt att förlänga dessa signaler för att kunna använda dem som ljudsignaler, detta görs med en extrapoleringsteknik baserad på Autoregressiva (AR) -processer. De ljudsignaler som används är dessa extrapolerade signalerna, det är i det flesta fall möjligt att utifrån ljudet genomföra klassificeringen. Detta projekt är utfört i samarbete med Sebastian Edman [7], där olika inriktningar av radarklassificering har undersökts. Som nämnts ovan fokuserar denna uppsats på att omvandla
Malfante, Marielle. "Automatic classification of natural signals for environmental monitoring." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAU025/document.
Повний текст джерелаThis manuscript summarizes a three years work addressing the use of machine learning for the automatic analysis of natural signals. The main goal of this PhD is to produce efficient and operative frameworks for the analysis of environmental signals, in order to gather knowledge and better understand the considered environment. Particularly, we focus on the automatic tasks of detection and classification of natural events.This thesis proposes two tools based on supervised machine learning (Support Vector Machine, Random Forest) for (i) the automatic classification of events and (ii) the automatic detection and classification of events. The success of the proposed approaches lies in the feature space used to represent the signals. This relies on a detailed description of the raw acquisitions in various domains: temporal, spectral and cepstral. A comparison with features extracted using convolutional neural networks (deep learning) is also made, and favours the physical features to the use of deep learning methods to represent transient signals.The proposed tools are tested and validated on real world acquisitions from different environments: (i) underwater and (ii) volcanic areas. The first application considered in this thesis is devoted to the monitoring of coastal underwater areas using acoustic signals: continuous recordings are analysed to automatically detect and classify fish sounds. A day to day pattern in the fish behaviour is revealed. The second application targets volcanoes monitoring: the proposed system classifies seismic events into categories, which can be associated to different phases of the internal activity of volcanoes. The study is conducted on six years of volcano-seismic data recorded on Ubinas volcano (Peru). In particular, the outcomes of the proposed automatic classification system helped in the discovery of misclassifications in the manual annotation of the recordings. In addition, the proposed automatic classification framework of volcano-seismic signals has been deployed and tested in Indonesia for the monitoring of Mount Merapi. The software implementation of the framework developed in this thesis has been collected in the Automatic Analysis Architecture (AAA) package and is freely available
Kanneganti, Raghuveer. "CLASSIFICATION OF ONE-DIMENSIONAL AND TWO-DIMENSIONAL SIGNALS." OpenSIUC, 2014. https://opensiuc.lib.siu.edu/dissertations/892.
Повний текст джерелаBertoncini, Crystal Ann. "Applications of pattern classification to time-domain signals." W&M ScholarWorks, 2010. https://scholarworks.wm.edu/etd/1539623559.
Повний текст джерелаOjo, Catherine A. "Analysis & automatic classification of nuclear magnetic resonance signals." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4109.
Повний текст джерелаArafat, Samer M. "Uncertainty modeling for classification and analysis of medical signals /." free to MU campus, to others for purchase, 2003. http://wwwlib.umi.com/cr/mo/fullcit?p3115520.
Повний текст джерелаIdowu, Ibrahim Olatunji. "Classification techniques using EHG signals for detecting preterm births." Thesis, Liverpool John Moores University, 2017. http://researchonline.ljmu.ac.uk/7062/.
Повний текст джерелаBrown, Elliot Morgan. "The Application of Synthetic Signals for ECG Beat Classification." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8116.
Повний текст джерелаLarsen, Erik Andreas. "Classification of EEG Signals in a Brain-Computer Interface System." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for datateknikk og informasjonsvitenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-13578.
Повний текст джерелаBennett, Richard Campbell. "Classification of underwater signals using a back-propagation neural network." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1997. http://handle.dtic.mil/100.2/ADA331774.
Повний текст джерелаThesis advisors, Monique P. Fargues, Roberto Cristi. Includes bibliographical references (p. 95). Also available online.
Burger, Christiaan. "A novel method of improving EEG signals for BCI classification." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95984.
Повний текст джерелаENGLISH ABSTRACT: Muscular dystrophy, spinal cord injury, or amyotrophic lateral sclerosis (ALS) are injuries and disorders that disrupts the neuromuscular channels of the human body thus prohibiting the brain from controlling the body. Brain computer interface (BCI) allows individuals to bypass the neuromuscular channels and interact with the environment using the brain. The system relies on the user manipulating his neural activity in order to control an external device. Electroencephalography (EEG) is a cheap, non-invasive, real time acquisition device used in BCI applications to record neural activity. However, noise, known as artifacts, can contaminate the recording, thus distorting the true neural activity. Eye blinks are a common source of artifacts present in EEG recordings. Due to its large amplitude it greatly distorts the EEG data making it difficult to interpret data for BCI applications. This study proposes a new combination of techniques to detect and correct eye blink artifacts to improve the quality of EEG for BCI applications. Independent component analysis (ICA) is used to separate the EEG signals into independent source components. The source component containing eye blink artifacts are corrected by detecting each eye blink within the source component and using a trained wavelet neural network (WNN) to correct only a segment of the source component containing the eye blink artifact. Afterwards, the EEG is reconstructed without distorting or removing the source component. The results show a 91.1% detection rate and a 97.9% correction rate for all detected eye blinks. Furthermore for channels located over the frontal lobe, eye blink artifacts are corrected preserving the neural activity. The novel combination overall reduces EEG information lost, when compared to existing literature, and is a step towards improving EEG pre-processing in order to provide cleaner EEG data for BCI applications.
AFRIKAANSE OPSOMMING: Spierdistrofie, ’n rugmurgbesering, of amiotrofiese laterale sklerose (ALS) is beserings en steurnisse wat die neuromuskulêre kanale van die menslike liggaam ontwrig en dus verhoed dat die brein die liggaam beheer. ’n Breinrekenaarkoppelvlak laat toe dat die neuromuskulêre kanale omlei word en op die omgewing reageer deur die brein. Die BCI-stelsel vertrou op die gebruiker wat sy eie senuwee-aktiwiteit manipuleer om sodoende ’n eksterne toestel te beheer. Elektro-enkefalografie (EEG) is ’n goedkoop, nie-indringende, intydse dataverkrygingstoestel wat gebruik word in BCI toepassings. Nie net senuwee aktiwiteit nie, maar ook geraas , bekend as artefakte word opgeneem, wat dus die ware senuwee aktiwiteit versteur. Oogknip artefakte is een van die algemene artefakte wat teenwoordig is in EEG opnames. Die groot omvang van hierdie artefakte verwring die EEG data wat dit moeilik maak om die data te ontleed vir BCI toepassings. Die studie stel ’n nuwe kombinasie tegnieke voor wat oogknip artefakte waarneem en regstel om sodoende die kwaliteit van ’n EEG vir BCI toepassings te verbeter. Onafhanklike onderdeel analise (Independent component analysis (ICA)) word gebruik om die EEG seine te skei na onafhanklike bron-komponente. Die bronkomponent wat oogknip artefakte bevat word reggestel binne die komponent en gebruik ’n ervare/geoefende golfsenuwee-netwerk om slegs ’n deel van die komponent wat die oogknip artefak bevat reg te stel. Daarna word die EEG hervorm sonder verwringing of om die bron-komponent te verwyder. Die resultate toon ’n 91.1% opsporingskoers en ’n 97.9% regstellingskoers vir alle waarneembare oogknippe. Oogknip artefakte in kanale op die voorste lob word reggestel en behou die senuwee aktiwiteit wat die oorhoofse EEG kwaliteit vir BCI toepassings verhoog.
Daura, Ashiru Sani. "A wavelet-based method for the classification of PCG signals." Thesis, University of Newcastle Upon Tyne, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244474.
Повний текст джерелаHong, Liang. "Advanced techniques for automatic classification of digitally modulated communication signals /." free to MU campus, to others for purchase, 2002. http://wwwlib.umi.com/cr/mo/fullcit?p3074408.
Повний текст джерелаEvans, Naoko. "Automated vehicle detection and classification using acoustic and seismic signals." Thesis, University of York, 2010. http://etheses.whiterose.ac.uk/1151/.
Повний текст джерелаGustavsson, Jan-Olof. "Estimation in non-gaussian noise and classification of welding signals." Licentiate thesis, Luleå tekniska universitet, Signaler och system, 1991. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26514.
Повний текст джерелаSapiano, Philip Charles. "The automatic classification of the modulation type of communication signals." Thesis, University of Bath, 1997. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362152.
Повний текст джерелаBond, Zachary. "Unsupervised Classification of Music Signals: Strategies Using Timbre and Rhythm." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/36469.
Повний текст джерелаMaster of Science
Jouny, Ismail. "Bispectral analysis of radar signals with application to target classification /." The Ohio State University, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487683049375875.
Повний текст джерелаOhrnberger, Matthias, Joachim Wassermann, and Gudrun Richter. "Automatic detection and classification of seismic signals for monitoring purposes : [Poster]." Universität Potsdam, 2006. http://www.uni-potsdam.de/imaf/events/ge_work0602.html.
Повний текст джерелаBekiroglu, Yasemi. "Nonstationary feature extraction techniques for automatic classification of impact acoustic signals." Thesis, Högskolan Dalarna, Datateknik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:du-3592.
Повний текст джерелаMarvasti, Salman Alim. "Automated Detection, Classification and Denoising of Embolic Signals in TCD Ultrasound." Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.502920.
Повний текст джерелаKhodjet-Kesba, Mahmoud. "Automatic target classification based on radar backscattered ultra wide band signals." Thesis, Clermont-Ferrand 2, 2014. http://www.theses.fr/2014CLF22506/document.
Повний текст джерелаThe objective of this thesis is the Automatic Target Classification (ATC) based on radar backscattered Ultra WideBand (UWB) signals. The classification of the targets is realized by making comparison between the deduced target properties and the different target features which are already recorded in a database. First, the study of scattering theory allows us to understand the physical meaning of the extracted features and describe them mathematically. Second, feature extraction methods are applied in order to extract signatures of the targets. A good choice of features is important to distinguish different targets. Different methods of feature extraction are compared including wavelet transform and high resolution techniques such as: Prony’s method, Root-Multiple SIgnal Classification (Root-MUSIC), Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) and Matrix Pencil Method (MPM). Third, an efficient method of supervised classification is necessary to classify unknown targets by using the extracted features. Different methods of classification are compared: Mahalanobis Distance Classifier (MDC), Naïve Bayes (NB), k-Nearest Neighbors (k-NN) and Support Vector Machine (SVM). A useful classifier design technique should have a high rate of accuracy in the presence of noisy data coming from different aspect angles. The different algorithms are demonstrated using simulated backscattered data from canonical objects and complex target geometries modeled by perfectly conducting thin wires. A method of ATC based on the use of Matrix Pencil Method in Frequency Domain (MPMFD) for feature extraction and MDC for classification is proposed. Simulation results illustrate that features extracted with MPMFD present a plausible solution to automatic target classification. In addition, we prove that the proposed method has better ability to tolerate noise effects in radar target classification. Finally, the different algorithms are validated on experimental data and real targets
Ramaswamy, Ganesh Nachiappa. "Adaptive classification of interfering signals in a shared radio frequency environment." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/28009.
Повний текст джерелаIncludes bibliographical references (leaves 107-114).
by Ganesh Nachiappa Ramaswamy.
M.S.
Miller, Corey Alexander. "Intelligent Feature Selection Techniques for Pattern Classification of Time-Domain Signals." W&M ScholarWorks, 2013. https://scholarworks.wm.edu/etd/1539623620.
Повний текст джерелаFuster, García Elíes. "Biomedical signal analysis in automatic classification problems." Doctoral thesis, Editorial Universitat Politècnica de València, 2012. http://hdl.handle.net/10251/17176.
Повний текст джерелаFuster García, E. (2012). Biomedical signal analysis in automatic classification problems [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17176
Palancia
Axelsson, Oskar. "Automatic Classification of surface ships based on signals from passive underwater sensors." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-69335.
Повний текст джерелаChiappa, Silvia. "Analysis and classification of EEG signals using probabilistic models for brain computer interfaces /." [S.l.] : [s.n.], 2006. http://library.epfl.ch/theses/?nr=3547.
Повний текст джерелаPersson, Christer N. E. "Classification and analysis of low probability of intercept radar signals using image processing." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03sep%5FPersson.pdf.
Повний текст джерелаThesis advisor(s): Phillip E. Pace, D. Curtis Schleher. Includes bibliographical references (p. 125-126). Also available online.
Crysandt, Holger. "Hierarchical classification of sound signals with class separation based on information theoretic criteria /." Aachen : Shaker, 2008. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=017071704&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Повний текст джерелаBsoul, Abed Al-Raoof. "PROCESSING AND CLASSIFICATION OF PHYSIOLOGICAL SIGNALS USING WAVELET TRANSFORM AND MACHINE LEARNING ALGORITHMS." VCU Scholars Compass, 2011. http://scholarscompass.vcu.edu/etd/258.
Повний текст джерелаMarques, JoÃo Alexandre LÃbo. "SISCTG- an intelligent systems for classification of cardiotocography signals for help diagnosis doctor." Universidade Federal do CearÃ, 2007. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=2046.
Повний текст джерелаThe accurate analysis of the fetal heart rate (FHR) and its correlation with uterine contractions (UC) allows the diagnostic and the anticipation of many problems related to fetal distress and the preservation of his life. This dissertation presents the results of an hibrid system based on a set of deterministic rules and fuzzy inference system developed to analyze FHR and UC signals collected by cardiotocography (CTG) exams. The studied variables are basal FHR, short and long term FHR variability, transitory accelerations and decelerations, these lasts classified by their type and number of ocurrencies. The system output is a first level diagnostics based on those input variables. The SISCTG system is developed using the Matlab version 7 script language. Tests and modeling issues used the Matlab Fuzzy Toolbox. The project also supports a multi-institutional agreement between Brazil and Germany, among the DETI - Departamento de Engenharia de TeleinformÂatica of the UFC â Universidade Federal do CearÂa, the MEAC - Maternidade-Escola Assis Chateaubriand), the TUM - Technische UniversitÃt MÃnchen, the Bundeswehr UniversitÃt MÃnchen and the Trium Analysis Online GmbH. The SISCTG results are very promising, correctly classifying all normal exams. This is the expected behavior, once CTG exams are classified as of low specificity, with the most interest focused in finding pathologies aspects, but not precisely identifying them. These results allow the projection of improvements to the proposed system, inserting new input variables, for example. The system validation methodology was based on the knowledge of Brazilian and German obstetricians.
A anÃlise acurada da freqÃÃncia cardÃaca fetal (FCF ou FHR - Fetal Heart Rate) correlacionada com as contraÃÃes uterinas maternas (UC - Uterine Contractions) permite gerar diagnÃsticos e a conseqÃente antecipaÃÃo de problemas diversos relativos ao bem estar fetal e a preservaÃÃo de sua vida. O presente trabalho apresenta os resultados de um sistema hibrido baseado em regras determinÃsticas e em um mÃdulo de inferÃncia nebuloso (fuzzy) para anÃlise de sinais de FCF e UC coletados atravÃs de exames denominados cardiotocografias (CTG). As variÃveis analisadas sÃo o valor basal da FCF, sua variabilidade de curto e de longo prazo, aceleraÃÃes transitÃrias e desaceleraÃÃes, sendo estas classificadas por seu tipo e pelo nÃmero de ocorrÃncias. A saÃda do sistema à o diagnÃstico em primeiro nÃvel, baseado nas informaÃÃes das variÃveis de entrada definidas. O sistema SISCTG à desenvolvido na linguagem de scripts do programa Matlab versÃo 7. Modelagens e testes sÃo realizados utilizando-se o Fuzzy Toolbox do programa Matlab. O projeto tambÃm conta com uma parceria multi-institucional entre o Brasil e a Alemanha, envolvendo a Universidade Federal do Cearà (UFC), atravÃs do Departamento de Engenharia de TeleinformÃtica (DETI) e da Maternidade-Escola Assis Chateaubriand (MEAC), a Technische UniversitÃt MÃnchen (TUM), a Bundeswehr UniversitÃt MÃnchen e a empresa Trium Analysis Online GmbH. Os resultados obtidos pelo SISCTG sÃo bastante promissores, classificando todos os exames normais corretamente. Este à o comportamento esperado, uma vez que CTGs sÃo exames de baixa especificidade, tendo como interesse maior encontrar indÃcios de patologias, sem a necessidade de identificÃ-las precisamente. Estes resultados permitem projetar o aperfeiÃoamento deste sistema com a inserÃÃo, por exemplo, de novas variÃveis de entrada. SÃo realizados procedimentos de validaÃÃo com mÃltiplos especialistas na Ãrea obstÃtrica tanto no Brasil quanto na Alemanha.
Day-Williams, Hugh C. "Effects of training methods on classification on surface electromyographic signals for myoelectric control." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119965.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (page 25).
Myoelectric devices, devices which use the electric signals from human muscles as a control scheme, have shown promise in their potential to aid in human movement augmentation and assistance for those that have suffered injury. Previous studies involving myoelectric devices and the classification of surface electromyographic (sEMG) signals, electrical impulses obtained from muscles from sensors on the skin, have sought to use various types of machine learning models for sEMG pattern recognition. This technique shows promise in being able to accurately classify human sEMG signals and map them to certain movements, which can then be used as a method of myoelectric control. In this study we explored how two methods of training a K-Nearest Neighbor (KNN) classifier, used to control a MyoPro arm orthosis, affect two subjects' performance on various experimental tasks and their measured sEMG activation throughout the tasks. It was found that for subject 1, the assisted training method, where another individual helps move the orthosis while training the KNN, resulted in a lower variance in the measured mean sEMG values, and reduced the cross validation accuracy of the controller, but did not reduce subjects' performance of the experimental trials, as compared to the KNN controller trained without assistance. For subject 2, the assisted controller reduced the performance on three out of the four tests performed compared to the unassisted controller.
by Hugh C. Day-Williams.
S.B.
Jonsson, Maja, and Jennifer Brown. "Deep Learning for Driver Sleepiness Classification using Bioelectrical Signals and Karolinska Sleepiness Scale." Thesis, Linköpings universitet, Institutionen för medicinsk teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-178082.
Повний текст джерелаOhrnberger, Matthias. "Continuous automatic classification of seismic signals of volcanic origin at Mt. Merapi, Java, Indonesia." Phd thesis, [S.l. : s.n.], 2001. http://pub.ub.uni-potsdam.de/2001/0016/ohrnberg.pdf.
Повний текст джерелаKolb, Dirk [Verfasser], and Elmar [Akademischer Betreuer] Nöth. "Efficient and Trainable Detection and Classification of Radio Signals / Dirk Kolb. Betreuer: Elmar Nöth." Erlangen : Universitätsbibliothek der Universität Erlangen-Nürnberg, 2012. http://d-nb.info/1025963725/34.
Повний текст джерелаNarayanan, Bharath Krishnan. "A new strategy for speech recognition through the parametric classification of ear pressure signals /." Available to subscribers only, 2005. http://proquest.umi.com/pqdweb?did=1079666561&sid=6&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Повний текст джерелаLucking, Walter. "The application of time encoded signals to automated machine condition classification using neural networks." Thesis, University of Hull, 1997. http://hydra.hull.ac.uk/resources/hull:3766.
Повний текст джерела