Дисертації з теми "Signal processing Data processing"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Signal processing Data processing".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Bañuelos, Saucedo Miguel Angel. "Signal and data processing for THz imaging." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/signal-and-data-processing-for-thz-imaging(58a646f3-033b-4771-b1dc-d1f9fc6dfbf0).html.
Повний текст джерелаVarnavas, Andreas Soteriou. "Signal processing methods for EEG data classification." Thesis, Imperial College London, 2008. http://hdl.handle.net/10044/1/11943.
Повний текст джерелаMa, Ding. "Miniature data acquisition system for multi-channel sensor arrays." Pullman, Wash. : Washington State University, 2010. http://www.dissertations.wsu.edu/Thesis/Spring2010/d_ma_042610.pdf.
Повний текст джерелаTitle from PDF title page (viewed on July 23, 2010). "School of Electrical Engineering and Computer Science." Includes bibliographical references (p. 55-57).
Cena, Bernard Maria. "Reconstruction for visualisation of discrete data fields using wavelet signal processing." University of Western Australia. Dept. of Computer Science, 2000. http://theses.library.uwa.edu.au/adt-WU2003.0014.
Повний текст джерелаT, N. Santhosh Kumar, K. Abdul Samad A, and M. Sarojini K. "DSP BASED SIGNAL PROCESSING UNIT FOR REAL TIME PROCESSING OF VIBRATION AND ACOUSTIC SIGNALS OF SATELLITE LAUNCH VEHICLES." International Foundation for Telemetering, 1995. http://hdl.handle.net/10150/608530.
Повний текст джерелаMeasurement of vibration and acoustic signals at various locations in the launch vehicle is important to establish the vibration and acoustic environment encountered by the launch vehicle during flight. The vibration and acoustic signals are wideband and require very large telemetry bandwidth if directly transmitted to ground. The DSP based Signal Processing Unit is designed to measure and analyse acoustic and vibration signals onboard the launch vehicle and transmit the computed spectrum to ground through centralised baseband telemetry system. The analysis techniques employed are power spectral density (PSD) computations using Fast Fourier Transform (FFT) and 1/3rd octave analysis using digital Infinite Impulse Response (IIR) filters. The programmability of all analysis parameters is achieved using EEPROM. This paper discusses the details of measurement and analysis techniques, design philosophy, tools used and implementation schemes. The paper also presents the performance results of flight models.
Roberts, G. "Some aspects seismic signal processing and analysis." Thesis, Bangor University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379692.
Повний текст джерелаSungoor, Ala M. H. "Genomic signal processing for enhanced microarray data clustering." Thesis, Kingston University, 2009. http://eprints.kingston.ac.uk/20310/.
Повний текст джерелаHloupis, Georgios. "Seismological data acquisition and signal processing using wavelets." Thesis, Brunel University, 2009. http://bura.brunel.ac.uk/handle/2438/3470.
Повний текст джерелаKolb, John. "SIGNAL PROCESSING ABOUT A DISTRIBUTED DATA ACQUISITION SYSTEM." International Foundation for Telemetering, 2002. http://hdl.handle.net/10150/605610.
Повний текст джерелаBecause modern data acquisition systems use digital backplanes, it is logical for more and more data processing to be done in each Data Acquisition Unit (DAU) or even in each module. The processing related to an analog acquisition module typically takes the form of digital signal conditioning for range adjust, linearization and filtering. Some of the advantages of this are discussed in this paper. The next stage is powerful processing boards within DAUs for data reduction and third-party algorithm development. Once data is being written to and from powerful processing modules an obvious next step is networking and decom-less access to data. This paper discusses some of the issues related to these types of processing.
Chen, Siheng. "Data Science with Graphs: A Signal Processing Perspective." Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/724.
Повний текст джерелаJavidi, Soroush. "Adaptive signal processing algorithms for noncircular complex data." Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/6328.
Повний текст джерелаNaulleau, Patrick. "Optical signal processing and real world applications /." Online version of thesis, 1993. http://hdl.handle.net/1850/12136.
Повний текст джерелаPan, Jian Jia. "EMD/BEMD improvements and their applications in texture and signal analysis." HKBU Institutional Repository, 2013. https://repository.hkbu.edu.hk/etd_oa/75.
Повний текст джерелаAviran, Sharon. "Constrained coding and signal processing for data storage systems." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3214776.
Повний текст джерелаTitle from first page of PDF file (viewed July 11, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Bengtsson, Mats. "Antenna array signal processing for high rank data models." Doctoral thesis, KTH, Signaler, sensorer och system, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-2903.
Повний текст джерелаGuttman, Michael. "Sampled-data IIR filtering via time-mode signal processing." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86770.
Повний текст джерелаDans ce mémoire, la conception de filtres de données-échantillonnées ayant une réponse impulsionnelle infinie basée sur le traitement de signal en mode temporel est présentée. Le traitement de signal dans le domaine temporel (TSDT), définie comme étant le traitement d'information analogique échantillonnée en utilisant des différences de temps comme variables, est devenu une des techniques émergentes de conception de circuits des plus populaires. Puisque le TSDT est toujours relativement récent, il y a encore beaucoup de développements requis pour étendre cette technologie comme un outil de traitement de signal général. Dans cette recherche, un ensemble de blocs d'assemblage capable de réaliser la plupart des opérations mathématiques dans le domaine temporel sera introduit. En arrangeant ces structures élémentaires, des systèmes en mode temporel d'ordre élevé, plus spécifiquement des filtres en mode temporel, seront réalisés. Trois filtres de deuxième ordre dans le domaine temporel (passe-bas, passe-bande et passe-haut) sont modélisés sur MATLAB et simulé sur Spectre afin de vérifier la méthodologie de conception. Finalement, un intégrateur amorti et un filtre passe-bas IIR de deuxième ordre en mode temporel sont implémentés avec des composantes discrètes.
Battersby, Nicholas Charles. "Switched-current techniques for analogue sampled-data signal processing." Thesis, Imperial College London, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394048.
Повний текст джерелаValdivia, Paola Tatiana Llerena. "Graph signal processing for visual analysis and data exploration." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-15102018-165426/.
Повний текст джерелаO processamento de sinais é usado em uma ampla variedade de aplicações, desde o processamento digital de imagens até a biomedicina. Recentemente, algumas ferramentas do processamento de sinais foram estendidas ao contexto de grafos, permitindo seu uso em domínios irregulares. Entre outros, a Transformada de Fourier e a Transformada Wavelet foram adaptadas nesse contexto. O Processamento de Sinais em Grafos (PSG) é um novo campo com muitos aplicativos potenciais na exploração de dados. Nesta dissertação mostramos como ferramentas de processamento de sinal gráfico podem ser usadas para análise visual. Especificamente, o método de filtragem de dados porposto, baseado na filtragem de grafos espectrais, levou a visualizações de alta qualidade que foram atestadas qualitativa e quantitativamente. Por outro lado, usamos a transformada de wavelet em grafos para permitir a análise visual de dados massivos variantes no tempo, revelando fenômenos e eventos interessantes. As aplicações propostas do PSG para analisar visualmente os dados são um primeiro passo para incorporar o uso desta teoria nos métodos de visualização da informação. Muitas possibilidades do PSG podem ser exploradas melhorando a compreensão de fenômenos estáticos e variantes no tempo que ainda não foram descobertos.
Nagahara, Masaaki. "Multirate digital signal processing via sampled-data H∞ optimization." 京都大学 (Kyoto University), 2003. http://hdl.handle.net/2433/120982.
Повний текст джерелаFookes, Gregory Peter Gwyn. "Interactive geophysical data processing with eigendecomposition methods." Thesis, Birkbeck (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336344.
Повний текст джерелаGudmundson, Erik. "Signal Processing for Spectroscopic Applications." Doctoral thesis, Uppsala universitet, Avdelningen för systemteknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-120194.
Повний текст джерелаPurahoo, K. "Maximum entropy data analysis." Thesis, Cranfield University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260038.
Повний текст джерелаArcher, Cynthia. "A framework for representing non-stationary data with mixtures of linear models /." Full text open access at:, 2002. http://content.ohsu.edu/u?/etd,585.
Повний текст джерелаDeri, Joya A. "Graph Signal Processing: Structure and Scalability to Massive Data Sets." Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/725.
Повний текст джерелаLane, Dallas W. "Signal processing methods for airborne lidar bathymetry." Title page, table of contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09ENS/09ensl265.pdf.
Повний текст джерелаFamorzadeh, Shahram. "BEEHIVE : an adaptive, distributed, embedded signal processing environment." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/14803.
Повний текст джерелаGonzaÌlez, Arcelus Isabel. "Advanced signal processing schemes for high density optical data storage." Thesis, University of Exeter, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413895.
Повний текст джерелаDietl, Hubert. "Digital signal processing techniques for detection applied to biomedical data." Thesis, University of Southampton, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419141.
Повний текст джерелаKunicki, Theodora C. "Novel data-processing techniques for signal extraction in Project 8." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105596.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 49-50).
Project 8 presents a new modality of electron spectroscopy with the potential to exceed the resolution of the most precise electron spectrometers in operation today, potentially at much lower cost. Project 8, being a novel method, has different computational demands from existing experiments. This thesis explores the use of the Hough Transform as a tool in data processing in Project 8 and discusses its utility and function generally.
by Theodora C. Kunicki.
S.B.
Orellana, Marco Antônio Pinto. "Seizure detection in electroencephalograms using data mining and signal processing." Universidade Federal de Viçosa, 2017. http://www.locus.ufv.br/handle/123456789/11589.
Повний текст джерелаMade available in DSpace on 2017-08-22T13:26:59Z (GMT). No. of bitstreams: 1 texto completo.pdf: 5760621 bytes, checksum: f90e38633fae140744262e882dc7ae5d (MD5) Previous issue date: 2017-03-10
Agencia Boliviana Espacial
A epilepsia é uma das doenças neurológicas mais comuns definida como a predisposição a sofrer convulsões não provocadas. A Organização Mundial da Saúde estima que 50 milhões de pessoas estão sofrendo esta condição no mundo inteiro. O diagnóstico de epilepsia implica em um processo caro e longo baseado na opinião de especialistas com base em eletroencefalogramas (EEGs) e gravações de vídeo. Neste trabalho, foram desenvolvidos dois métodos para a predição automática de convulsões usando EEG e mineração de dados. O primeiro sistema desenvolvido é um método específico para cada paciente (patient-specific) que consiste em extrair características espectro-temporais de todos os canais de EEG, aplicar um algoritmo de redução de dimensão, recuperar o envelope do sinal e criar um modelo usando um classificador random forest. Testando este sistema com um grande banco de dados de epilepsia, atingimos 97% de especificidade e 99% de sensibilidade. Assim, a primeira proposta mostrou ter um grande potencial para colaborar com o diagnóstico em um contexto clínico. O segundo sistema desenvolvido é um método não específico do paciente (non-patient specific) que consiste em selecionar o sinal diferencial de dois eletrodos, aplicar um vetor de bancos de filtros para esse sinal, extrair atributos de séries temporais e criar um modelo preditivo usando uma árvore de decisão CART. O desempenho deste método foi de 95% de especificidade e 87% de sensibilidade. Estes valores não são tão altos quanto os de métodos propostos anteriormente. No entanto, a abordagem que propomos apresenta uma viabilidade muito maior para implementação em dispositivos que possam ser efetivamente utilizados por pacientes em larga escala. Isto porque somente dois elétrodos são utilizados e o modelo de predição é computacionalmente leve. Note-se que, ainda assim, o modelo xigerado apresenta um poder preditivo satisfatório e generaliza melhor que em trabalhos anteriores já que pode ser treinado com dados de um conjunto de pacientes e utilizado em pacientes distintos (non-patient specific). Ambas as propostas apresentadas aqui, utilizando abordagens distintas, demonstram ser alternativas de predição de convulsões com performances bastante satisfatórias sob diferentes circunstâncias e requisitos.
Epilepsy is one of the most common neurological diseases and is defined as the pre- disposition to suffer unprovoked seizures. The World Health Organization estimates that 50 million people are suffering this condition worldwide. Epilepsy diagnosis im- plies an expensive and long process based on the opinion of specialist personnel about electroencephalograms (EEGs) and video recordings. We have developed two meth- ods for automatic seizure detection using EEG and data mining. The first system is a patient-specific method that consists of extracting spectro-temporal features of 23 EEG channels, applying a dimension reduction algorithm, recovering the envelope of the signal, and creating a model using a random forest classifier. Testing this system against a large dataset, we reached 97% of specificity and 99% of sensitivity. Thus, our first proposal showed to have a great potential for diagnosis support in clinical context. The other developed system is a non-patient specific method that consists of selecting the differential signal of two electrodes, applying an array of filter banks to that signal, extracting time series features, and creating a predictive model using a decision tree. The performance of this method was 95% of specificity, and 87% of sensitivity. Although the performance is lower than previous propos- als, due to the design conditions and characteristics, our method allows an easier implementation with low hardware requirements. Both proposals presented here, using distinct approaches, demonstrate to be seizure prediction alternatives with very satisfactory performances under different circumstances and requirements.
Xia, Bing 1972 Nov 7. "A direct temporal domain approach for ultrafast optical signal processing and its implementation using planar lightwave circuits /." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103007.
Повний текст джерелаFirst, we present a direct temporal domain approach for PRRM using SP filters. We show that the repetition rate of an input pulse train can be multiplied by a factor N using an optical filter with a free spectral range that does not need to be constrained to an integer multiple of N. Furthermore, the amplitude of each individual output pulse can be manipulated separately to form an arbitrary envelope at the output by optimizing the impulse response of the filter.
Next, we use lattice-form Mach-Zehnder interferometers (LF-MZI) to implement the temporal domain approach for PRRM. The simulation results show that PRRM with uniform profiles, binary-code profiles and triangular profiles can be achieved. Three silica based LF-MZIs are designed and fabricated, which incorporate multi-mode interference (MMI) couplers and phase shifters. The experimental results show that 40 GHz pulse trains with a uniform envelope pattern, a binary code pattern "1011" and a binary code pattern "1101" are generated from a 10 GHz input pulse train.
Finally, we investigate 2D ring resonator arrays (RRA) for ultraf ast optical signal processing. We design 2D RRAs to generate a pair of pulse trains with different binary-code patterns simultaneously from a single pulse train at a low repetition rate. We also design 2D RRAs for AOWG using the modified direct temporal domain approach. To demonstrate the approach, we provide numerical examples to illustrate the generation of two very different waveforms (square waveform and triangular waveform) from the same hyperbolic secant input pulse train. This powerful technique based on SP filters can be very useful for ultrafast optical signal processing and pulse shaping.
Vu, Viet Thuy. "Practical Consideration on Ultrawideband Synthetic Aperture Radar Data Processing." Licentiate thesis, Karlskrona : Blekinge Institute of Technology, 2009. http://www.bth.se/fou/Forskinfo.nsf/Sok/681bd71aea5abe8dc125765f00321457!OpenDocument.
Повний текст джерелаLee, Jae-Min. "Characterization of spatial and temporal brain activation patterns in functional magnetic resonance imaging data." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0013024.
Повний текст джерелаShen, Mengzhe, and 沈梦哲. "Parametric wavelength exchange and its application in high speed optical signal processing." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42841616.
Повний текст джерелаShen, Mengzhe. "Parametric wavelength exchange and its application in high speed optical signal processing." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B42841616.
Повний текст джерелаDevlin, Steve. "Telemetry Data Processing: A Modular, Expandable Approach." International Foundation for Telemetering, 1988. http://hdl.handle.net/10150/615091.
Повний текст джерелаThe growing complexity of missle, aircraft, and space vehicle systems, along with the advent of fly-by-wire and ultra-high performance unstable airframe technology has created an exploding demand for real time processing power. Recent VLSI developements have allowed addressing these needs in the design of a multi-processor subsystem supplying 10 MIPS and 5 MFLOPS per processor. To provide up to 70 MIPS a Digital Signal Processing subsystem may be configured with up to 7 Processors. Multiple subsystems may be employed in a data processing system to give the user virtually unlimited processing power. Within the DSP module, communication between cards is over a high speed, arbitrated Private Data bus. This prevents the saturation of the system bus with intermediate results, and allows a multiple processor configuration to make full use of each processor. Design goals for a single processor included executing number system conversions, data compression algorithms and 1st order polynomials in under 2 microseconds, and 5th order polynomials in under 4 microseconds. The processor design meets or exceeds all of these goals. Recently upgraded VLSI is available, and makes possible a performance enhancement to 11 MIPS and 9 MFLOPS per processor with reduced power consumption. Design tradeoffs and example applications are presented.
Smith, Stewart Gresty. "Serial-data computation in VLSI." Thesis, University of Edinburgh, 1987. http://hdl.handle.net/1842/11922.
Повний текст джерелаCrook, Alex, and Gregory Kissinger. "Using COTS Graphics Processing Units in Signal Analysis Workstations." International Foundation for Telemetering, 2011. http://hdl.handle.net/10150/595798.
Повний текст джерелаCommercial off-the-shelf (COTS) graphics processing units (GPU) perform the signal processing operations needed for video games and similar consumer applications. The high volume and competitive nature of that industry have produced inexpensive GPUs with impressive amounts of signal processing power. These devices use parallel processing architectures to execute DSP algorithms far faster than single, or even multi-core central processing units typically found in workstations. This paper describes a project which improves the performance of a radar telemetry application using the NVidia™ brand GPU and CUDA™ software, although the results could be extended to other devices.
Gomes, Ricardo Rafael Baptista. "Long-term biosignals visualization and processing." Master's thesis, Faculdade de Ciências e Tecnologia, 2011. http://hdl.handle.net/10362/7979.
Повний текст джерелаLong-term biosignals acquisitions are an important source of information about the patients’state and its evolution. However, long-term biosignals monitoring involves managing extremely large datasets, which makes signal visualization and processing a complex task. To overcome these problems, a new data structure to manage long-term biosignals was developed. Based on this new data structure, dedicated tools for long-term biosignals visualization and processing were implemented. A multilevel visualization tool for any type of biosignals, based on subsampling is presented, focused on four representative signal parameters (mean, maximum, minimum and standard deviation error). The visualization tool enables an overview of the entire signal and a more detailed visualization in specific parts which we want to highlight, allowing an user friendly interaction that leads to an easier signal exploring. The ”map” and ”reduce” concept is also exposed for long-term biosignal processing. A processing tool (ECG peak detection) was adapted for long-term biosignals. In order to test the developed algorithm, long-term biosignals acquisitions (approximately 8 hours each) were carried out. The visualization tool has proven to be faster than the standard methods, allowing a fast navigation over the different visualization levels of biosignals. Regarding the developed processing algorithm, it detected the peaks of long-term ECG signals with fewer time consuming than the nonparalell processing algorithm. The non-specific characteristics of the new data structure, visualization tool and the speed improvement in signal processing introduced by these algorithms makes them powerful tools for long-term biosignals visualization and processing.
Noh, Seongmin, and Hoyoung Yoo. "IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING WITH HIGH DATA RATE SENSORS FOR DATA COMPRESSION." International Foundation for Telemetering, 2017. http://hdl.handle.net/10150/626959.
Повний текст джерелаGoldschneider, Jill R. "Lossy compression of scientific data via wavelets and vector quantization /." Thesis, Connect to this title online; UW restricted, 1997. http://hdl.handle.net/1773/5881.
Повний текст джерелаKoriziz, Hariton. "Signal processing methods for the modelling and prediction of financial data." Thesis, Imperial College London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.504921.
Повний текст джерелаFrogner, Gary Russell. "Monitoring of global acoustic transmissions : signal processing and preliminary data analysis." Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/28379.
Повний текст джерелаLandström, Anders. "Adaptive tensor-based morphological filtering and analysis of 3D profile data." Licentiate thesis, Luleå tekniska universitet, Signaler och system, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26510.
Повний текст джерелаGodkänd; 2012; 20121017 (andlan); LICENTIATSEMINARIUM Ämne: Signalbehandling/Signal Processing Examinator: Universitetslektor Matthew Thurley, Institutionen för system- och rymdteknik, Luleå tekniska universitet Diskutant: Associate Professor Cris Luengo, Centre for Image Analysis, Uppsala Tid: Onsdag den 21 november 2012 kl 12.30 Plats: A1545, Luleå tekniska universitet
Nedstrand, Paul, and Razmus Lindgren. "Test Data Post-Processing and Analysis of Link Adaptation." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-121589.
Повний текст джерелаPentaris, Fragkiskos. "Digital signal processing for structural health monitoring of buildings." Thesis, Brunel University, 2014. http://bura.brunel.ac.uk/handle/2438/10560.
Повний текст джерелаAppelgren, Filip, and Måns Ekelund. "Performance Evaluation of a Signal Processing Algorithm with General-Purpose Computing on a Graphics Processing Unit." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-253816.
Повний текст джерелаGPUer (grafikprocessor) som traditionellt används för att rita grafik i datorer, används mer och mer till att utföra vanliga programmeringsuppgifter. Detta är för att de har en stor beräkningskraft, som kan ge dem ett övertag över vanliga CPUer (processor) i vissa uppgifter. Det här arbetet undersöker därför prestandaskillnaderna mellan en CPU och en GPU i en korrelations-algoritm samt vilka parametrar som har störst påverkan på prestanda. En kvantitativ metod har använts med hjälp av ett klock-bibliotek, som finns tillgängligt i C++, för att utföra tidtagning. Initial problemstorlek var satt till 28 och ökade sedan exponentiellt till 221. Resultaten visar att algoritmen är snabbare på en CPU vid mindre problemstorlekar. Däremot börjar GPUn prestera bättre än CPUn mellan problemstorlekar av 29 och 210. Det blev tydligt att GPUer tjänar på större problem, framför allt för att det tar mycket tid att involvera GPUn i algoritmen. Datäoverföringar och minnesallokering på GPUn tar tid, vilket blir tydligt vid små storlekar. Algoritmen passar sig inte heller speciellt bra för en parallell lösning, eftersom den innehåller mycket logik. En algoritm med design där exekveringstrådarna kan gå isär under exekvering, är helst att undvika eftersom mycket parallell prestanda tappas. Att minimera logik, datäoverföringar samt minnesallokeringar är viktiga delar för hög GPU-prestanda.
R, S. Umesh. "Algorithms for processing polarization-rich optical imaging data." Thesis, Indian Institute of Science, 2004. http://hdl.handle.net/2005/96.
Повний текст джерелаHoya, Tetsuya. "Graph theoretic methods for data partitioning." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286542.
Повний текст джерелаLanciani, Christopher A. "Compressed-domain processing of MPEG audio signals." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/13760.
Повний текст джерела