Добірка наукової літератури з теми "Shot-noise processes"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Shot-noise processes".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Shot-noise processes"
Møller, Jesper. "Shot noise Cox processes." Advances in Applied Probability 35, no. 03 (September 2003): 614–40. http://dx.doi.org/10.1017/s0001867800012465.
Повний текст джерелаMøller, Jesper. "Shot noise Cox processes." Advances in Applied Probability 35, no. 3 (September 2003): 614–40. http://dx.doi.org/10.1239/aap/1059486821.
Повний текст джерелаMøller, Jesper, and Giovanni Luca Torrisi. "Generalised shot noise Cox processes." Advances in Applied Probability 37, no. 01 (March 2005): 48–74. http://dx.doi.org/10.1017/s0001867800000033.
Повний текст джерелаMøller, Jesper, and Giovanni Luca Torrisi. "Generalised shot noise Cox processes." Advances in Applied Probability 37, no. 1 (March 2005): 48–74. http://dx.doi.org/10.1239/aap/1113402399.
Повний текст джерелаHsing, Tailen, and J. L. Teugels. "Extremal properties of shot noise processes." Advances in Applied Probability 21, no. 03 (September 1989): 513–25. http://dx.doi.org/10.1017/s0001867800018784.
Повний текст джерелаVerovkin, G. K., and A. V. Marynych. "Stationary limits of shot noise processes." Theory of Probability and Mathematical Statistics 101 (January 5, 2021): 67–83. http://dx.doi.org/10.1090/tpms/1112.
Повний текст джерелаHsing, Tailen, and J. L. Teugels. "Extremal properties of shot noise processes." Advances in Applied Probability 21, no. 3 (September 1989): 513–25. http://dx.doi.org/10.2307/1427633.
Повний текст джерелаBiermé, Hermine, and Agnès Desolneux. "Crossings of smooth shot noise processes." Annals of Applied Probability 22, no. 6 (December 2012): 2240–81. http://dx.doi.org/10.1214/11-aap807.
Повний текст джерелаMiyoshi, Naoto. "CORRECTION TO “A NOTE ON BOUNDS AND MONOTONICITY OF SPATIAL STATIONARY COX SHOT NOISES”." Probability in the Engineering and Informational Sciences 19, no. 3 (June 22, 2005): 405–7. http://dx.doi.org/10.1017/s0269964805050242.
Повний текст джерелаIksanov, Alexander, and Bohdan Rashytov. "A functional limit theorem for general shot noise processes." Journal of Applied Probability 57, no. 1 (March 2020): 280–94. http://dx.doi.org/10.1017/jpr.2019.95.
Повний текст джерелаДисертації з теми "Shot-noise processes"
DeMino, Kenneth William. "Shot noise approach to stochastic resonance." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/27968.
Повний текст джерелаIlhe, Paul. "Estimation statistique des éléments d'un processus shot-noise." Electronic Thesis or Diss., Paris, ENST, 2016. http://www.theses.fr/2016ENST0052.
Повний текст джерелаIn the context of gamma-spectroscopy, this thesis introduces new nonparametric estimators of the intensity and the mark’s density of a shot-noise process based on a finite sample of low-frequency observations of this stochastic process. The methods developed exploit a nonlinear functional equation linking the characteristic function of the marginal law of the shot-noise with the mark’s density function. They are particularly time-efficient and perform well even for processes with high intensity. The performances of the methods are quantitatively studied and illustrations are provided both on simulated datasets and real datasets stemming from the CEA. In particular, our methods corrects the multiple peak artefacts that arises with classical techniques
Hutton, Jane Louise. "Non-negative time series and shot noise processes as models for dry rivers." Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38044.
Повний текст джерелаLaunay, Claire. "Discrete determinantal point processes and their application to image processing." Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7034.
Повний текст джерелаDeterminantal point processes (DPPs in short) are probabilistic models that capture negative correlations or repulsion within a set of elements. They tend to generate diverse or distant subsets of elements. This notion of similarity or proximity between elements is defined and stored in the kernel associated with each DPP. This thesis studies these models in a discrete framework, defined on a discrete and finite set of elements. We are interested in their application to image processing, when the initial set of points corresponds to the pixels or the patches of an image. Chapter 1 and 2 introduce determinantal point processes in a general discrete framework, their main properties and the algorithms usually used to sample them, i.e. used to select a subset of points distributed according to the chosen DPP. In this framework, the kernel of a DPP is a matrix. The main algorithm is a spectral algorithm based on the computation of the eigenvalues and the eigenvectors of the DPP kernel. In Chapter 2, we present a sampling algorithm based on a thinning procedure and a Cholesky decomposition but which does not require the spectral decomposition of the kernel. This algorithm is exact and, under certain conditions, competitive with the spectral algorithm. Chapter 3 studies DPPs defined over all the pixels of an image, called Determinantal Pixel Processes (DPixPs). This new framework imposes periodicity and stationarity assumptions that have consequences on the kernel of the process and on properties of the repulsion generated by this kernel. We study this model applied to Gaussian textures synthesis, using shot noise models. In this chapter, we are also interested in the estimation of the DPixP kernel from one or several samples. Chapter 4 explores DPPs defined on the set of patches of an image, that is the family of small square images contained in the image. The aim is to select a proportion of these patches, diverse enough to be representative of the information contained in the image. Such a selection can speed up certain patch-based image processing algorithms, or even improve the quality of existing algorithms that require patch subsampling. We present an application of this question to a texture synthesis algorithm
Rusudan, Kevkhishvili. "A Study of Approximations and Transformations of Markov Processes and their Applications to Credit Risk Analysis." Kyoto University, 2019. http://hdl.handle.net/2433/242462.
Повний текст джерелаFerreira, Brigham Marco Paulo. "Nonstationary Stochastic Dynamics of Neuronal Membranes." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066111/document.
Повний текст джерелаNeurons interact through their membrane potential that generally has a complex time evolution due to numerous irregular synaptic inputs received. This complex time evolution is best described in probabilistic terms due to this irregular or "noisy" activity. The time evolution of the membrane potential is therefore both stochastic and deterministic: it is stochastic since it is driven by random input arrival times, but also deterministic, since subjecting a biological neuron to the same sequence of input arrival times often results in very similar membrane potential traces. In this thesis, we investigated key statistical properties of a simplified neuron model under nonstationary input from other neurons that results in nonstationary evolution of membrane potential statistics. We considered a passive neuron model without spiking mechanism that is driven by input currents or conductances in the form of shot noise processes. Under such input, membrane potential fluctuations can be modeled as filtered shot noise currents or conductances. We analyzed the statistical properties of these filtered processes in the framework of Poisson Point Processes transformations. The key idea is to express filtered shot noise as a transformation of random input arrival times and to apply the properties of these transformations to derive its nonstationary statistics. Using this formalism we derive exact analytical expressions, and useful approximations, for the mean and joint cumulants of the filtered process in the general case of variable input rate. This work opens many perspectives for analyzing neurons under in vivo conditions, in the presence of intense and noisy synaptic inputs
Constant, Camille. "Modélisation stochastique et analyse statistique de la pulsatilité en neuroendocrinologie." Thesis, Poitiers, 2019. http://www.theses.fr/2019POIT2330.
Повний текст джерелаThe aim of this thesis is to propose several models representing neuronal calcic activity and unsderstand its applicatition in the secretion of GnRH hormone. This work relies on experience realised in INRA Centre Val de Loire. Chapter 1 proposes a continuous model, in which we examine a Markov process of shot-noise type. Chapter 2 studies a discrete model type AR(1), based on a discretization of the model from Chapter 1 and proposes a first estimation of the parameters. Chapter 3 proposes another dicrete model, type AR(1), in which the innovations are the sum of a Bernouilli variable and a Gaussian variable representing a noise, and taking into account a linear drift . Estimations of the parameters are given in order to detect spikes in neuronal paths. Chapter 4 studies a biological experience involving 33 neurons. With the modelisation of Chapter 3, we detect synchronization instants (simultaneous spkike of a high proportion of neurons of the experience) and then, using simulations, we test the quality of the method that we used and we compare it to an experimental approach
Marouby, Matthieu. "Trois études de processus fractionnaires." Toulouse 3, 2010. http://thesesups.ups-tlse.fr/946/.
Повний текст джерелаThe first part is devoted to the simulation of the Local Time Fractional Stable Motion (LTFSM). This process, which was introduced in 2006 by Cohen and Samorodnitsky, is defined as the integration of the local time of a fractional Brownian motion with respect to a random stable measure, the randomness of both objects being defined on two independent probability spaces. Using a series representation method to simulate it, I obtain a control of the approximation. In the second part, I study processes obtained as limits of sums of micropulses, specifically focusing on behavior when "ups" and "downs" of the micropulses are not equal. Then, I generalize the processes obtained to processes with multidimensional indices. Processes obtained in this work vary from standard Brownian motions to multifractional Brownian sheets. Finally, I study a model from physic theory, a field created by charged particles randomly distributed in a hyperplan. The limit process is fractional, centered, Gaussian and in some cases well-known like fractional Brownian motion. Eventually, I study some of its characteristics, such as the number of local minima. This part raises many questions that have yet to be resolved
Xiao, Yuanhui. "Shot noise processes." 2003. http://purl.galileo.usg.edu/uga%5Fetd/xiao%5Fyuanhui%5F200308%5Fphd.
Повний текст джерелаDirected by Robert Lund. Includes articles submitted to Statistical inference in stochastic processes, and Stochastic processes and their applications. Includes bibliographical references.
Kučera, Petr. "Momentové metody odhadu parametrů časoprostorových shlukových bodových procesů." Master's thesis, 2019. http://www.nusl.cz/ntk/nusl-397743.
Повний текст джерелаЧастини книг з теми "Shot-noise processes"
Schmidt, Thorsten. "Shot-Noise Processes in Finance." In From Statistics to Mathematical Finance, 367–85. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50986-0_18.
Повний текст джерелаLevy, Bernard C. "Poisson Process and Shot Noise." In Random Processes with Applications to Circuits and Communications, 235–58. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22297-0_7.
Повний текст джерелаJedidi, Wissem, Jalel Almhana, Vartan Choulakian, and Robert McGorman. "General Shot Noise Processes and Functional Convergence to Stable Processes." In Stochastic Differential Equations and Processes, 151–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22368-6_3.
Повний текст джерелаGiraitis, L., and D. Surgailis. "On shot noise processes attracted to fractional Lévy motion." In Stable Processes and Related Topics, 261–73. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4684-6778-9_12.
Повний текст джерелаMcCormick, W. P., and Lynne Seymour. "Extreme Values for a Class of Shot-Noise Processes." In Institute of Mathematical Statistics Lecture Notes - Monograph Series, 33–46. Beachwood, OH: Institute of Mathematical Statistics, 2001. http://dx.doi.org/10.1214/lnms/1215090682.
Повний текст джерелаLax, Melvin, Wei Cai, and Min Xu. "Shot noise." In Random Processes in Physics and Finance, 93–112. Oxford University Press, 2006. http://dx.doi.org/10.1093/acprof:oso/9780198567769.003.0006.
Повний текст джерела"Fractal Shot Noise." In Fractal-Based Point Processes, 185–99. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471754722.ch9.
Повний текст джерела"Poisson Processes and Shot Noise." In Introduction to Random Signals and Noise, 193–210. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470024135.ch8.
Повний текст джерела"Fractal-Shot-Noise-Driven Point Processes." In Fractal-Based Point Processes, 201–24. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471754722.ch10.
Повний текст джерела"Shot noise processes and their properties." In Translations of Mathematical Monographs, 145–66. Providence, Rhode Island: American Mathematical Society, 2000. http://dx.doi.org/10.1090/mmono/188/05.
Повний текст джерелаТези доповідей конференцій з теми "Shot-noise processes"
Klapwijk, Teun M. "Higher-order tunneling processes and enhanced shot noise in superconducting tunnel devices." In SPIE's First International Symposium on Fluctuations and Noise, edited by Michael B. Weissman, Nathan E. Israeloff, and A. Shulim Kogan. SPIE, 2003. http://dx.doi.org/10.1117/12.496957.
Повний текст джерелаArendt, Paul D., Wei Chen, and Daniel W. Apley. "Objective–Oriented Sequential Sampling for Simulation Based Robust Design Considering Multiple Sources of Uncertainty." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70639.
Повний текст джерелаIlhe, Paul, Francois Roueff, Eric Moulines, and Antoine Souloumiac. "Nonparametric estimation of a shot-noise process." In 2016 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2016. http://dx.doi.org/10.1109/ssp.2016.7551709.
Повний текст джерелаWang, Yejun, Tyler Paschal, and Waruna D. Kulatilaka. "Combustion Characterization of a Fuel-Flexible Piloted Liquid-Spray Flame Apparatus Using Advanced Laser Diagnostics." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91971.
Повний текст джерелаJenkins, Nicholas, Michael Tanksalvala, Yuka Esashi, Henry C. Kapteyn, and Margaret M. Murnane. "Towards shot-noise-limited EUV reflectometry: in a tabletop coherent EUV microscope." In Metrology, Inspection, and Process Control XXXVI, edited by John C. Robinson and Matthew J. Sendelbach. SPIE, 2022. http://dx.doi.org/10.1117/12.2612098.
Повний текст джерелаKruidhof, Rik, Bastiaan Florijn, Wouter D. Koek, Stefan M. Bäumer, and Hamed Sadeghian. "Shot-noise limited throughput of soft x-ray ptychography for nanometrology applications." In Metrology, Inspection, and Process Control for Microlithography XXXII, edited by Ofer Adan and Vladimir A. Ukraintsev. SPIE, 2018. http://dx.doi.org/10.1117/12.2306488.
Повний текст джерелаKim, Jong U., and Laszlo B. Kish. "Error rate in current-controlled logic processors with shot noise." In Second International Symposium on Fluctuations and Noise, edited by Janusz M. Smulko, Yaroslav Blanter, Mark I. Dykman, and Laszlo B. Kish. SPIE, 2004. http://dx.doi.org/10.1117/12.564330.
Повний текст джерелаHoward, R. M. "On the zero crossings of a generalized shot noise process." In 2011 21st International Conference on Noise and Fluctuations (ICNF). IEEE, 2011. http://dx.doi.org/10.1109/icnf.2011.5994290.
Повний текст джерелаLorusso, Gian F., Rispens Gijsbert, Vito Rutigliani, Frieda Van Roey, Andreas Frommhold, and Guido Schiffelers. "Roughness decomposition: an on-wafer methodology to discriminate mask, metrology, and shot noise contributions." In Metrology, Inspection, and Process Control for Microlithography XXXIII, edited by Ofer Adan and Vladimir A. Ukraintsev. SPIE, 2019. http://dx.doi.org/10.1117/12.2515175.
Повний текст джерелаHan, Yoonseon, Taeyeol Jeong, Jae-Hyoung Yoo, and James Won-Ki Hong. "FLAME: Flow level traffic matrix estimation using poisson shot-noise process for SDN." In 2016 IEEE NetSoft Conference and Workshops (NetSoft). IEEE, 2016. http://dx.doi.org/10.1109/netsoft.2016.7502453.
Повний текст джерелаЗвіти організацій з теми "Shot-noise processes"
Singpurwalla, Nozer D., and Mark A. Youngren. Multivariate Life Distributions Induced by Shot-Noise Process Environments,. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada293913.
Повний текст джерелаHsing, Tailen. On the Intensity of Crossings by a Shot Noise Process. Fort Belvoir, VA: Defense Technical Information Center, July 1986. http://dx.doi.org/10.21236/ada177077.
Повний текст джерела