Добірка наукової літератури з теми "Shipboard cables"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Shipboard cables".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Shipboard cables"
Dolgolenko, V. T., Yu G. Ermolin, and S. M. Piskunov. "MODERN SHIPBOARD CABLES." Kabeli i provoda, no. 4 (2021): 25–31. http://dx.doi.org/10.52350/2072215x_2021_4_25.
Повний текст джерелаChoi, Jin-Kyu, Eiichiro Araki, and Katsuyoshi Kawaguchi. "Cable Laying Using an ROV." Marine Technology Society Journal 54, no. 5 (September 1, 2020): 84–90. http://dx.doi.org/10.4031/mtsj.54.5.12.
Повний текст джерелаGriffiths, Richard W., and Herbert I. Chatterton. "Continuously Distributed Fiber Optic Monitoring System for Shipboard Applications." Marine Technology and SNAME News 25, no. 03 (July 1, 1988): 209–19. http://dx.doi.org/10.5957/mt1.1988.25.3.209.
Повний текст джерелаSwartz, Marshall, Daniel J. Torres, Steve Liberatore, and Robert Millard. "WHOI SDSL Data-Link Project—Ethernet Telemetry through Sea Cables." Journal of Atmospheric and Oceanic Technology 34, no. 2 (February 2017): 269–75. http://dx.doi.org/10.1175/jtech-d-11-00196.1.
Повний текст джерелаWARD, THOMAS A., and JOHN I. YKEMA. "Fire Protective Coating System for Shipboard Electrical Cables." Naval Engineers Journal 102, no. 3 (May 1990): 154–61. http://dx.doi.org/10.1111/j.1559-3584.1990.tb02641.x.
Повний текст джерелаWARD, THOMAS A., and JOHN I. YKEMA. "Fire Protective Coating System for Shipboard Electrical Cables." Naval Engineers Journal 102, no. 6 (December 1990): 63. http://dx.doi.org/10.1111/j.1559-3584.1990.tb01755.x.
Повний текст джерелаBudianto, Firman, Adi Kurniawan, Indra R. Kusuma, Akhmad R. Kurniawan, and Ahlur R. N. Gumilang. "Comparison of voltage harmonics in AC and DC shipboard electrical power distribution systems: A case study of 17,500 DWT tanker vessel." IOP Conference Series: Earth and Environmental Science 972, no. 1 (January 1, 2022): 012071. http://dx.doi.org/10.1088/1755-1315/972/1/012071.
Повний текст джерелаBoev, Mikhail A., Nikita E. Molchanov, and Artem A. Kosilov. "Studying the Longitudinal Sealing of Shipboard Cables by Means of Waterproofing Materials." Vestnik MEI 2, no. 2 (2018): 53–58. http://dx.doi.org/10.24160/1993-6982-2018-2-53-58.
Повний текст джерелаTsitsikyan, G. N., M. Yu Antipov, and A. I. Senchenko. "Estimation of electrodynamic powers affecting shipboard power cables laid along lengthy metal structures." Shipbuilding, no. 3 (2021): 54–56. http://dx.doi.org/10.54068/00394580_2021_3_54.
Повний текст джерелаAkhrestin, Mikhail A., Alexander A. Vorshevsky, and Petr A. Vorshevsky. "DETERMINATION OF SHIPBOARD CABLES PARAMETERS FOR CALCULATING THE PULSE NOISE PROPAGATION AND CALCULATION ACCURACY ESTIMATION." Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 11, no. 3 (June 28, 2019): 582–91. http://dx.doi.org/10.21821/2309-5180-2019-11-3-582-591.
Повний текст джерелаДисертації з теми "Shipboard cables"
Akinnikawe, Ayorinde. "Investigation of broadband over power line channel capacity of shipboard power system cables for ship communications networks." Thesis, [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-3155.
Повний текст джерелаKhantsis, Sergey, and s3007192@student rmit edu au. "Control System Design Using Evolutionary Algorithms for Autonomous Shipboard Recovery of Unmanned Aerial Vehicles." RMIT University. Aerospace, Mechanical and Manufacturing Engineering, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20070518.135536.
Повний текст джерелаМірчук, Ігор Анатолійович. "Підвищення експлуатаційних характеристик суднових кабелів за рахунок технологічних режимів охолодження та радіаційного опромінення електричної ізоляції". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2020. http://repository.kpi.kharkov.ua/handle/KhPI-Press/49276.
Повний текст джерелаPh.D. thesis undertaken in research specialization 141 "Electric Power Engineering, Electrical Engineering and Electric Mechanics" (14 – Electrical Engineering). – National Technical University "Kharkiv Polytechnic Institute", Ministry of Education and Science of Ukraine, Kharkiv, 2020. The dissertation is devoted to increasing of the operational properties of shipboard cables due to the technological modes of cooling and electron beam irradiation of insulation and sheath based on modern flame retardant halogen-free polymeric compounds, which provide the necessary complex of electrical, physical and mechanical properties with appropriate control of technological processes. To achieve this, the following tasks were set: – to prove the expediency of gradual cooling of polyethylene insulation of high-voltage power cables to ensure both operational parameters and stability of properties during operation; – to substantiate the application of the method of electro-thermal analogy for the construction of a mathematical model of cooling of insulated conductor taking into account the temperature distribution over the thickness of insulation in a non-constant thermal mode; – to develop a method of calculating the technological parameters of the cooling mode of power cable, based on the calculation of a nonlinear thermal equivalent circuit of insulated conductor in a non-constant thermal mode, taking into account dependence the thermal resistance and heat capacity of the insulation from the temperature by methods of discrete resistive equivalent circuits; – to determine the influence of technological cooling modes on the temperature distribution in the thickness of extruded in sulation and to justify the duration of the transition process, which corresponds to achievement of the same temperature over the entire thickness of power cables insulation various design at different time points, depending on the cooling water temperature; – to verify experimentally the efficiency of detecting technological defects in the design of the power shipboard cable by partial discharges values; – to create a methodology for optimizing the power shipboard cable with coaxial construction to ensure maximum heat flow power dissipation into the environment, which causes an increase in current load, if insulation thermal resistance provided; – to prove the efficiency of the use a protective polymer sheath with high thermal conductive properties to increase the current load of power shipboard cables; – to determine the effect of accelerated electron beam energy on the mechanical and electrical properties of shipboard cables and determine the irradiation coefficient range for insulation which provides an increase of operational characteristics, on the basis of correlation between the electrical and mechanical properties of filled with flame retardants halogen-free compound based on ethylene-vinyl acetate modified by electron beam; – to verify the efficiency of absorbed dose distribution along the perimeter and length of shipboard cables after irradiation according to obtained results of mechanical and thermal tests of polymeric halogen-free flame retardant protective sheath of cable; – to determine the thermal stability of the halogen-free flame-retardant polymeric protective sheath modified by irradiating, on basis of accelerated thermal aging, to predict the service life of shipboard cables and to substantiate the possibility of operation in conditions with high humidity and high operating temperatures for unscreened cable with unscreened twisted pairs and thermoplastic insulation and protective sheath. Object of research – technological modes of cooling and irradiation of electrical insulation of shipboard cables, based on halogen-free filled with flame retardants polyolefin compound. Subject of research – electrical, mechanical and thermal operational properties of the shipboard cables polymer insulation and sheath based on filled with flame retardants halogen-free compounds. Research methods. Theoretical and experimental studies are based on the use of methods of numerical and physical modeling of technological modes of cooling and electron beam irradiation of polymeric electrical insulation and protective sheath of shipboard cables. Methods of theory of non-stationary thermal conductivity to calculation of cooling mode of polymeric cable insulation. Differential equations of thermal conductivity and electrical conductivity. The method of electro-thermal analogies to determine the temperature distribution in the thickness of insulation at different time points, depending on the temperature of cooling water for shipboard power cable. Nonlinear thermal and electrical equivalent circuits of insulated conductor in transient thermal mode. Implicit Euler method and nodal potentials method for obtaining temperature distribution in thickness of cable insulation. A method of optimizing the design of the power cable provided cooling during operation to increase the current load. Thermal balance equation to determining the thermal resistance of insulation during operation. Irradiation crosslinking theory to determine the optimal irradiation dose of polymeric insulation. The theory of thermal aging of insulation to predict the service life of shipboard cables. Approximation of experimental electrical, mechanical and thermal properties of modified by irradiation insulation of shipboard cables. Correlation and regression analysis of electrical, mechanical and thermal properties after modification by irradiation of polymeric insulation and protective sheath of shipboard cables. Partial discharge detection technique in high voltage solid polymeric insulation for defect detection on technological stage of production power shipboard cable. The following scientific results are obtained in the work. The dissertation solves the scientific and practical problem of increasing the operational properties of shipboard cables due to the technological modes of cooling and irradiation of electrical insulation based on modern halogen-free flame retardant polymeric compounds. The mathematical model of technological process of cooling insulated conductor in unsteady thermal mode, by taking into account dependence of thermal and physical characteristics of polymeric insulation from the temperature, for determine the temperature distribution throughout the thickness of polyethylene insulation at different time points depending on water temperature under gradual cooling, has been improved. Mathematical model allows to determine the conditions for ensuring stable characteristics of the shipboard power cable during operation. The criterion for determination of technological parameters of the cooling mode of power shipboard cables, which is the time of the transitional process of cooling the insulated conductor to achieve an equal temperature throughout the thickness of the polymeric insulation, is proposed. The optimum thickness of the polymeric protective sheath on condition of long-term thermal stability of irradiated cross-linked based on polyolefin insulation has been established. It provides a 30 % increase current load of the coaxial design shipboard power cable. The range of irradiation coefficient for halogen free flame retardant insulation of shipboard cables when guarantees increasing electrical resistance of polymeric insulation modified by electron beam more than twice, the breakdown direct current voltage 1,3 times relative to the non-irradiated condition, is determined. The correlation between mechanical and electrical properties of halogen-free based on polyolefin insulation modified by electron beam, depending on the linear velocity of the cable under the electron beam and constant value of electron beam current. The distribution of the absorbed dose along the perimeter and length of the halogen-free flame retardant polymeric protective sheath depending on the technological parameters of the irradiation modes of shipboard cables, is established and allows to determine the irradiation dose for cables, when protective sheath provides increasing the resistance to aggressive chemicals while high physical and mechanical properties is still available. The stability of the cables structure to high temperature and humidity is experimentally proved on the basis of accelerated aging of unscreened cable with unscreened twisted pairs, with thermoplastic polyethylene insulation and protective polyvinylchloride sheath with adequate aging during operation. It allows predicting the service life of shipboard cables depending on the operating temperature. A technique for calculating the technological parameters of the power cable cooling mode by the methods of discrete resistive equivalent circuits has been developed. A technique based on the calculation of a nonlinear thermal scheme of substitution of conductor with polyethylene insulation in a non-constant thermal mode, taking into account the dependence of thermal resistance and heat capacity from the temperature. The proposed methodology and algorithms can be applied to determine the technological modes of cooling cable polymeric insulation without using expensive full-scale experiments, especially important for the new compounds development and cable constructions, as well as modernization available at cable factories equipment for cooling power cable, data cable with twisted pairs, radio frequency and optical cables. The efficiency of determining partial discharges in high-voltage solid insulation has been proved to detect defects at the technological stage of the producing of power shipboard cables, as well as to adjust the technological process of cooling. The methodology for heat transfer in a coaxial design single-core power cable based on criterial equations of natural convection has been developed to optimize the design of the power shipboard cable to ensure the maximum linear density of heat flow dissipated from the cable surface. The efficiency of application of polymeric materials based on micro- and nanocomposites with high thermal conductivity for sheath of high-voltage shipboard cables, providing a 30 % increase in thermal dissipating of power cable, is shown. It is established the energy of accelerated electrons 0.5 MeV provides a higher degree of crosslinking of polymeric halogen-free insulation based on filled with flame retardants compound compared to the energy of 0.4 MeV at the same irradiation coefficient, electron beam current and the number of wire passages under electron beam. It is established an increase of tensile strength, electrical insulation resistance and breakdown DC voltage of crosslinked polymeric halogen-free insulation with irradiation coefficient 5-7 m/(mА∙min) with constant value of elongation at break not less than 120 % which ensure a compromise between rigidity and flexibility of the shipboard cable. It is established an increase in 1,5–2 times the time of reaching the critical parameter – elongation at break of the modified by electron beam polymeric sheath based on a halogen-free compound compared to the same thermop lastic non-modifying sheath. It is an increase service life of the shipboard control cable at maximum operational temperatures in 1,5–2 times. The materials of the dissertation are used at the educational process Department of Electrical Insulating and Cable Technique of National Technical University "Kharkiv Polytechnic Institute" at education bachelors and masters in disciplines of specialty "141 – Electric Power Engineering, Electrical Engineering and Electric Mechanics" (specialization "141.04 Electrical Isolating, Cable and Fiber-Optic Technique"), at "Azov Cable Company" (Berdians'k) at development and determination of optimal technological parameters of production modes of halogen-free, flame retardant shipboard cables, Association "Ukrelectrocable", in PJSC "Yuzhkable Works". Dissertation work was performed at the PJSC "Ukrainian Scientific and Research Institute of Cable Industry" (Berdians'k) and Department of Electrical Insulating and Cable Technique of National Technical University "Kharkiv Polytechnic Institute" (Kharkiv) according to research programs of PJSC "Ukrainian Scientific and Research Institute of Cable Industry" (PM EIUV.505.564–2018 "The research of thermal stability of the sheath cable SPOVEng-FRHF 12x2,5 before and after exposure under electron beam", PM EIUV.505.584–2019 "Determination of the quantity and distribution of the absorbed dose after irradiation of the sheath of shipboard flame retardant cables") wherein the applicant was one of the program developers and executor of individual sections.
Книги з теми "Shipboard cables"
Institute of Electrical and Electronics Engineers., IEEE Industry Applications Society. Petroleum and Chemical Industry Committee., IEEE Standards Association, and IEEE Standards Board, eds. IEEE recommended practice for marine cable for use on shipboard and fixed or floating platforms. New York: Institute of Electrical and Electronics Engineers, 2001.
Знайти повний текст джерелаAuerbach, Jeffrey A. Voyages. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198827375.003.0002.
Повний текст джерелаЧастини книг з теми "Shipboard cables"
Blanchet, A., G. Chatel, and A. Paradis. "Study of Structure-Borne Noise Transmission Inside Cabins by Sound-Intensity Measurements." In Shipboard Acoustics, 377–91. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3515-0_24.
Повний текст джерелаNilsson, A. C. "Discussion on the paper given by: Mrs. A. Blanchet, Mr. G. Chatel and Mr. A. Paradis: Study of Structure-Borne Noise Transmission Inside Cabins by Sound- Intensity Measurements." In Shipboard Acoustics, 563. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3515-0_54.
Повний текст джерела"Power Cable." In Shipboard Electrical Power Systems, 163–88. CRC Press, 2011. http://dx.doi.org/10.1201/b11359-8.
Повний текст джерела"Shipboard Cable Application and Verification." In Shipboard Power Systems Design and Verification Fundamentals, 185–215. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119084136.ch8.
Повний текст джерела"Marine Electrical Cable (SWBS 304)." In Handbook to IEEE Standard 45TM: A Guide to Electrical Installations on Shipboard, 225–47. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118098844.ch18.
Повний текст джерела"Appendix L: IEEE Cable Manufacturing Requirements Comparison." In Handbook to IEEE Standard 45TM: A Guide to Electrical Installations on Shipboard, 361–62. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118098844.app12.
Повний текст джерелаТези доповідей конференцій з теми "Shipboard cables"
Worshevsky, A., T. K. Pham, and M. D. Nguyen. "Propagation of Pulse Noise in Shipboard Electical Cables with Nonuniform Parameters." In 2006 4th Asia-Pacific Conference on Environmental Electromagnetics. IEEE, 2006. http://dx.doi.org/10.1109/ceem.2006.258053.
Повний текст джерелаKim, Jin-Geun, M. Amin Salmani, Lukas Graber, Chul H. Kim, and Sastry V. Pamidi. "Electrical characteristics and transient analysis of HTS DC power cables for shipboard application." In 2015 IEEE Electric Ship Technologies Symposium (ESTS). IEEE, 2015. http://dx.doi.org/10.1109/ests.2015.7157922.
Повний текст джерелаColavitto, A., A. Vicenzutti, D. Bosich, and G. Sulligoi. "Modeling of Power Cables in Shipboard IPES for assessing High Frequency Disturbances Propagation." In 2019 IEEE Electric Ship Technologies Symposium (ESTS). IEEE, 2019. http://dx.doi.org/10.1109/ests.2019.8847926.
Повний текст джерелаBorges, Thiago Trezza, Michael da Fonseca Pinheiro, and Waldir de Melo Mota Junior. "The influence of offshore and shipboard cables standardization on platform construction guidelines and local market." In 2011 IEEE Petroleum and Chemical Industry Technical Conference (PCIC 2011). IEEE, 2011. http://dx.doi.org/10.1109/pcicon.2011.6085886.
Повний текст джерелаAkinnikawe, Ayorinde, and Karen L. Butler-Purry. "Investigation of broadband over power line channel capacity of shipboard power system cables for ship communication networks." In Energy Society General Meeting (PES). IEEE, 2009. http://dx.doi.org/10.1109/pes.2009.5275639.
Повний текст джерелаWang, Haozheng, Youyi Wang, Gary Wilson, and Shuyong Liu. "Unsynchronized fault location method based on the negative-sequence voltage magnitude for power cables of a simplified shipboard power system." In 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). IEEE, 2018. http://dx.doi.org/10.1109/isgt-asia.2018.8467789.
Повний текст джерелаJovanovic, Velimir, Saeid Ghamaty, and John C. Bass. "Design, Fabrication and Testing of a Novel Energy-Harvesting Thermoelectric Power Supply for Wireless Sensors." In ASME 2006 Power Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/power2006-88150.
Повний текст джерелаYuan, Guo Hui, Brian R. Hunt, Celso Grebogi, Edward Ott, James A. Yorke, and Eric J. Kostelich. "Design and Control of Shipboard Cranes." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-4095.
Повний текст джерелаDoty, Kevin M., and Karen J. Long. "Prediction Of Shipboard Fiber Optic Cable Service Life." In OE/FIBERS '89, edited by Roger A. Greenwell and Dilip K. Paul. SPIE, 1990. http://dx.doi.org/10.1117/12.963246.
Повний текст джерелаIngold, Joseph P. "Fiber Optic Cable Systems For Shipboard Tests And Trials." In OE/FIBERS '89, edited by Norris E. Lewis and Emery L. Moore. SPIE, 1990. http://dx.doi.org/10.1117/12.963206.
Повний текст джерела