Добірка наукової літератури з теми "Sheet-metal Defects"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Sheet-metal Defects".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Sheet-metal Defects"

1

Sheu, Ruey-Kai, Lun-Chi Chen, Mayuresh Sunil Pardeshi, Kai-Chih Pai, and Chia-Yu Chen. "AI Landing for Sheet Metal-Based Drawer Box Defect Detection Using Deep Learning (ALDB-DL)." Processes 9, no. 5 (April 27, 2021): 768. http://dx.doi.org/10.3390/pr9050768.

Повний текст джерела
Анотація:
Sheet metal-based products serve as a major portion of the furniture market and maintain higher quality standards by being competitive. During industrial processes, while converting a sheet metal to an end product, new defects are observed and thus need to be identified carefully. Recent studies have shown scratches, bumps, and pollution/dust are identified, but orange peel defects present overall a new challenge. So our model identifies scratches, bumps, and dust by using computer vision algorithms, whereas orange peel defect detection with deep learning have a better performance. The goal of this paper was to resolve artificial intelligence (AI) as an AI landing challenge faced in identifying various kinds of sheet metal-based product defects by ALDB-DL process automation. Therefore, our system model consists of multiple cameras from two different angles to capture the defects of the sheet metal-based drawer box. The aim of this paper was to solve multiple defects detection as design and implementation of Industrial process integration with AI by Automated Optical Inspection (AOI) for sheet metal-based drawer box defect detection, stated as AI Landing for sheet metal-based Drawer Box defect detection using Deep Learning (ALDB-DL). Therefore, the scope was given as achieving higher accuracy using multi-camera-based image feature extraction using computer vision and deep learning algorithm for defect classification in AOI. We used SHapley Additive exPlanations (SHAP) values for pre-processing, LeNet with a (1 × 1) convolution filter, and a Global Average Pooling (GAP) Convolutional Neural Network (CNN) algorithm to achieve the best results. It has applications for sheet metal-based product industries with improvised quality control for edge and surface detection. The results were competitive as the precision, recall, and area under the curve were 1.00, 0.99, and 0.98, respectively. Successively, the discussion section presents a detailed insight view about the industrial functioning with ALDB-DL experience sharing.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Qin, Lei, Jun Yan Liu, and Bin Jiang. "Simulation and Experimental Research of Sheet Metal Defect Detection Based on Ultrasonic Lock-in Thermography." Advanced Materials Research 602-604 (December 2012): 2283–86. http://dx.doi.org/10.4028/www.scientific.net/amr.602-604.2283.

Повний текст джерела
Анотація:
Sheet metal is used widely, but the defect inside the sheet metal will affect the use security. Ultrasonic lock-in thermography as a nondestructive testing method can be used in defect dectection. This paper, focusing on the Q235 sheet metal, regards the heat conduction process as sound-machine-thermo energy coupling process, establishes the finite element simulation model, and experiments are performed to validate the built simulation model. The result shows ultrasonic lock-in thermography is fit for testing inside defects of sheet metal.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Han, Bao An, Hui Yu Xiang, Zhe Li, and Jia Jun Huang. "Defects Detection of Sheet Metal Parts Based on HALCON and Region Morphology." Applied Mechanics and Materials 365-366 (August 2013): 729–32. http://dx.doi.org/10.4028/www.scientific.net/amm.365-366.729.

Повний текст джерела
Анотація:
In order to realize the manufacturing defects detection of sheet metal parts, a kind of defects detection method of the sheet metal parts based on region morphology has been put forward based on HALCON using the mathematical morphology knowledge: by choosing the proper structuring element and neatly applying dilation, erosion, opening and closing on the defects images, the defect part is extracted. The experiment shows that the effect of this method is good and the calculation and processing speed is fast.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhang, Zhong Ning, and Jian Tian. "The Research of De-Gassing with Silicon Powder Gapping for Remote Laser Welding of Zinc Coated Sheet Metal." Advanced Materials Research 548 (July 2012): 250–53. http://dx.doi.org/10.4028/www.scientific.net/amr.548.250.

Повний текст джерела
Анотація:
There are the four types of defects during remote laser welding of zinc coated sheet metal. The root cause of all these defects is the explosion or ejection of molten weld metal caused by the escape of trapped high pressurized zinc vapor. De-gassing gapping is a method used to solve the defects. We have researched the silicon powder de-gassing gapping method for remote laser welding with coupons of zinc coated sheet metal. The result shows that silicon powder de-gassing gapping method works well.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tian, Jian, and Zhong Ning Zhang. "The De-Gassing Evaluation with Full Penetration for Remote Laser Welding of Zinc Coated Sheet Metal." Advanced Materials Research 496 (March 2012): 272–75. http://dx.doi.org/10.4028/www.scientific.net/amr.496.272.

Повний текст джерела
Анотація:
There are the four types of defects during remote laser welding of zinc coated sheet metal. The root cause of all these defects is the explosion or ejection of molten weld metal caused by the escape of trapped high pressurized zinc vapor. Zinc removal is one of the methods used to solve the defects. We have researched the full penetration zinc removal method for remote laser welding with coupons of zinc coated sheet metal. The result shows that the full penetration zinc removal method works at the cost of high heat input and low welding speed
Стилі APA, Harvard, Vancouver, ISO та ін.
6

SEGAWA, Yuji, Takuya KURIYAMA, Keisuke TAKEDA, Hiroshi HARADA, Yasuo MARUMO, Yasuhiro IMAMURA, Tomohiro NONAKA, and Yutaka SAKATA. "Ultrasonic Reflection Characteristics of Defects in Sheet Metal Forming." Journal of the Japan Society for Technology of Plasticity 63, no. 737 (2022): 79–85. http://dx.doi.org/10.9773/sosei.63.79.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

D'Acquisto, Leonardo, and Livan Fratini. "Shape Defects Measurement in 3D Sheet Metal Stamping Processes." International Journal of Forming Processes 5, no. 2-3-4 (December 30, 2002): 287–98. http://dx.doi.org/10.3166/ijfp.5.287-298.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ramteke, Mr Sunny S. "Experimental Study on Removing Wrinkle Defect." International Journal for Research in Applied Science and Engineering Technology 10, no. 6 (June 30, 2022): 4933–47. http://dx.doi.org/10.22214/ijraset.2022.45138.

Повний текст джерела
Анотація:
Abstract: Manufacturing is the process of turning raw materials or parts into finished goods through the use of tools, human labor, machinery, and chemical processing. In Aerospace industry, the most commonly used manufacturing process is sheet metal forming processes that helps in manufacturing the parts for tons of known and unknown purposes. Sheet metal forming process is done on a press and the parts are formed in between two die. It involves reshaping a metal while it is still in its solid state. Example of sheet metal forming process are bending, stretch forming, deep drawing, etc. But in aerospace industry, their exists some parts which occurs wrinkling defect while forming process, which is because of uncontrolled material flow into the die radius and no holding for the blank during forming , needs to be rectified. It is one of the major defects in sheet metal forming processes. It may become a serious obstacle to implementing the forming process and assembling the parts, and severe wrinkling may leads to break the part
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Guntara, Dicky, and Putri Welda Utami Ritonga. "Perbedaan teknik pencetakan two step dengan spacer coping metal dan polyethylene sheet terhadap cacat permukaan dan akurasi dimensi model kerja gigi tiruan cekatDifference between two step printing techniques with spacer coping metal and polyethylene sheet to surface defects and dimensional accuracy of fixed denture working models." Padjadjaran Journal of Dental Researchers and Students 3, no. 2 (November 9, 2019): 120. http://dx.doi.org/10.24198/pjdrs.v3i2.23798.

Повний текст джерела
Анотація:
Pendahuluan: Pencetakan merupakan hasil dari cetakan gigi dan struktur jaringan pendukung. Untuk mendapatkan hasil cetakan yang baik, maka diperlukan teknik cetakan yang mampu menghasilkan permukaan cetakan yang halus dan akurasi dimensi yang tepat sehingga meningkatkan keberhasilan pembuatan gigi tiruan cekat. Salah satu teknik pencetakan untuk mendapatkan hasil cetakan yang baik adalah teknik two step dengan spacer. Tujuan penelitian ini untuk mengetahui cacat permukaan dan perbedaan nilai akurasi dimensi model kerja gigi tiruan cekat pada pencetakan two–step dengan spacer coping metal 1 mm, coping metal 2 mm, dan polyethylene sheet 0,5 mm. Metode: Sampel pada penelitian ini diperoleh dari pencetakan model induk berdasarkan spesifikasi ANSI/ADA No.19. Sampel tersebut diperlukan untuk melihat cacat permukaan dan perhitungan akurasi. Jumlah sampel yang akan digunakan untuk diberi perlakuan sebanyak 8 sampel setiap kelompok yaitu putty/wash two step unspacer (kelompok A), putty/wash two step spacer coping metal 1 mm (kelompok B), putty/wash two step spacer coping metal 2 mm (kelompok C), putty/wash two step spacer polyethylene sheet 0,5 mm (kelompok D). Hasil: Tidak ada perbedaan yang signifikan pada cacat permukaan cetakan dan ada perbedaan yang signifikan pada akurasi dimensi model kerja gigi tiruan cekat pada hasil pencetakan two step dengan spacer coping metal 1 mm, coping metal 2 mm, dan polyethylene sheet 0,5 mm. Simpulan: Bila dilihat dari cacat permukaan maka hasil pencetakan two step dengan spacer polyethylene sheet 0,5 mm yang paling baik digunakan. Bila dilihat dari akurasi dimensi maka pencetakan two step dengan spacer coping metal 2 mm yang paling baik digunakan.Kata kunci: Pencetakan, two – step, spacer, cacat, akurasi.ABSTRACTIntroduction: Imprint is the result of teeth and supporting tissue structures cast. To get a good impression, we need an imprint technique that can produce a smooth imprint surface and precise dimensional accuracy to increase the success of fixed denture manufacturing. One of the imprint technique to get a good impression is the two-step technique with a spacer. The purpose of this study was to determine surface defects and differences in dimensional accuracy value of fixed denture working models fabricated with two-step impression with 1 mm metal coping spacer, 2 mm metal coping sheet, and 0.5 mm polyethylene sheet. Methods: The sample in this study was obtained from the master model cast based on ANSI / ADA No.19 specifications. These samples were needed for surface defects observation and accuracy calculation. The number of samples that will be used for treatment was 8 samples per group, namely putty / wash two-step unspacer (group A), putty / wash two-step 1 mm metal coping spacer (group B), putty / wash two-step 2 mm metal coping spacer (group C), putty / wash two-step 0.5 mm polyethylene sheet spacer (group D). Results: There was no significant difference in the surface defects, and there were significant differences in dimensional accuracy of fixed denture working models fabricated with two-step imprint technique with 1 mm metal coping spacer, 2 mm metal coping spacer, and 0.5 mm polyethylene sheet. Conclusion: Assessed from the surface defects, two-step imprint technique with 0.5 mm polyethylene sheet is the best imprint technique. While from dimensional accuracy, two-step imprint technique with 2 mm metal coping spacer is the best imprint technique.Keywords: Imprint, two-step, spacer, defect, accuracy.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Braun, Q., Dirk Hortig, and Marion Merklein. "Characterizing Influence Parameters in Pulsed Phase Thermography for Defect Detection in Sheet Metal Parts." Key Engineering Materials 549 (April 2013): 521–28. http://dx.doi.org/10.4028/www.scientific.net/kem.549.521.

Повний текст джерела
Анотація:
Pulsed phase thermography (PPT) is a common infrared technique for quantitative nondestructive testing and evaluation (NDT&E). PPT was initially applied in the aeronautical and aerospace engineering to the detection and quantification of defects in materials with either high or low thermal conductivity, such as aluminium and composite materials. This paper presents for the first time the application of PPT-technique for defect inspection in sheet metal parts, attempting to provide a solution for an alternative quality control rather than the traditional optical survey in the press shop. The inspected defects in this paper were produced in deep drawing cups, to effectively creating various crack lengths and depths respectively in both steel and aluminium alloys. The approach of the characterizing influence parameters is primarily based on the particular parameters of the PPT-technique. These parameters were firstly classified into various categories, and a DoE model was subsequently designed to define the required experiments for a process window analysis. According to the defined process window, more accurate conclusions of defect detecting effects were achieved. Studies in the paper present the fundamental perceptions for defect inspecting in the sheet metal parts by using PPT-technique in the press shop.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Sheet-metal Defects"

1

Fallahiarezoodar, Ali fallahiarezoodar. "PREDICTION AND REDUCTION OF DEFECTS IN SHEET METAL FORMING." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1523879307901727.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sakai, Paulo Roberto. "Caracterização de juntas soldadas em paw e gtaw de chapas finas em aço maraging 300 submetidas a vários reparos /." Guaratinguetá, 2015. http://hdl.handle.net/11449/132887.

Повний текст джерела
Анотація:
Orientador: Antonio Jorge Abdalla
Coorientador: Marcelo dos Santos Pereira
Banca: Tomaz Manabu Hashimoto
Banca: Marcelino Pereira do Nascimento
Banca: Miguel Justino Ribeiro Barbosa
Banca: Dilermando Nagle Travessa
Resumo: Este trabalho tem como objetivo caracterizar mecanica e metalograficamente, juntas soldadas de chapas finas em aço Maraging 300, submetidas a até três reparos, usadas na fabricação de envelopes motores foguete a propelente sólido desenvolvidos no Instituto de Aeronáutica e Espaço (IAE) em atendimento às necessidades de sua gama de lançadores. O envelope motor atua como elemento estrutural e também possui a função primária de suportar a pressão de trabalho durante a queima do propelente. Atualmente, o envelope motor é fabricado em aço 300M-ESR e o IAE tomou a decisão de substituí-lo pelo aço Maraging 300. Em função dos processos existentes no Instituto, neste trabalho utilizaram-se os processos de soldagem Plasma Arc Welding - PAW com a técnica keyhole e Gas Tungsten Arc Welding - GTAW, ambos em passe único, com metal de adição. Antes de serem submetidas aos ensaios, as juntas passaram por inspeção não destrutiva de acordo com os critérios da norma AWS D17.1. Os reparos foram feitos de forma manual e processo GTAW. Amostras da junta soldada e reparadas foram submetidas a ensaios de tração, dureza Vickers (HV) por microindentações, análises químicas, análises metalográficas e fractográficas. Corpos de prova dos cordões adjacentes aos reparos também foram avaliados. Os resultados mostram que após a solda e reparos e o tratamento térmico de solubilização e envelhecimento, a zona fundida e a região da linha de fusão da solda apresentam uma dureza abaixo das outras regiões afetadas termicamente. Para as condições da solda sem reparo e reparadas, o processo PAW apresentou um valor menor de dureza em todas estas regiões com relação ao processo GTAW. As análises da superfície dos corpos de prova soldados rompidos indicam o predomínio de um processo de ruptura iniciado próximo à linha de fusão da solda e que se propaga em direção ao interior do ... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: This work aims at mechanic and metallographic characterization of Maraging 300 welded joints sheets, submitted to up to three repairs, used for the fabrication of solid propellant rocket motors at the Institute of Aeronautics and Space - IAE as to comply with its range of launchers. The rocket motor is a structural part and also has the primary function of supporting the nominal pressure during the propellant burning. At present, the rocket motor is fabricated in 300M-ESR steel and IAE has decided to replace such a steel for the Maraging 300 one. Due to IAE's existing processes, Plasma Arc Welding - PAW with the keyhole technique and the Gas Tungsten Arc Welding - GTAW have been used, both single-pass welding with filler. Before they have been submitted to the tests, the joints went through non-destructive inspection according to AWS D17.1 Standard. Manual repairs and GTAW process have been made. Samples of the welded and repaired joints were submitted to tensile testing, Vickers hardness, chemical analysis, fractrographic and metallographic analysis. Body tests of the beads adjacent to the repairs have also been assessed. Results show that after welding, repairs and solubilization and aging heating treatment, the melted zone as well as the weld joins lines zone present hardness below other heat affected zones. As for the conditions of the non-repaired and repaired welds, the PAW process has demonstrated lower hardness values in all zones in what regards the GTAW process. The welded and fractured body tests surfaces analysis indicate the predominance of a fracture process started next to the weld joins lines which goes towards the bead interior. The nature of the fracture has shown the predominance of dimples. The GTAW welded body tests presented higher mechanical strength than that of the PAW process. Similarly, the PAW welded body tests obtained from the beads of the zones ... (Complete abstract click electronic access below)
Doutor
Стилі APA, Harvard, Vancouver, ISO та ін.
3

TSAI, MING-YU, and 蔡明諭. "Defects prediction and bending die design optimization of hot dip galvanized sheet metal with inclined multi-stage features." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/09389721017698634672.

Повний текст джерела
Анотація:
碩士
國立高雄應用科技大學
模具工程系
97
This study focuses on the bending die design which can skip notching operation for bending of the galvanized sheet metal with inclined multi-stage features. Relief geometries were designed to cope with the offset profile punch to improve the wrinkling and material piling up in the conventional offset punch designs. Occurrence of wrinkling and fracturing defects is due to vertically off-plane bending line that is composed of non-continuous lines on the vertical plane. The offset punch profile with relief geometries was proposed to avoid the wrinkling and fracturing defects caused by extra material pile up in the vertically off-plane bending line corners. The effects of inclined angle of the pre-bent zigzag blank were studied to establish the applicability of the offset punch profile design. CAE method was integrated with the design of experiments (DOE) method to predict the material flow and study the effect of the different die and process design factors. Multi-relief punch design was proposed to control the material flow and pile up zone. The control point updating algorithm of a Bezier curve was applied to design the blank pre-cutting profile to minimize the zigzag of bending edge effectively. The simulation results had shown that wrinkling and fracturing defects will occur in case of the inclined angles lager than 80 degrees. The required relief width is proportional to the width of bending edge. The experimental results were in good agreement with the predictions of simulation. The proposed relieved offset punch design and edge pre-cutting profile were able to avoid defects of paint-scratching, wrinkling, fracturing, and zigzag of product edge.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Raimundo, Bruno Miguel Ribeiro. "Modelação e simulação numérica do processo de estampagem multi-etapa de um pedal de travão." Master's thesis, 2017. http://hdl.handle.net/10316/82940.

Повний текст джерела
Анотація:
Dissertação de Mestrado Integrado em Engenharia Mecânica apresentada à Faculdade de Ciências e Tecnologia
Atualmente, o processo de conformação plástica de chapas metálicas é amplamente utilizado na indústria automóvel. A capacidade de resposta deste sector às crescentes exigências do mercado, com a qualidade e a brevidade necessárias, é devidamente aumentada com a utilização de ferramentas de apoio à produção, nomeadamente a aplicação de simulação numérica com o método de elementos finitos. Este instrumento é utilizado para a validação e otimização de ferramentas e parâmetros de processo de estampagem de chapas metálicas, nomeadamente com a previsão da ocorrência de defeitos, permitindo a redução de custos e ciclos de desenvolvimento do produto. Este trabalho tem como objetivo realizar a modelação e simulação do processo de estampagem multi-etapa de um componente automóvel, nomeadamente de um pedal de travão de um automóvel. A produção deste componente envolve corte por arrombamento e dobragem em ferramentas progressivas, sendo a simulação numérica realizada no programa de elementos finitos DD3IMP. As ferramentas de conformação são consideradas rígidas na simulação numérica, enquanto o pedal tem um comportamento elasto-plástico, descrito por um critério de plasticidade anisotrópico (Hill’48) e uma lei de encruamento isotrópico (Swift). Dois lotes do aço S420MC são utilizados na produção do pedal de travão, os quais são considerados na simulação, sendo que para um lote são observados defeitos de fissuração em zonas de corte por arrombamento. Relativamente à discretização espacial do corpo deformável, são utilizados elementos sólidos hexaédricos de 8 nós. A análise e comparação de resultados da simulação dos dois lotes de material, nomeadamente da deformação plástica equivalente, tensão de escoamento e trajetórias de deformação em alguns pontos estrategicamente escolhidos, demonstra os diferentes comportamentos dos dois lotes de materiais em estudo. Estas diferenças permitem efetuar conclusões que sustentam a presença/ausência de defeitos de fissuração nos produtos resultantes dos processos de estampagem multi-etapa. O aumento de camadas de elementos finitos em espessura do modelo numérico tem pouca influência nos resultados de deformação plástica equivalente e de tensão de escoamento nos pontos críticos analisados, permitindo a validação dos resultados com a discretização mais grosseira.
Nowadays, the sheet metal forming process is widely used in industry, especially in the automotive sector. The sector's answer to the increasing market requirements, with the necessary quality and briefness, is properly increased using production support tools, namely numerical simulation using the finite element method. This instrument is used for the validation and optimization of tools and parameters of the sheet metal forming process, namely with the prediction of defects, allowing the reduction of costs and product development cycles.This work aims to perform the modelling and simulation of the multi-stage sheet metal forming process of an automotive component, namely a car brake pedal. The production of this component involves blanking and bending in progressive tools, and the numerical simulation is performed in the DD3IMP finite element program. The conformation tools are considered rigid in the numerical simulation and their surfaces, while the pedal has an elasto-plastic behaviour described by an anisotropic yield criterion (Hill’48) and an isotropic hardening law (Swift). Two batches of S420MC steels used in the production of the brake pedal are considered in the simulation, where edge cracking is observed for one batch. Regarding to the spatial discretization of the deformable body, 8-node hexahedral solid elements are used.The analysis and comparison of simulation results of the two batches the material, namely the equivalent plastic strain, flow stress and strain paths at some strategically chosen points, demonstrates the different behaviours of the two batches of studied materials. These differences allow conclusions to be drawn that support the presence / absence of edge cracking in products resulting from multi-stage forming processes. The increase of finite element layers in thickness of the numerical model has little influence on the results of equivalent plastic strain and flow stress at the analysed critical points, allowing the validation of the results with the coarser discretization.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Sheet-metal Defects"

1

Ollikainen, Mikael. Origins of production errors and significance of employee empowerment in reducing production error amount in sheet metal fabricating industry. Lappeenranta: Lappeenranta University of Technology, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Surface Defects on Hot-dip Metal Coated Steel Sheet. Woodhead Publishing, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

G, Grünhofer H., and Verein Deutscher Eisenhüttenleute, eds. Oberflächenfehler an kaltgewalztem Band und Blech =: Surface defects on cold rolled strip and sheet = Les défauts de surface des feuillards et des tôles laminés à froid. Düsseldorf: Stahleisen, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Sheet-metal Defects"

1

Cleja-Ţigoiu, Sanda. "Anisotropic Damage in Elasto-plastic Materials with Structural Defects." In Multiscale Modelling in Sheet Metal Forming, 301–50. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44070-5_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dib, Mario, Bernardete Ribeiro, and Pedro Prates. "Model Prediction of Defects in Sheet Metal Forming Processes." In Engineering Applications of Neural Networks, 169–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98204-5_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Henriques, M. P., T. J. Grilo, R. J. Alves de Sousa, and R. A. F. Valente. "Numerical Simulation and Prediction of Wrinkling Defects in Sheet Metal Forming." In Statistical and Computational Techniques in Manufacturing, 219–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25859-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mortin, K. V., D. G. Privezentsev, and A. L. Zhiznyakov. "A System for Detecting and Detecting Defects in Sheet Metal on Grayscale Images." In Lecture Notes in Electrical Engineering, 427–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94202-1_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Singh, Aru Ranjan, Thomas Bashford-Rogers, Sumit Hazra, and Kurt Debattista. "Deep Learning-Based Defect Inspection in Sheet Metal Stamping Parts." In The Minerals, Metals & Materials Series, 411–19. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06212-4_38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hambli, Ridha, Alain Potiron, Serge Boude, and Marian Reszka. "Fracture prediction of sheet-metal blanking process." In Advanced Methods in Materials Processing Defects, 125–34. Elsevier, 1997. http://dx.doi.org/10.1016/s0922-5382(97)80014-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rees, D. W. A. "Instability analysis for ellipsoidal bulging of sheet metal." In Advanced Methods in Materials Processing Defects, 235–44. Elsevier, 1997. http://dx.doi.org/10.1016/s0922-5382(97)80025-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bressan, J. D. "Material plastic properties defects and the formability of sheet metal." In Advanced Methods in Materials Processing Defects, 273–80. Elsevier, 1997. http://dx.doi.org/10.1016/s0922-5382(97)80029-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Banabic, D. "Sheet metal formability predicted by using the new (1993) Hill's yield criterion." In Advanced Methods in Materials Processing Defects, 257–64. Elsevier, 1997. http://dx.doi.org/10.1016/s0922-5382(97)80027-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gelin, J. C., and N. Boudeau. "Localization of deformation in thin shells with application to the analysis of necking in sheet metal forming." In Advanced Methods in Materials Processing Defects, 215–24. Elsevier, 1997. http://dx.doi.org/10.1016/s0922-5382(97)80023-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Sheet-metal Defects"

1

Murmu, Naresh C., and Roman Velgan. "Detection of defects in formed sheet metal using medial axis transformation." In Optical Metrology, edited by Wolfgang Osten, Malgorzata Kujawinska, and Katherine Creath. SPIE, 2003. http://dx.doi.org/10.1117/12.500529.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

JingDong, Lin, Huang Li, and Zhou HongBo. "Forming defects prediction for sheet metal forming using Gaussian process regression." In 2017 29th Chinese Control And Decision Conference (CCDC). IEEE, 2017. http://dx.doi.org/10.1109/ccdc.2017.7978140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Garcia Zugasti, Pedro de Jesus, Erick M. Salcedo Murillo, Hugo I. Medellín Castillo, Dirk Frederik De Lange, and Juan Gabriel Sandoval Granja. "Sheet Metal Blank Development of a Deep Drawing Fan Support Using Theoretical Rules and FEM." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38537.

Повний текст джерела
Анотація:
Deep drawing is a cost effective sheet metal forming process to produce many industrial components. However, complex geometrical drawn parts are difficult to form due to several modes and conditions of the material flow. Commonly problems associated to the forming operation are wrinkling and tearing defects, which affect the cost and quality of the parts. Actually, there are not theoretical methods developed in the literature yet, so the trial and error method are used to reduce or eliminate the deep drawing defects or inclusive is utilized in the earlier production stages, resulting in higher costs and longer production times. This paper describe a proposed solution to reduce or eliminate the wrinkles defects on the flanges of an industrial fan support that result from applying the forming process. An analysis procedure based on the development of the correct sheet metal blank considering three different blank geometries was proposed. The analysis include the analytical methods available in the literature, the simulation with a computer program based on the Finite Element Method (FEM) and experimentation. FEM model, simulation and results, these were validated by measuring the thickness profile on the flanges of a deep drawing part, before and after the procedure implementation. The results have shown that combining both the analytical and FEM methods, were possible to know the influence degree of the sheet metal blank geometry to reduce or eliminate the wrinkle defect and these can be used as an effective design tool.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Repin, Sergei, and Alexander Kupriyanov. "Algorithms based on neural network for segmentation of defects on metal sheet images." In 2021 International Conference on Information Technology and Nanotechnology (ITNT). IEEE, 2021. http://dx.doi.org/10.1109/itnt52450.2021.9649199.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Thuillier, Sandrine, Alban Le Port, and Pierre-Yves Manach. "Surface Defects in Sheet Metal Forming: a Simulative Laboratory Device and Comparison with FE Analysis." In THE 8TH INTERNATIONAL CONFERENCE AND WORKSHOP ON NUMERICAL SIMULATION OF 3D SHEET METAL FORMING PROCESSES (NUMISHEET 2011). AIP, 2011. http://dx.doi.org/10.1063/1.3623693.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Le Port, A., S. Thuillier, C. Borot, and J. Charbonneaux. "Analysis, Simulation and Prediction of Cosmetic Defects on Automotive External Panel." In THE 8TH INTERNATIONAL CONFERENCE AND WORKSHOP ON NUMERICAL SIMULATION OF 3D SHEET METAL FORMING PROCESSES (NUMISHEET 2011). AIP, 2011. http://dx.doi.org/10.1063/1.3623615.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ragai, Ihab, and James A. Nemes. "Springback in Sheet Metal Forming of Stainless Steel 410." In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34045.

Повний текст джерела
Анотація:
This paper considers the use of finite element simulation of sheet metal forming as a tool to evaluate geometrical defects caused by elastic springback. The simulations aim to provide reliable information about the deviation of the real part geometry from that defined in the design phase in order to overcome the subsequent assembly problems. The material studied and presented in this paper is stainless steel 410. In order to determine the material properties and the parameters needed for the simulations, a series of experiments including uniaxial and cyclic tests were carried out. Moreover, bending experiments were conducted so that simulation results can be verified against simple forming operations. To expand the use of the model to predict the effect of forming parameters on springback, an aircraft engine cone-shaped component was simulated and the results were compared to the actual formed part. Predictions of the final shape and thickness variation were successfully obtained and were in agreement with the cone forming experiments.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tsai, Sung-Yu, Brian Chen, and Jen-Yuan (James) Chang. "Evaluation of Sheet Metal Leveling Based on Elimination of Coilset Residual Stress." In ASME 2016 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/isps2016-9536.

Повний текст джерела
Анотація:
Flexible media such as tape, web or sheet metal are commonly used in the mass production manufacturing. In the modern manufacturing process, about one third of the steel production is converted to sheet metal [1]. Sheet metal is normally winded and stored into coil form which can be easily tranported. However, when it is unwinded for metal forming process such as press stamping, laser cutting or any other forming process, sheet metal will have coilset residual stress which can cause defects from the forming process. The coilset residual stress is caused by the way the sheet metal is stored and packaged [2]. Therefore, in order to eliminate such residual stress, leveing process is carried out to eliminate common coilset residual stress.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gayubo, F., J. L. Gonzalez, E. de la Fuente, F. Miguel, and J. R. Peran. "On-line machine vision system for detect split defects in sheet-metal forming processes." In 18th International Conference on Pattern Recognition (ICPR'06). IEEE, 2006. http://dx.doi.org/10.1109/icpr.2006.902.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Andersson, A. "Evaluation and Visualization of Surface Defects — a Numerical and Experimental Study on Sheet-Metal Parts." In NUMISHEET 2005: Proceedings of the 6th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Process. AIP, 2005. http://dx.doi.org/10.1063/1.2011203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії