Статті в журналах з теми "Shear friction; shear-sliding mechanism; size effect"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Shear friction; shear-sliding mechanism; size effect.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Shear friction; shear-sliding mechanism; size effect".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Fuqiang, Li, Qin Guangpeng, Liu Yonggang, Wang Qichen, Wang Ying, and Hou Fengjun. "Study on the Mechanism of Gas Ignition by Friction Effect of Hard Quartz Sandstone Instability." Geofluids 2020 (December 22, 2020): 1–17. http://dx.doi.org/10.1155/2020/8867343.

Повний текст джерела
Анотація:
When the upper part of a high gas coal seam has hard and thick sandstone roof, the gas explosion accident in goaf is even caused by roof collapse. Taking the mining of 1007 working face of 10 coal seam under Xia KuoTan Coal Mine as the engineering background, using the method of indoor experiment and theoretical analysis, the possibility of rock friction effect igniting gas is studied. Under the engineering geological conditions, the results show that the heat produced by the friction process of hard sandstone can ignite gas. According to the 3DEC numerical simulation, the instability characteristics of the overburden hard rock are studied. The results show that the size of the slab instability area is not changed when the length of the working face increases. When the thickness of the roof is increased, the area of sliding instability is increased and the degree of sliding instability is more intense. At the boundary of the tunnel, the overlying strata are subjected to the largest shear stress, and it tends to form a friction surface with greater slip instability.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ren, Minghui, Guangsi Zhao, Xianhao Qiu, Qinghua Xue, and Meiting Chen. "A Systematic Method to Evaluate the Shear Properties of Soil-Rock Mixture considering the Rock Size Effect." Advances in Civil Engineering 2018 (September 5, 2018): 1–9. http://dx.doi.org/10.1155/2018/6509728.

Повний текст джерела
Анотація:
The soil-rock mixture (S-RM) is widely applied in the geotechnical engineering due to its better mechanical properties. The shear strength, an essential aspect of S-RM which governs the stability and the deformation, is rather necessary to be revealed properly. The extraordinary issue of S-RM compared to fine-grained soils is the grain size effect on the strength analysis. This paper proposes a systematic method to obtain the realistic shear strength of S-RM by detecting the rock size effect. Firstly, based on fractal theory, the rock size was determined as 5 mm by the multifractal property of granular size distribution. Then, based on 2 selected specimen sizes combining the engineering dimension, shear gaps (T) effect and specimen size effect on the shear strength of S-RM have been investigated. It is shown that the gap of the direct shear test decides the physical mechanism of particles forming the shear resistance of S-RM based on the variation of apparent cohesion and mobilized internal friction angle. Specimen size effect is weakened by the gap effect considering the boundary effect. Realistic and stable shear strength parameters of S-RM have been researched by a reasonable gap (0.2–0.4D, where D is the largest particle size).
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fu, Hongyuan, and Caiying Chen. "Effect of Nanotalc on the Shear Strength of Disintegrated Carbonaceous Mudstone." Journal of Nanoscience and Nanotechnology 20, no. 8 (August 1, 2020): 5049–54. http://dx.doi.org/10.1166/jnn.2020.18490.

Повний текст джерела
Анотація:
This work was aimed to improve the shear strength of disintegrated carbonaceous mudstone (DCM) with nanotalc (NT). A series of direct shear tests were carried out on the NT-modified DCM specimens to determine their shear strengths at various NT concentrations. Subsequently, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to reveal the underlying mechanism which the results showed that shear strength was first increased and then decreased with increasing certain NT concentration. Moreover, the increase in NT concentration also resulted in rise in cohesion and reduction in angle of internal friction. The optimum NT concentration for shear strength improvement of DCM is 4%. This improvement of shear strength is achieved because NT can fill the pores in DCM and its products can bind with particles. This results in formation of large aggregates owing to the small size, strong adsorption capacity and cation-exchange capacity.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhang, Jingwei, Jia Li, Julong Wang, and Shuaiqi Xu. "Characteristics of the Interface between Bamboo Grids and Reinforced Soil of High-Filled Embankments in Loess Areas." Advances in Civil Engineering 2021 (July 19, 2021): 1–13. http://dx.doi.org/10.1155/2021/5135756.

Повний текст джерела
Анотація:
There are a large number of high-filled and deep-dug highways in loess areas. The differential settlement between the filled and undisturbed soils is the main cause of damage. Bamboo grids are good reinforcement and flexural tensile materials for highway subgrades, and the properties of the interface between the bamboo grid and loess soil affect the safety and stability of embankments. First, the feasibility of bamboo grid application in high-filled embankments in loess areas was verified based on a durability analysis and test of the mechanical properties of bamboo. Then, a series of large-scale direct shear tests were carried out to determine the shear properties of the interface between bamboo grids and loess soils. The influential factors of vertical stress, shear rate, grid spacing, and compactness on the shear properties were studied, and the related mechanism was discussed. The results show that bamboo grids enhance the shear strength of loess soils more than geogrids under different vertical stresses because of the passive friction resistance between the vertical and horizontal ribs and soil particles, the bite force of particle skeletons, and the surface friction of grids. Bamboo grids enhance the stability and shear resistance of soils because of their good deformation performance, and thus, the shear rate effect within 7 mm/min can be negligible. The greater the relative compaction of the subgrade soil, the better the reinforcement effect owing to the greater cohesive force, greater internal friction angle, and better bite force. The variation in grid spacing changes the embedded effect of soil, side friction resistance, and size of the contact area. The shear resistance has an optimal value, which first increases and then decreases. Therefore, in practical applications, it is necessary to test the optimal bamboo grid spacing for a project.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Yongxin, Shengjun Shao, and Zhi Wang. "Effect of Particle Breakage and Shape on the Mechanical Behaviors of Granular Materials." Advances in Civil Engineering 2019 (October 27, 2019): 1–15. http://dx.doi.org/10.1155/2019/7248427.

Повний текст джерела
Анотація:
The particle breakage property under loading is an important factor affecting the nonlinearity of the shear strength and stress-strain curves of coarse-grained soils. The macromechanical behaviors of coarse granular materials under consolidation and drainage shearing were tested by using a large true triaxial apparatus. The particle breakage mechanism has been analyzed by the fluctuation change of stress-strain curve and particle composition change. It was shown that the particle shape is an extremely important microproperty of the influence of granular material breakage. The variation rules of the internal friction angle and interlocking strength with the index of fine-grained breakage were sorted out, and the critical particle size for measuring the two friction modes under the given gradation was determined to be 1 mm. In addition, the numerical analysis was conducted by simulating the microshape parameters of particles. The conclusion is as follows: (1) The effect of shape parameters on shear strength can be simulated using the smoothness index Fd. (2) Compared with spherical particles, irregular-shaped particles lead to a decrease in the number of strong force chains. Moreover, more coordination numbers are needed to maintain a stable configuration, and the shear strength is improved.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gessesse, Y. B., and M. H. Attia. "On the Mechanics of Crack Initiation and Propagation in Elasto-Plastic Materials in Impact Fretting Wear." Journal of Tribology 126, no. 2 (April 1, 2004): 395–403. http://dx.doi.org/10.1115/1.1491975.

Повний текст джерела
Анотація:
Normal and oblique impact wear processes are characterized by unique features, which include the development of some residual stress components that vanish in unidirectional sliding. Parametric finite element analyses were conducted to estimate the likelihood locations for crack initiation, and the subsequent direction and rate of crack propagation in an elasto-plastic material with bi-linear isotropic hardening properties. The results showed that the increase in contact pressure can cause a significant increase in the size of the plastically deformed crack initiation zone and allows it to reach the surface. Such behavior is not predicted under continuous sliding conditions. The presence of surface friction forces in oblique impact, can also result in the development of a secondary region of high tensile stresses at the contact area. Using the crack tip slip displacement CTSD method, the rate of crack growth was found to be linearly proportional to the crack length, and significantly dependent on the contact pressure and the coefficient of friction at the crack surface. The small effect of the coefficient of friction at the micro-contact area on wear suggests that the effect of shear traction is mainly due to the increase in the depth of the crack nucleation zone. As expected, the increase of the material flow stress with strain-hardening has a wear reducing effect.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Panin, Sergey V., Lyudmila A. Kornienko, Vladislav O. Alexenko, Dmitry G. Buslovich, Svetlana A. Bochkareva, and Boris A. Lyukshin. "Increasing Wear Resistance of UHMWPE by Loading Enforcing Carbon Fibers: Effect of Irreversible and Elastic Deformation, Friction Heating, and Filler Size." Materials 13, no. 2 (January 11, 2020): 338. http://dx.doi.org/10.3390/ma13020338.

Повний текст джерела
Анотація:
The aim of the study was to develop a design methodology for the UltraHigh Molecular Weight Polyethylene (UHMWPE)-based composites used in friction units. To achieve this, stress–strain analysis was done using computer simulation of the triboloading processes. In addition, the effects of carbon fiber size used as reinforcing fillers on formation of the subsurface layer structures at the tribological contacts as well as composite wear resistance were evaluated. A structural analysis of the friction surfaces and the subsurface layers of UHMWPE as well as the UHMWPE-based composites loaded with the carbon fibers of various (nano-, micro-, millimeter) sizes in a wide range of tribological loading conditions was performed. It was shown that, under the “moderate” tribological loading conditions (60 N, 0.3 m/s), the carbon nanofibers (with a loading degree up to 0.5 wt.%) were the most efficient filler. The latter acted as a solid lubricant. As a result, wear resistance increased by 2.7 times. Under the “heavy” test conditions (140 N, 0.5 m/s), the chopped carbon fibers with a length of 2 mm and the optimal loading degree of 10 wt.% were more efficient. The mechanism is underlined by perceiving the action of compressive and shear loads from the counterpart and protecting the tribological contact surface from intense wear. In doing so, wear resistance had doubled, and other mechanical properties had also improved. It was found that simultaneous loading of UHMWPE with Carbon Nano Fibers (CNF) as a solid lubricant and Long Carbon Fibers (LCF) as reinforcing carbon fibers, provided the prescribed mechanical and tribological properties in the entire investigated range of the “load–sliding speed” conditions of tribological loading.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lv, Beifeng, Yinuo Zhao, Na Li, Yanfei Yu, Yanting Wu, and Miaojie Gu. "Triaxial Mechanical Properties and Mechanism of Waterborne Polyurethane-Reinforced Road Demolition Waste as Road Bases." Polymers 14, no. 13 (July 3, 2022): 2725. http://dx.doi.org/10.3390/polym14132725.

Повний текст джерела
Анотація:
The recycling and reuse of construction waste have not only effectively protected natural resources but also promoted the sustainable development of the environment. Therefore, in this article, waterborne polyurethane (WPU) as a promising new polymer reinforcement material was proposed to reinforce the road demolition waste (RDW), and the mechanical performance of WPU-reinforced RDW (named PURD) was investigated using triaxial unconsolidated and undrained shear (UU) and Scanning Electron Microscope (SEM) tests. The results showed that under the same curing time and confining pressure, the shear strength of PURD increased with the increase in WPU content. When the WPU content was 6%, the WPU presented the best reinforcement effect on RA. The failure strain of PURD increased with the increase in confining pressure, but increased first and then reduced with the increase in WPU content. The specimens with 5% WPU content showed the best ductility. At the curing time of 7 and 28 days, the internal friction angle and cohesion of PURD increased with the increase in WPU content, and they reached a maximum when the WPU content was 6%. The internal friction angle barely budged, but the cohesion increased obviously. The enhancement effect of WPU was attributed to the spatial reticular membrane structure produced by wrapping and bonding particles with the WPU film. Microscopic analysis showed that with the increase in WPU content, the internal pore and crack size of PURD gradually decreased. As the WPU content increased, the WPU film became increasingly thicker, which increased the adhesion between WPU and RA particles and made the structure of PURD become increasingly denser.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tamadon, A., D. J. Pons, and D. Clucas. "EBSD Characterization of Bobbin Friction Stir Welding of AA6082-T6 Aluminium Alloy." Advances in Materials Science 20, no. 4 (December 1, 2020): 49–74. http://dx.doi.org/10.2478/adms-2020-0022.

Повний текст джерела
Анотація:
Abstract Electron Backscatter Diffraction (EBSD) was used to determine microstructural evolution in AA6082-T6 welds processed by the Bobbin Friction Stir Welding (BFSW). This revealed details of grain-boundaries in different regions of the weld microstructure. Different polycrystalline transformations were observed through the weld texture. The Stirring Zone (SZ) underwent severe grain fragmentation and a uniform Dynamic Recrystallisation (DRX). The transition region experienced stored strain which changed the grain size and morphology via sub-grain-boundary transformations. Other observations were of micro-cracks, the presence of oxidization, and the presence of strain hardening associated with precipitates. Flow-arms in welds are caused by DRX processes including shear, and low and high angle grain boundaries. Welding variables affect internal flow which affects microstructural integrity. The shear deformation induced by the pin causes a non-uniform thermal and strain gradient across the weld region, leading to formation of mixed state transformation of grain morphologies through the polycrystalline structure. The grain boundary mapping represents the differences in DRX mechanism I different regions of the weld, elucidates by the consequences of the thermomechanical nature of the weld. The EBSD micrographs indicated that the localised stored strain at the boundary regions of the weld (e.g. flow-arms) has a more distinct effect in emergence of thermomechanical nonuniformities within the DRX microstructure.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yang, Xiaoyun, Yan Zhang, and Zhuhan Li. "Embankment Displacement PLAXIS Simulation and Microstructural Behavior of Treated-Coal Gangue." Minerals 10, no. 3 (February 28, 2020): 218. http://dx.doi.org/10.3390/min10030218.

Повний текст джерела
Анотація:
The purpose of this study is to investigate the displacement of coal gangue filling material in road construction and microstructural behavior of treated coal gangue by considering the environmental factors of aqueous solutions with different acidity. The displacement analysis of the coal gangue embankment model has been done by means of the finite element method PLAXIS. Furthermore, using the scanning electron microscope, the energy dispersive system, and the Raman spectrometer to analyze the microscopic mechanism in the view of microstructure, elements, the integrity of carbon structure and the stability of chemical bonds of coal gangue. The results show that the larger displacement of the treated coal gangue subgrade is within 4.0 m below the top of the subgrade, and the maximum displacement value is about 7 mm, which is less than the displacement of untreated coal gangue sample. While the treated A-CG and T-CG grain size, surface area and internal friction angle increase, the unstable carbon structure is destroyed, so its shear strength, compression performance, and consolidation effect are improved. S-CG particles are coated with Na-Si-Al gel, which enhances the density, viscosity and shear strength, thus ensuring the stability of the coal gangue subgrade. The treated coal gangue subgrade slope foot displacement, boundary shear stress and safety factor are all meet the specification requirements.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Madsen, P. A., M. Rugbjerg, and I. R. Warren. "SUBGRID MODELLING IN DEPTH INTEGRATED FLOWS." Coastal Engineering Proceedings 1, no. 21 (January 29, 1988): 35. http://dx.doi.org/10.9753/icce.v21.35.

Повний текст джерела
Анотація:
Hydrodynamic simulations in coastal engineering studies are still most commonly carried out using two-dimensional vertically integrated mathematical models. As yet, threedimensional models are too expensive to be put into general use. However, the tendency with 2-D models is to use finer and finer resolution so that it becomes necessary to include approximations to some 3-D phenomena. It has been shown by many authors that simulations of large scale eddies can be quite realistic in 2-D models (c.f. Abbott et al. 1985). Basically there exists two different mechanisms of circulation generation. The first one is based on a balance between horizontally and grid-resolved momentum transfers and the bed resistance - i.e. a balance between the convective momentum terms and the bottom shear stress. The second one is due to momentum transfers that are not resolved at the grid scale but appears instead as horizontally distributed shear stresses. In many practical situations the circulations will be governed by the first mechanism. This is the case if the diameter of the circulation and the grid size is much larger than the water depth. In this situation the eddies are friction dominated so that the effect of sub-grid eddy viscosity is limited. In this case 2-D models are known to produce very realistic results and several comparisons with measurements have been reported in the literature.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Namjoshi, S. A., S. Mall, V. K. Jain, and O. Jin. "Effects of process variables on fretting fatigue crack initiation in Ti-6A1-4V." Journal of Strain Analysis for Engineering Design 37, no. 6 (August 1, 2002): 535–47. http://dx.doi.org/10.1243/030932402320950143.

Повний текст джерела
Анотація:
A fretting fatigue crack initiation mechanism (number of cycles, location and orientation angle) using critical plane based parameters has been addressed by several researchers. There are several process variables that can affect these parameters and thereby the prediction of fretting fatigue crack initiation behaviour. Effects of two such parameters, viz. process volume and the coefficient of friction, were investigated in this work. Fretting fatigue experiments with a titanium alloy were conducted with different contact pad geometries. Finite element analysis (FEA) was used to obtain a stress state in specimens for the experimental conditions used during fretting fatigue tests. Analysis was carried out for two values of the coefficient of friction, thereby providing a framework for calculation of several critical plane based multiaxial fatigue parameters for different process volumes. A program was developed to compute these multiaxial fatigue parameters from the FEA data for different values of process variables. It was observed that parameters for cylindrical pad geometries with no singularity-type behaviour were inversely proportional to the size of process volume and directly proportional to the coefficient of friction. There was no change in the predicted orientation of the primary crack for this geometry, due to variations in these process variables. Parameters for flat-pad geometries with behaviour approaching that of a singularity were also inversely proportional to the size of process volume, but the coefficient of friction had a minimal effect on their values. Predicted orientation of the primary crack for these geometries changed slightly when the process volume increased from that of a grain size of the tested material to a larger size, and then did not change with the increase of process volume size. Overall, the effect of these process variables on the critical plane based parameters was similar in all five contact geometries used in this study, when the scatter in fatigue data is kept in mind. Finally, the modified shear stress range parameter satisfactorily predicted the crack initiation location, orientation angle and number of cycles to fretting fatigue crack initiation independent of the contact geometry for a given process volume size and coefficient of friction.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Stegmüller, Michael JR, Richard J. Grant, and Paul Schindele. "Improvements in the process efficiency and bond strength when friction surfacing stainless steel onto aluminium substrates." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 233, no. 4 (April 21, 2017): 687–98. http://dx.doi.org/10.1177/1464420717701494.

Повний текст джерела
Анотація:
Friction surfaced specimens produced by the application of inductive heating and utilising a flash-reducing tool were compared with those obtained through the classical approach. It was found that the use of inductive heating resulted in an increased consumption of the coating material; however, the push-off strength could be more than doubled when compared with the classical process with high shear strength values of up to 111 MPa. The application of the flash-reducing tool reduced the flash to less than 0.05% of the material deposited as a coating and manifested itself in the form of small chips. High push-off strength values of up to 135 MPa were observed, accompanied by an increased coating thickness, coating width and bonding area. Temperature measurements with thermocouples taken during the coating process showed that the melting temperature of the aluminium substrate was reached at the substrate–coating interface. Mixed mode failure was evident at the fractured surfaces of the push-off test specimens and mechanical interlocking appears to be a main bonding mechanism. The presence of cavities were shown to have a detrimental effect on the bonding integrity, but could be reduced in size and number by the application of the flash-reducing tool.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Huang, Qi, Zailun Liu, Xiaobing Wang, Qifei Li, and Hui Quan. "Coupling Mechanism of Rotating Casing Effect and Impeller Structure of Roto-Jet Pump." Shock and Vibration 2020 (October 24, 2020): 1–13. http://dx.doi.org/10.1155/2020/8868188.

Повний текст джерела
Анотація:
An increase in internal pressure of a Roto-Jet pump is due to combined action of its impeller and rotating casing. Internal pressure of the pump chamber was determined according to outlet pressure of the impeller, and the influence of the rotary casing effect was ignored. To study the combined action mechanism of the rotating casing effect and impeller structure on the Roto-Jet pump, we used the open test bed of the Roto-Jet pump and four model pumps with impellers of different structures as research objects. We also conducted a comprehensive experimental study on the coupling mechanism between the rotating casing effect and impeller structure. Numerical calculation was performed to avoid the assumption of isotropic eddy viscosity, Reynolds stress linear pressure-strain model is selected, and the numerical calculation results are compared with the experimental results to verify its credibility. The results show that the rotating casing effect has multiple functions to reduce the friction loss of the disc, improve the pressure distribution inside the rotating casing, and increase the pump head. All scheme, pressure, and velocity fluctuations occur in the upstream and wake regions of the collecting pipe and the energy loss is concentrated in the upstream region. The difference in velocity distribution inside the collecting pipe is small and negligible. As long as the impeller and rotating casing continue to rotate synchronously, the liquid shear velocity at the same coordinate position of each scheme remains unchanged, and the liquid rotation angular velocity in the rotating casing is approximately 75% of the rotating casing which conforms to the rigid motion law. In the same scheme, the coefficient of uneven velocity inside the rotating casing gradually increases along the radial direction. The closer to the axis, the faster is the decrease of the peak tangential velocity and the velocity tends to be uniform. The size, shape, and position of the vortex core inside the rotating casing change constantly with various schemes. The distribution of vortex cores varies under each scheme. The front cover and rotating casing have a serious effect on the vortex core. The extremely poor analysis of the test results shows that the performance of the Roto-Jet pump is better when the closed impeller is rotated in synchronisation with the rotating casing. The advantages and disadvantages of each blade type can be determined according to the situation. The research results can exhibit the influence mechanism of the Roto-Jet pump shell effect. Selection of an impeller structure provides a reference.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Iverson, Neal R., Christian Helanow, and Lucas K. Zoet. "Debris-bed friction during glacier sliding with ice–bed separation." Annals of Glaciology 60, no. 80 (December 2019): 30–36. http://dx.doi.org/10.1017/aog.2019.46.

Повний текст джерела
Анотація:
AbstractTheory and experiments indicate that ice–bed separation during glacier slip over 2-D hard beds causes basal shear stress to reach a maximum at a particular slip velocity and decrease at higher velocities. We use the sliding theory of Lliboutry (1968) to explore how friction between debris particles in sliding ice and a rock bed affects this relationship between shear stress and slip velocity. Particle–bed contact forces and associated debris friction increase with increasing slip velocity, owing to increased rates of ice convergence with up-glacier facing surfaces. However, debris friction on diminished areas of the bed counteracts this effect as cavities grow. Thus, friction from debris alone increases only slightly with slip velocity, and for sediment particles larger than ~60 mm in diameter, debris friction peaks and decreases with increasing slip velocity. The effect on the sliding relationship is to steepen its rising limb and shift its shear stress peak to a slightly higher velocity. These results, which exclude the effect of debris friction on cavity size and debris concentrations above ~15%, indicate that the effect of debris in ice is to increase basal shear stress but not significantly change the form of the sliding relationship.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Molinari, A., Y. Estrin, and S. Mercier. "Dependence of the Coefficient of Friction on the Sliding Conditions in the High Velocity Range." Journal of Tribology 121, no. 1 (January 1, 1999): 35–41. http://dx.doi.org/10.1115/1.2833808.

Повний текст джерела
Анотація:
The velocity, normal pressure, and slider size dependence of the coefficient of dry friction of metals in the range of high sliding velocities (V ≥ 1 m/s) is investigated theoretically. Failure of the adhesive junctions by adiabatic shear banding is considered as the underlying process. The concept of asperity shearing by the adiabatic shear banding mechanism represents a new approach to unlubricated high velocity friction. Analytical solutions of a coupled thermomechanical problem are given for two constitutive relations. Numerical solutions for steel-on-steel friction showing a decrease of the coefficient of friction with the sliding velocity for different normal pressures are presented. The model is considered to be adequate in the velocity range of 1–10 m/s where friction enhanced oxidation or surface melting are believed not to interfere with the asperity shearing process.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Cui, Jinlei, Peiran Yang, Motohiro Kaneta, and Ivan Krupka. "Numerical study on the interaction of transversely oriented ridges in thermal elastohydrodynamic lubrication point contacts using the Eyring shear-thinning model." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 231, no. 1 (August 5, 2016): 93–106. http://dx.doi.org/10.1177/1350650116646943.

Повний текст джерела
Анотація:
Transient behaviour of tribo-characteristics caused by transversely oriented ridges on point contact surfaces was investigated based on a thermal elastohydrodynamic lubrication analysis. The ridges were assumed to exist on both the contact surfaces with different velocities. Results show that the interaction of ridges gives a large influence on the local film thickness, pressure, friction coefficient, temperatures on both the solid surfaces and temperature in the oil film. It is also pointed out that the size of the contact bodies brings strong effect on the temperature distribution and shear rate as well as on the friction coefficient. Furthermore, it is revealed that under rolling-sliding conditions, the shear-thinning property of the lubricant is negligible when the size of the contact body is large enough. However, shear-thinning effect plays an important role when the size is extremely small.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Karachevtseva, Iuliia, Arcady V. Dyskin, and Elena Pasternak. "Generation and propagation of stick-slip waves over a fault with rate-independent friction." Nonlinear Processes in Geophysics 24, no. 3 (July 11, 2017): 343–49. http://dx.doi.org/10.5194/npg-24-343-2017.

Повний текст джерела
Анотація:
Abstract. Stick-slip sliding is observed at various scales in fault sliding and the accompanied seismic events. It is conventionally assumed that the mechanism of stick-slip over geo-materials lies in the rate dependence of friction. However, the movement resembling the stick-slip could be associated with elastic oscillations of the rock around the fault, which occurs irrespective of the rate properties of the friction. In order to investigate this mechanism, two simple models are considered in this paper: a mass-spring model of self-maintaining oscillations and a one-dimensional (1-D) model of wave propagation through an infinite elastic rod. The rod slides with friction over a stiff base. The sliding is resisted by elastic shear springs. The results show that the frictional sliding in the mass-spring model generates oscillations that resemble the stick-slip motion. Furthermore, it was observed that the stick-slip-like motion occurs even when the frictional coefficient is constant. The 1-D wave propagation model predicts that despite the presence of shear springs the frictional sliding waves move with the P wave velocity, denoting the wave as intersonic. It was also observed that the amplitude of sliding is decreased with time. This effect might provide an explanation to the observed intersonic rupture propagation over faults.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Meng, Fanjing, Kun Liu, and Tao Qin. "Experimental investigations of force transmission characteristics in granular flow lubrication." Industrial Lubrication and Tribology 70, no. 7 (September 10, 2018): 1151–57. http://dx.doi.org/10.1108/ilt-07-2017-0211.

Повний текст джерела
Анотація:
Purpose Granular lubrication is a new lubrication method and can be used in extreme working conditions; however, the obstacle of force transmission characteristics needs to be urgently solved to fully understand the mechanical and bearing mechanisms of granular lubrication. Design/methodology/approach A flat sliding friction cell is developed to study the force transmission behaviors of granules under shearing. Granular material, sliding velocity, granule size and granule humidity are considered in these experiments. The measured normal and shear force, which is transmitted from the bottom friction pair to the top friction pair via the granular lubrication medium, reveals the influence of these controlling parameters on the force transmission characteristics of granules. Findings Experimental results show that a low sliding velocity, a large granule size and a low granular humidity increase the measured normal force and shear force. Besides, a comparison experiment with other typical lubrication styles is also carried out. The force transmission under granular lubrication is mainly dependent on the force transmission path, which is closely related to the deconstruction and reconstruction of the force chains in the granule assembly. Originality/value These findings reveal the force transmission mechanism of granular lubrication and can also offer the helpful reference for the design of the new granular lubrication bearing.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Kazemi, M. T., and V. Broujerdian. "Reinforced concrete beams without stirrups considering shear friction and fracture mechanics." Canadian Journal of Civil Engineering 33, no. 2 (February 1, 2006): 161–68. http://dx.doi.org/10.1139/l05-100.

Повний текст джерела
Анотація:
A new expression for the shear capacity of reinforced concrete beams without stirrups was derived by calculating the aggregate interlock capacity across the major diagonal crack of the beam, a procedure somewhat similar to those based on the modified compression field theory. Two formulas were obtained from the simplification of this expression. All three relations capture the dependence of shear strength on the size of the beam, the ratio of shear span to beam depth, longitudinal reinforcement ratio, maximum aggregate size, and concrete strength. The limits of these formulas agree well with the limit solutions of shear failure load for very small and very large beams based on plastic and fracture mechanics solutions, respectively. The proposed relations were calibrated by least-squares fitting of the existing experimental database (consisting of 398 data points) and resulted in low coefficients of variation. The simplest version is suitable for design codes.Key words: reinforced concrete, shear strength, beams, aggregate interlock, crack opening, size effect.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Liu, Hongyuan, Mingxing Zhu, Xiaojuan Li, Guoliang Dai, Qian Yin, Jing Liu, and Chen Ling. "Experimental Study on Shear Behavior of Interface between Different Soil Materials and Concrete under Variable Normal Stress." Applied Sciences 12, no. 21 (November 5, 2022): 11213. http://dx.doi.org/10.3390/app122111213.

Повний текст джерела
Анотація:
At present, the interface shear test is mainly used to evaluate the anti-sliding performance of the new foundation base. However, the traditional interface shear test has certain limitations in simulating the load change during the construction process and cannot accurately simulate the interface shear characteristics between the structure and the soil under the continuous change of the normal stress. Based on the self-developed large-scale interface shear equipment, this paper carried out the interface shear test and mechanism research of cement soil concrete, sand concrete, clay concrete and other materials in different curing cycles under the loading and unloading modes of variable normal stress repeated steps and continuous loading modes of variable normal stress steps. In addition, this paper deduced the formula of the minimum interface friction coefficient based on Mohr–Coulomb criterion. The experimental results show that the curing effect of cement soil can significantly improve the shear mechanical properties of the interface, and the friction coefficient of the cement soil concrete interface will also increase step by step with the increase of the curing time of the cement soil. The sliding shear surface can be remolded under the preloading of normal pressure, so that the interface shear characteristics of each shear material under repeated loading and unloading can be approximately equal to the interface shear characteristics of multiple equivalent materials under separate loading. In the case of a continuous change of normal stress, the rapid increase of normal stress will lead to accelerated entry into the limit shear state, resulting in plastic failure of the shear plane as a whole. In the engineering with a continuous change of stress, the interface shear friction coefficient of the material with high cohesion fluctuates greatly. The minimum interface friction coefficient formula and test proposed in this paper can be used to evaluate the interface friction coefficient range, and the sand concrete interface shear performance under the continuous normal stress loading mode showed good consistency. The self-developed large-scale interface shearing equipment and its test data provide theoretical basis and solutions for the improvement of traditional interface shearing equipment.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Liu, Yang, Cai-Ping Lu, Tong-bin Zhao, and Heng Zhang. "Effects of Particle Size on Fault Gouge Frictional Characteristics and Associated Acoustic Emission." Advances in Civil Engineering 2018 (2018): 1–11. http://dx.doi.org/10.1155/2018/6953165.

Повний текст джерела
Анотація:
Our experimental work was designed to explore the particle size effect of simulated fault gouge on slip characteristics by the conventional double-direct shear friction configuration combined with acoustic emission (AE). The following conclusions were drawn: (1) smaller particles allow for an initially higher compaction rate at a higher speed and longer duration for force chain formation and destruction. The larger the particle size is, the higher the slipping displacement rate is; (2) the smaller the particle size is, the larger the friction coefficient is, and thus the higher the fault strength is. In addition, the larger the shear velocity is, the higher the fault strength is; (3) the smaller the particle size is, the higher the shear stress drop generated by the stick-slip is, and the stronger the dynamic slip intensity for a stick-slip period is; and (4) surface defects of forcing blocks possibly help to embed foregoing “stability” and “stable sliding” into the normal stick-slip stage. Especially, the “stable sliding” is possibly related to formation of stubborn force chains. These findings may shed some insights into further clarification of slipping characteristics and discrimination of precursory signs of fault dynamic instability with different-sized gouge particles.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Zhang, Xiao Ming, Qian Jin Liu, and Xing Xiu Yu. "Differences of Shear Strength between Undisturbed and Remolded Soils of Lands for Agriculture and Forestry in Menglianggu Watershed of Linyi City." Advanced Materials Research 599 (November 2012): 815–19. http://dx.doi.org/10.4028/www.scientific.net/amr.599.815.

Повний текст джерела
Анотація:
To find the effects of pedoturbation on soil erosion of lands for agriculture and forestry in Menglianggu watershed of Linyi city from soil mechanics, shear strengths of 3 typical land uses (6 different soils) which are undisturbed and remolded respectively were measured by direct shear apparatus. Effects of particle size and binding materials on shear strength were analyzed by comparing shear properties of undisturbed and remolded soils with the same dry density, water content and vertical loads. The results show that all the angle of internal friction ( ) and most of soil cohesion ( ) of undisturbed soils are bigger than that of remolded soils; The final shearing stress also comply with the law above; The main factors affecting shear strength are soil particle size and binding materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Chang, Peng, Qiuge Feng, Nannan Wu, and Na Yang. "Research on Interface Slip Characteristics of Heritage Composite Timber Columns under Inclined Deformation." Applied Sciences 12, no. 14 (July 21, 2022): 7351. http://dx.doi.org/10.3390/app12147351.

Повний текст джерела
Анотація:
In order to study the mechanical performance and friction slip mechanism of the interface of a composite timber column under inclined deformation, the unilateral contact mechanical model of an ancient composite timber column under inclined deformation is proposed in this paper. According to the limit of the inclination angle of slip point and the limit of the inclination angle of slip surface, the failure modes of the combination’s interface can be divided into three stages: the fully sticky stage, the partially sticky stage and the sliding stage. The theoretical results of the sliding displacement and shear stiffness of the combination’s interface under the effect of iron hoops were obtained by using the elastic mechanics method. Based on the shear sliding test of a composite timber column’s interface under the effect of iron hoops, the influences of different parameters on the shear sliding performance of the combination’s interface were investigated. The test results show that the number and the spacing of the iron hoops and the inclination angle of the interface are important factors affecting the shear strength of the combination’s interface. The shear strength of the interface increased with the increase in the number of iron hoops and the inclination angle of the interface. Since hoop spacing that is too large or too small cannot effectively improve the shear capacity of the interface, there is an optimal value for the hoop spacing.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Wiese, Klaus, Thiemo M. Kessel, Reinhard Mundl, and Burkhard Wies. "An Analytical Thermodynamic Approach to Friction of Rubber on Ice." Tire Science and Technology 40, no. 2 (April 1, 2012): 124–50. http://dx.doi.org/10.2346/1945-5852-40.2.124.

Повний текст джерела
Анотація:
ABSTRACT The presented investigation is motivated by the need for performance improvement in winter tires, based on the idea of innovative “functional” surfaces. Current tread design features focus on macroscopic length scales. The potential of microscopic surface effects for friction on wintery roads has not been considered extensively yet. We limit our considerations to length scales for which rubber is rough, in contrast to a perfectly smooth ice surface. Therefore we assume that the only source of frictional forces is the viscosity of a sheared intermediate thin liquid layer of melted ice. Rubber hysteresis and adhesion effects are considered to be negligible. The height of the liquid layer is driven by an equilibrium between the heat built up by viscous friction, energy consumption for phase transition between ice and water, and heat flow into the cold underlying ice. In addition, the microscopic “squeeze-out” phenomena of melted water resulting from rubber asperities are also taken into consideration. The size and microscopic real contact area of these asperities are derived from roughness parameters of the free rubber surface using Greenwood-Williamson contact theory and compared with the measured real contact area. The derived one-dimensional differential equation for the height of an averaged liquid layer is solved for stationary sliding by a piecewise analytical approximation. The frictional shear forces are deduced and integrated over the whole macroscopic contact area to result in a global coefficient of friction. The boundary condition at the leading edge of the contact area is prescribed by the height of a “quasi-liquid layer,” which already exists on the “free” ice surface. It turns out that this approach meets the measured coefficient of friction in the laboratory. More precisely, the calculated dependencies of the friction coefficient on ice temperature, sliding speed, and contact pressure are confirmed by measurements of a simple rubber block sample on artificial ice in the laboratory.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Zhou, Jian Qiu, Ying Wang, and Shu Zhang. "Effect of Grain Rotation on the Strain-Softening Behavior in Nanocrystalline Materials." Advanced Materials Research 311-313 (August 2011): 516–20. http://dx.doi.org/10.4028/www.scientific.net/amr.311-313.516.

Повний текст джерела
Анотація:
We postulated a softening model involving grain rotation that results in diffusion-accommodated grain-boundary sliding. This numerical model was used to compute the proportion evolution of grains within shear bands and was also employed to predict the softening of nanocrystalline materials considering non-homogeneous plastic deformation due to shear bands. The effect of softening mechanism for total stress-strain relation and the grain size and mean maximum Schmid factor effect was also considered in our model.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Piccardo, Marco, Antoine Chateauminois, Christian Fretigny, Nicola M. Pugno, and Metin Sitti. "Contact compliance effects in the frictional response of bioinspired fibrillar adhesives." Journal of The Royal Society Interface 10, no. 83 (June 6, 2013): 20130182. http://dx.doi.org/10.1098/rsif.2013.0182.

Повний текст джерела
Анотація:
The shear failure and friction mechanisms of bioinspired adhesives consisting of elastomer arrays of microfibres terminated by mushroom-shaped tips are investigated in contact with a rigid lens. In order to reveal the interplay between the vertical and lateral loading directions, experiments are carried out using a custom friction set-up in which normal stiffness can be made either high or low when compared with the stiffness of the contact between the fibrillar adhesive and the lens. Using in situ contact imaging, the shear failure of the adhesive is found to involve two successive mechanisms: (i) cavitation and peeling at the contact interface between the mushroom-shaped fibre tip endings and the lens; and (ii) side re-adhesion of the fibre's stem to the lens. The extent of these mechanisms and their implications regarding static friction forces is found to depend on the crosstalk between the normal and lateral loading directions that can result in contact instabilities associated with fibre buckling. In addition, the effects of the viscoelastic behaviour of the polyurethane material on the rate dependence of the shear response of the adhesive are accounted for.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Rubinstein, Shmuel M., Gil Cohen, and Jay Fineberg. "Cracklike Processes within Frictional Motion: Is Slow Frictional Sliding Really a Slow Process?" MRS Bulletin 33, no. 12 (December 2008): 1181–89. http://dx.doi.org/10.1557/mrs2008.249.

Повний текст джерела
Анотація:
AbstractThe dynamics of frictional motion have been studied for hundreds of years, yet many aspects of these important processes are not understood. First described by Coulomb and Amontons as the transition from static to dynamic friction, the onset of frictional motion is central to fields as diverse as physics, tribology, mechanics of earthquakes, and fracture. We review recent studies in which fast (real-time) visualization of the true contact area along a rough spatially extended interface separating two blocks of like material has revealed the detailed dynamics of how this transition takes place. The onset of motion is preceded by a discrete sequence of rapid cracklike precursors, which are initiated at shear levels that are well below the threshold for static friction. These precursors systematically increase in spatial extent with the applied shear force and leave in their wake a significant redistribution of the true contact area. Their cumulative effect is such that, just prior to overall sliding of the blocks, a highly inhomogeneous contact profile is established along the interface. At the transition to overall motion, these precursor cracks trigger both slow propagation modes and modes that travel faster than the shear wave speed. Overall frictional motion takes place only when either the slow propagation modes or additional shear cracks excited by these slow modes traverse the entire interface. Surprisingly, in the resulting stick–slip motion, the surface contact profile retains the profile built up prior to the first slipping event. These results suggest a fracture-based mechanism for stick–slip motion that is qualitatively different from other descriptions.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Yang, J., and K. Komvopoulos. "A Mechanics Approach to Static Friction of Elastic–Plastic Fractal Surfaces." Journal of Tribology 127, no. 2 (April 1, 2005): 315–24. http://dx.doi.org/10.1115/1.1828080.

Повний текст джерела
Анотація:
A contact mechanics theory of static friction is presented for isotropic rough surfaces exhibiting fractal behavior. The analysis is based on a piecewise power-law size distribution and a normal slope distribution of the asperity contacts and elastic–fully plastic deformation models. Numerical integration yields solutions for the normal and friction forces in terms of fractal parameters, elastic–plastic material properties, and interfacial shear strength. The variation of the static coefficient of friction with normal load is related to the effect of the surface topography on the dominant deformation mode at the asperity contacts. Plastic deformation of the smaller asperity contacts dominates at low loads and elastic deformation of the larger asperity contacts dominates at high loads. The critical load signifying the transition from predominantly plastic to elastic deformation depends on the fractal parameters and material properties. In the low-load range, the static coefficient of friction decreases with the increase of the load, while in the high-load range it increases with the load. Numerical results for copper fractal surfaces illustrate the effects of normal load, surface topography, and interfacial shear strength on the static coefficient of friction.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Labonte, David, Marie-Yon Struecker, Aleksandra V. Birn-Jeffery, and Walter Federle. "Shear-sensitive adhesion enables size-independent adhesive performance in stick insects." Proceedings of the Royal Society B: Biological Sciences 286, no. 1913 (October 23, 2019): 20191327. http://dx.doi.org/10.1098/rspb.2019.1327.

Повний текст джерела
Анотація:
The ability to climb with adhesive pads conveys significant advantages and is widespread in the animal kingdom. The physics of adhesion predict that attachment is more challenging for large animals, whereas detachment is harder for small animals, due to the difference in surface-to-volume ratios. Here, we use stick insects to show that this problem is solved at both ends of the scale by linking adhesion to the applied shear force. Adhesive forces of individual insect pads, measured with perpendicular pull-offs, increased approximately in proportion to a linear pad dimension across instars. In sharp contrast, whole-body force measurements suggested area scaling of adhesion. This discrepancy is explained by the presence of shear forces during whole-body measurements, as confirmed in experiments with pads sheared prior to detachment. When we applied shear forces proportional to either pad area or body weight, pad adhesion also scaled approximately with area or mass, respectively, providing a mechanism that can compensate for the size-related loss of adhesive performance predicted by isometry. We demonstrate that the adhesion-enhancing effect of shear forces is linked to pad sliding, which increased the maximum adhesive force per area sustainable by the pads. As shear forces in natural conditions are expected to scale with mass, sliding is more frequent and extensive in large animals, thus ensuring that large animals can attach safely, while small animals can still detach their pads effortlessly. Our results therefore help to explain how nature’s climbers maintain a dynamic attachment performance across seven orders of magnitude in body weight.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Cho, S. S., and K. Komvopoulos. "Thermoelastic Finite Element Analysis of Subsurface Cracking Due to Sliding Surface Traction." Journal of Engineering Materials and Technology 119, no. 1 (January 1, 1997): 71–78. http://dx.doi.org/10.1115/1.2805976.

Повний текст джерела
Анотація:
A linear elastic fracture mechanics analysis of subsurface crack propagation in a half-space subjected to moving thermomechanical surface traction was performed using the finite element method. The effect of frictional heating at the sliding surface on the crack growth behavior is analyzed in terms of the coefficient of friction, crack length-to-depth ratio, and Peclet number. The crack propagation characteristics are interpreted in light of results for the directions and magnitudes of the maximum shear and tensile stress intensity factor ranges, respectively. It is shown that, while frictional heating exhibits a negligible effect on the crack propagation direction, it increases the in-plane crack growth rate and reduces the critical crack length at the onset of out-of-plane crack growth at the right tip due to the tensile mechanism (kink formation). The effect of frictional heating becomes more pronounced with increasing contact friction, crack length-to-depth ratio, and Peclet number. Crack mechanism maps showing the occurrence of opening, slip, and stick regions between the crack surfaces are presented for different values of crack length-to-depth ratio, coefficient of friction, and position of thermomechanical surface traction.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Janulíková, Martina, Radim Čajka, Pavlína Matečková, and Vojtěch Buchta. "Laboratory Testing of Asphalt Belts Rheological Properties Exposed to Shear Loads / Laboratorní Měření Reologických Vlastností Asfaltových Pásů Při Smykovém Zatížení." Transactions of the VŠB – Technical University of Ostrava, Civil Engineering Series 12, no. 2 (December 1, 2012): 59–66. http://dx.doi.org/10.2478/v10160-012-0018-2.

Повний текст джерела
Анотація:
Abstract At faculty of civil engineering research is underway which appears with application sliding joints into foundation structures for several years. These sliding joints are applied in order reduce friction from deformation horizontal load effect (effect of undermining or shrinkage and concrete creep and also in prestressed foundation structures in order to allow introduction of prestressing) and they are usually formed from asphalt belts. To better describe the behavior of asphalt belts in sliding joint, it is necessary to know their behavior under the action shear loads over time. For this purpose many laboratory tests are long conducted both for different load conditions (size of the horizontal and vertical loads, the influence of environmental temperature) and different kinds of materials. This paper presents the current knowledge on the basis of measurements carried out so far.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Baker, A., RS Dwyer-Joyce, C. Briggs, and M. Brockfeld. "Effect of different rubber materials on husking dynamics of paddy rice." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 226, no. 6 (January 25, 2012): 516–28. http://dx.doi.org/10.1177/1350650111435601.

Повний текст джерела
Анотація:
The conventional way to husk rice is to pass it between two rubber rollers that are rotating with a surface speed differential. The resulting normal pressure and shear stress causes the husk to be peeled away from the kernel. The process is suited to high-rice flow rates, but is energy intensive and can result in considerable wear to the surfaces of the rollers. The operating parameters for machines of this design are usually determined and set empirically. In this article, some experiments and calculations had been carried out in order to explore the mechanisms involved in husking rice grains using this method. A simple sliding friction rig with load cell and high-speed camera was used to observe the mechanisms that occur during husking. The husking performance of different rubbers was compared for changes in the applied normal load. It was found that grains rotate between the rubber counterfaces on initial motion before being husked. In addition, harder rubbers were found to husk a higher proportion of entrained grains at lower applied normal load. By measuring the coefficient of friction between rice and rubber samples, the shear force required to husk a given percentage of grains could be calculated and was shown to be constant regardless of rubber type. Based on the mechanism seen in the high-speed video, it was evident that there was a limiting shear stress that was the governing factor over the husked ratio.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Yu, Xue Mei, Ya Zhou Sun, and Hai Tao Liu. "Finite Element Simulation and Analysis of Size Effect in Micro-Milling Process." Applied Mechanics and Materials 16-19 (October 2009): 1159–63. http://dx.doi.org/10.4028/www.scientific.net/amm.16-19.1159.

Повний текст джерела
Анотація:
In order to determine the minimum thickness of cutting under different cutting condition of aluminum alloy materials 2A12 of micro-milling, research the size effect caused by the cutting edge radius and few microns per tooth in micro-milling process. Using thermal coupling model of Johnson-Cook as a material model of the workpiece, using Johnson-Cook shear failure of the law as part of the failure criteria, using coupled plane strain thermal units and hybrid adaptive grid technology to mesh, the friction between the tool and workpiece take the amendment Coulomb's law that combine with the sliding friction areas and areas of the adhesive friction, to the micro-milling by nonlinear and elastic-plastic finite element simulation. Through finite element analysis, the ratio of minimum radius of thickness to the cutting edge tool radius under different conditions of cutting speed and cutter blade was got, the size effect, stress field and cutting force under different cutting depth was got, and comparing and analysis the results, getting the various factors impact on the size effect of micro-milling, it provide a basis for the actual processing.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Wang, Tao, Xue Gong, Shude Ji, Gang Xue, and Zan Lv. "Friction stir lap welding thin aluminum alloy sheets." High Temperature Materials and Processes 39, no. 1 (December 23, 2020): 663–70. http://dx.doi.org/10.1515/htmp-2020-0024.

Повний текст джерела
Анотація:
AbstractIn this work, thin aluminum alloy sheets with thickness of 0.8 mm were friction stir lap welded using small shoulder plunge depths of 0 and 0.1 mm. The joint formation, microstructure and mechanical properties were investigated. Results show that voids appear inside the stir zone when the small plunge depth of 0 mm is used because the tool shoulder cannot exert a good material-collecting effect at such low plunge depth. A plunge depth of 0.1 mm causes tight contact between the shoulder and the material and thus results in good material-collecting effect, which is helpful to eliminate the void. Sound joints are attained at a wide range of welding parameters when using the shoulder plunge depth of 0.1 mm. No crack is observed inside the bonding ligament. The joints own higher failure loads when the retreating side (RS) of the joint bares the main load during the lap shear tests. The shear failure load first increases and then decreases with increasing the rotating and welding speeds, and the maximum failure load of 6419 N is obtained at 600 rpm and 150 mm/min. The hardness of the joint presents a “W” morphology and the minimum hardness is obtained at the heat affected zone. The joints present tensile fracture and shear fracture when the advancing side and RS bare the main loads, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Klingbeil, W. W., and H. W. H. Witt. "Some Consequences of Coulomb Friction in Modeling Longitudinal Traction." Tire Science and Technology 18, no. 1 (January 1, 1990): 13–65. http://dx.doi.org/10.2346/1.2141691.

Повний текст джерела
Анотація:
Abstract A three-component model for a belted radial tire, previously developed by the authors for free rolling without slip, is generalized to include longitudinal forces and deformations associated with driving and braking. Surface tractions at the tire-road interface are governed by a Coulomb friction law in which the coefficient of friction is assumed to be constant. After a brief review of the model, the mechanism of interfacial shear force generation is delineated and explored under traction with perfect adhesion. Addition of the friction law then leads to the inception of slide zones, which propagate through the footprint with increasing severity of maneuvers. Different behavior patterns under driving and braking are emphasized, with comparisons being given of sliding displacements, sliding velocities, and frictional work at the tire-road interface. As a further application of the model, the effect of friction coefficient and of test variables such as load, deflection, and inflation pressure on braking stiffness are computed and compared to analogous predictions on the braking spring rate.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Zhao, Zhinan, Yujunwen Li, Wu Lei, and Qingli Hao. "Modified Graphene/Muscovite Nanocomposite as a Lubricant Additive: Tribological Performance and Mechanism." Lubricants 10, no. 8 (August 19, 2022): 190. http://dx.doi.org/10.3390/lubricants10080190.

Повний текст джерела
Анотація:
Modified graphene/muscovite (MGMu) nanocomposite was synthesized with muscovite (Mu) and silane coupling agent modified graphene oxide through a simple hydrothermal method that exhibited excellent dispersion stability in oil. Compared with the base oil sample, the average friction coefficient and wear scar diameter of the MGMu oil sample decreased by 64.4 and 20.0%, respectively, and the microhardness of its wear scar was increased by 16.1%. The MGMu showed better tribological performance than its individual component due to the synergetic effect between the two components. The lubrication mechanism was proposed according to the morphology, chemical composition, and microhardness of the surface of wear scars. MGMu as an oil additive could fill between the friction pairs, cling to some asperities, and occur relative sliding between unit layers, thus playing a role in lubrication. It was found that MGMu would react with the surface of the friction pair during the friction process to generate Fe2O3, SiO2, SiC, and new aluminosilicate, which formed a self-repairing layer with high hardness. This chemically reactive film exhibited a lower shear strength, which made the oil sample containing MGMu have a lower coefficient of friction.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Liu, Hanbing, Shuang Sun, Lixia Wang, Yunlong Zhang, Jing Wang, Guobao Luo, and Leilei Han. "Microscopic Mechanism of the Macroscopic Mechanical Properties of Cement Modified Subgrade Silty Soil Subjected to Freeze-Thaw Cycles." Applied Sciences 10, no. 6 (March 23, 2020): 2182. http://dx.doi.org/10.3390/app10062182.

Повний текст джерела
Анотація:
In order to study the effects of the microstructure parameters of cement modified subgrade silty soil (CMSS) in a frozen area under freeze-thaw (F-T) cycles on the macroscopic mechanical properties, the static triaxial test, scanning electron microscopy (SEM), and grey relation analysis (GRA) were implemented on silty soil modified with 0% and 2% cement at optimum moisture content from the northwest in Jilin Province in China. The results showed that the shear strength, the cohesion of 0% and 2% CMSS, decreased with the increase of F-T cycles, while the internal friction angle was not obviously changed. The shear strength and its parameters of 2% CMSS doubled compared to that of 0% CMSS. The micro-parameters, representing the particle morphological characteristics, particle arrangement, and pore characteristics of CMSS, changed differently under F-T cycles. If the cement was not added, the cohesion and the internal friction angle were most sensitive to the average particle diameter (Dp) and the average particle abundance (C), respectively. When the cement content was 2%, the cohesion was chiefly affected by the particle size fractal dimension (Dps), while the internal friction angle was mainly related to the average pore diameter (Dh). The main principle of cement improvement was to decrease Dh of soil under F-T cycles.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Torskaya, Elena, and Fedor Stepanov. "Friction Reduction Due to Heating in the Sliding Contact of Smart Coating: Modeling of Mutual Effect." Lubricants 10, no. 7 (July 20, 2022): 165. http://dx.doi.org/10.3390/lubricants10070165.

Повний текст джерела
Анотація:
In smart coatings designed for friction units operating in wide temperature ranges, the material reacts to heating by changing its frictional properties. Appropriate experimental studies are available. In this paper, a model is proposed for studying the mutual effect of frictional heating, which is inhomogeneous in the contact area, and shear stresses. The distribution of the latter differs from the Amonton–Coulomb law according to local temperatures, from which the local friction coefficient depends. Two problems are independently solved in the model: the problem of elastic contact between a smooth slider and a two-layer elastic half-space, and the thermal problem. The solution methods are numerical–analytical and are based on Hankel integral transforms and iterative procedures. The problem has been solved for two types of sliders simulating pin-on-disk and ball-on-disk test schemes. For the selected dependences of the local friction coefficient on temperature, an analysis was made to study the influence of sliding velocity and coating thickness on the distribution of temperatures, tangential stresses in the contact zone, as well as integral friction force. Relatively rigid and relatively compliant coatings were considered. It was found that for such smart coatings, which implement the mechanism of self-lubrication during frictional heating, there is a decrease in the friction force with increasing velocity, especially for relatively thick coatings with low thermal conductivity.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Heshmat, H., and D. Brewe. "Performance of Powder-Lubricated Journal Bearings With MoS2 Powder: Experimental Study of Thermal Phenomena." Journal of Tribology 117, no. 3 (July 1, 1995): 506–12. http://dx.doi.org/10.1115/1.2831282.

Повний текст джерела
Анотація:
Powder-lubricated, quasi-hydrodynamic journal bearings assist in controlling wear and hold promise for integration in outer space systems/mechanisms and in other hostile-environment applications where the use of conventional lubricants is impractical. Described herein are the thermal phenomena and an assessment of the thermal stability, heat generation and dissipation characteristics of slider-type, powder-lubricated bearings. Powder lubricant films provide lift and separate bearing surfaces and cause side leakage. The reduction in friction coefficient and, consequently, in the heat generated in the bearings, drastically reduces wear of the tribomaterials. Further, bearing side leakage carries away most of the heat generated by shear, reducing the heat to the critical bearing surfaces. Also presented are the thermohydrodynamic effects of powder lubrication (MoS2) on bearing performance criteria, e.g., temperature and friction coefficient as a function of speed and load, including the effect of powder flow rate on bearing performance and wear.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Lu, Kunquan, Zexian Cao, Meiying Hou, Zehui Jiang, Rong Shen, Qiang Wang, Gang Sun, and Jixing Liu. "The mechanism of earthquake." International Journal of Modern Physics B 32, no. 07 (March 5, 2018): 1850080. http://dx.doi.org/10.1142/s0217979218500807.

Повний текст джерела
Анотація:
The physical mechanism of earthquake remains a challenging issue to be clarified. Seismologists used to attribute shallow earthquake to the elastic rebound of crustal rocks. The seismic energy calculated following the elastic rebound theory and with the data of experimental results upon rocks, however, shows a large discrepancy with measurement — a fact that has been dubbed as “the heat flow paradox”. For the intermediate-focus and deep-focus earthquakes, both occurring in the region of the mantle, there is not reasonable explanation either. This paper will discuss the physical mechanism of earthquake from a new perspective, starting from the fact that both the crust and the mantle are discrete collective system of matters with slow dynamics, as well as from the basic principles of physics, especially some new concepts of condensed matter physics emerged in the recent years. (1) Stress distribution in earth’s crust: Without taking the tectonic force into account, according to the rheological principle of “everything flows”, the normal stress and transverse stress must be balanced due to the effect of gravitational pressure over a long period of time, thus no differential stress in the original crustal rocks is to be expected. The tectonic force is successively transferred and accumulated via stick-slip motions of rock blocks to squeeze the fault gouge and then exerted upon other rock blocks. The superposition of such additional lateral tectonic force and the original stress gives rise to the real-time stress in crustal rocks. The mechanical characteristics of fault gouge are different from rocks as it consists of granular matters. The elastic moduli of the fault gouges are much less than those of rocks, and they become larger with increasing pressure. This peculiarity of the fault gouge leads to a tectonic force increasing with depth in a nonlinear fashion. The distribution and variation of the tectonic stress in the crust are specified. (2) The strength of crust rocks: The gravitational pressure can initiate the elasticity–plasticity transition in crust rocks. By calculating the depth dependence of elasticity–plasticity transition and according to the actual situation analysis, the behaviors of crust rocks can be categorized in three typical zones: elastic, partially plastic and fully plastic. As the proportion of plastic portion reaches about 10% in the partially plastic zone, plastic interconnection may occur and the variation of shear strength in rocks is mainly characterized by plastic behavior. The equivalent coefficient of friction for the plastic slip is smaller by an order of magnitude, or even less than that for brittle fracture, thus the shear strength of rocks by plastic sliding is much less than that by brittle breaking. Moreover, with increasing depth a number of other factors can further reduce the shear yield strength of rocks. On the other hand, since earthquake is a large-scale damage, the rock breaking must occur along the weakest path. Therefore, the actual fracture strength of rocks in a shallow earthquake is assuredly lower than the average shear strength of rocks as generally observed. The typical distributions of the average strength and actual fracture strength in crustal rocks varying with depth are schematically illustrated. (3) The conditions for earthquake occurrence and mechanisms of earthquake: An earthquake will lead to volume expansion, and volume expansion must break through the obstacle. The condition for an earthquake to occur is as follows: the tectonic force exceeds the sum of the fracture strength of rock, the friction force of fault boundary and the resistance from obstacles. Therefore, the shallow earthquake is characterized by plastic sliding of rocks that break through the obstacles. Accordingly, four possible patterns for shallow earthquakes are put forward. Deep-focus earthquakes are believed to result from a wide-range rock flow that breaks the jam. Both shallow earthquakes and deep-focus earthquakes are the energy release caused by the slip or flow of rocks following a jamming–unjamming transition. (4) The energetics and impending precursors of earthquake: The energy of earthquake is the kinetic energy released from the jamming–unjamming transition. Calculation shows that the kinetic energy of seismic rock sliding is comparable with the total work demanded for rocks’ shear failure and overcoming of frictional resistance. There will be no heat flow paradox. Meanwhile, some valuable seismic precursors are likely to be identified by observing the accumulation of additional tectonic forces, local geological changes, as well as the effect of rock state changes, etc.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Voronin, Ivan Andreyevich, Yuriy Davidovich Alashkevich, and Viktor Anatol'yevich Kozhukhov. "THE GRINDING MECHANISM ON A KNIFE CENTRIFUGAL GRINDING MACHINE." chemistry of plant raw material, no. 4 (December 21, 2020): 485–92. http://dx.doi.org/10.14258/jcprm.2020048164.

Повний текст джерела
Анотація:
The article presents a methodology for calculating the force effect on a fibrous suspension of working bodies in a centrifugal grinding apparatus. The aim of the research is to calculate the force per tooth of an inertial body at different speeds of rotation of the rotor, to determine the effect of the circumferential speed of movement of inertial bodies on the grinding process of fibrous semi-finished products. The article discusses the mechanism of grinding on a centrifugal knife grinding apparatus, determines the tangential shear forces at the contact of the grinding satellite knives with the grinding bowl knives, determines the effect on the fiber of rolling friction forces and sliding friction forces when the grinding satellite knives come into contact with the grinding bowl knives, as well as the effect of specific pressure at the point of contact of the satellite knives with the grinding bowl knives under the influence of inertial forces. Based on the research results, it is scientifically substantiated that the forces arising at the minimum of the considered values of the rotation speed of inertial bodies are sufficient to break the fiber when using this installation for grinding fibrous semi-finished products. An increase in the speed of rotation of the satellites causes a positive change in the physical and mechanical characteristics of the finished castings.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Lenkovskiy, T. M., V. V. Kulyk, Z. A. Duriagina, L. V. Dzyubyk, V. V. Vira, A. R. Dzyubyk, A. R. Dzyubyk, and T. L. Tepla. "Finite elements analysis of the side grooved I-beam specimen for mode II fatigue crack growth rates determination." Journal of Achievements in Materials and Manufacturing Engineering 2, no. 86 (February 1, 2018): 70–77. http://dx.doi.org/10.5604/01.3001.0011.8238.

Повний текст джерела
Анотація:
Purpose: Carefully investigate the stress-strain state of the side grooved I-beam specimen with edge crack and determine the effect of crack length and crack faces friction on stress intensity factor at transverse shear. Design/methodology/approach: The finite element method was used to estimate the stress-strain state of I-beam specimen at transverse shear. For this purpose, a fullscale, three-dimensional model of the specimen was created, which precisely reproduces its geometry and fatigue crack faces contact. For the correct reproduction of the stress singularity at the crack tip, a special sub-model was used, which has been tested earlier in solving similar problems of fracture mechanics. In order to improve the accuracy of the calculations, for crack plane and cross-section of the specimen on the crack extension modeling, an algorithm for changing the crack length without changing the total number of elements in the model was developed and applied. Young's modulus and Poisson's ratio of structural steels were specified for the model material. The static loading of the model was realized assuming small scale yielding condition. The stress intensity factor was found through the displacement of nodes in the prismatic elements adjacent to the plane and the front of the crack. Findings: Mathematical dependences, which show an increase of stress intensity factor in the I-beam specimen with an increase in the crack length, and its decrease with an increase of crack faces friction factor at transverse shear, were established. The results are compared with the partial cases known from the literature and their good convergence was shown. Research limitations/implications: By analyzing the obtained graphical dependences, it is established that for relative crack lengths less than 0.4 there is a significant influence of the initial notch on the stress-strain state of the specimen, and for the lengths greater than 0.9 an influence of constrained gripping part took place. For this reason, all subsequent calculations were carried out in the range of relative crack length from 0.4 to 0.9, which represents the applicability range of the final calculation formula. Increasing of the crack faces friction factor from 0 to 1 monotonically reduces the stress at the crack tip. For a short crack, this effect is 1.5 times greater than for a long one, which is reflected by the calculation formula. Practical implications: Using the proposed calculation formula, one can calculate the stress intensity factor in the I-beam specimen, and to determine the crack growth resistance characteristics of structural steels at transverse shear. Originality/value: A new, easy-to-use in engineering calculations formula is proposed for stress intensity factor determination in the I-beam specimen at transverse shear. The formula takes into account crack faces friction for various crack lengths.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Huang, Wenyun, Honglu Yun, Wenchao Huang, Bin Zhang, and Xujian Lyu. "On the Influences of Air Bubbles on Water Flow in a Two-Dimensional Channel." Mathematical Problems in Engineering 2021 (March 18, 2021): 1–15. http://dx.doi.org/10.1155/2021/6818673.

Повний текст джерела
Анотація:
As an inevitable trend for the sustainable development of the global economy, saving energy and reducing emissions are key goals for the entire world. The use of air bubbles to reduce viscous friction is one of the most effective approaches to achieve this goal, as it may significantly reduce the frictional drag of ships. However, the injection of air bubbles will change flow characteristics near the wall due to the significant differences in density and viscosity between air and water. In addition, parameters such as bubble size, bubble surface tension, bubble number and bubble position also affect the flow near the wall, resulting in significant diversity and instability in two-phase flow. To clarify the mechanism of these effects, a two-dimensional channel flow with air bubbles is studied using Computational Fluid Dynamics (CFD). The interactions between bubbles and water and between bubbles and wall are studied, and the detailed characteristics of bubbles moving in fully developed flow are considered. This study shows that the velocity gradient is the main factor influencing wall shear stress, and the presence of bubbles has a marked impact on the local velocity gradient distribution of the nearby flow. It is also found that shorter distance between a bubble and the wall enhances the flow interaction and leads to more significant perturbations of wall shear stress.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Xu, Zhiwei, Michael Yu Wang, and Tianning Chen. "An Experimental Study of Particle Damping for Beams and Plates." Journal of Vibration and Acoustics 126, no. 1 (January 1, 2004): 141–48. http://dx.doi.org/10.1115/1.1640354.

Повний текст джерела
Анотація:
This paper describes an experimental investigation of a particle damping method for a beam and a plate. Tungsten carbide particles are embedded within longitudinal (and latitudinal) holes drilled in the structure, as a simple and passive means for vibration suppression. Unlike in traditional damping materials, mechanisms of energy dissipation of particle damping are highly nonlinear and primarily related to friction and impact phenomena. Experiments are conducted with a number of arrangements of the packed particles including different particle sizes and volumetric packing ratios. The results show that the particle damping is remarkably effective and that strong attenuations are achieved within a broad frequency range. The effects of the system parameters including particle size, packing ratio and particle material are studied by broadband and narrowband random excitations. The experimental results confirm a numerical prediction that shear friction in the longitudinal (and the latitudinal) directions is effective as the major contributing mechanism of damping in the case. Another unique feature of linear decay in free vibrations is also observed in this case of particle damping.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Rastegari, Amirreza, and Rayhaneh Akhavan. "The common mechanism of turbulent skin-friction drag reduction with superhydrophobic longitudinal microgrooves and riblets." Journal of Fluid Mechanics 838 (January 10, 2018): 68–104. http://dx.doi.org/10.1017/jfm.2017.865.

Повний текст джерела
Анотація:
Turbulent skin-friction drag reduction with superhydrophobic (SH) longitudinal microgrooves and riblets is investigated by direct numerical simulation (DNS), using lattice Boltzmann methods, in channel flow. The liquid/gas interfaces in the SH longitudinal microgrooves were modelled as stationary, curved, shear-free boundaries, with the meniscus shape determined from the solution of the Young–Laplace equation. Interface protrusion angles of $\unicode[STIX]{x1D703}=0^{\circ },-30^{\circ },-60^{\circ },-90^{\circ }$ were investigated. For comparison, the same geometries as those formed by the SH interfaces were also studied as riblets. Drag reductions of up to 61 % and up to 5 % were realized in DNS with SH longitudinal microgrooves and riblets, respectively, in turbulent channel flows at bulk Reynolds numbers of $Re_{b}=3600$ ($Re_{\unicode[STIX]{x1D70F}_{0}}\approx 222$) and $Re_{b}=7860$ ($Re_{\unicode[STIX]{x1D70F}_{0}}\approx 442$), with arrays of SH longitudinal microgrooves or riblets of size $14\lesssim g^{+0}\lesssim 56$ and $g^{+0}/w^{+0}=7$ on both walls, where $g^{+0}$ and $w^{+0}$ denote the widths and spacings of the microgrooves in base flow wall units, respectively. An exact analytical expression is derived which allows the net drag reduction in laminar or turbulent channel flow with any SH or no-slip wall micro-texture to be decomposed into contributions from: (i) the effective slip velocity at the wall, (ii) modifications to the normalized structure of turbulent Reynolds shear stresses due to the presence of this effective slip velocity at the wall, (iii) other modifications to the normalized structure of turbulent Reynolds shear stresses due to the presence of the wall micro-texture, (iv) modifications to the normalized structure of mean flow shear stresses due to the presence of the wall micro-texture and (v) the fraction of the flow rate through the wall micro-texture. Comparison to DNS results shows that SH longitudinal microgrooves and riblets share a common mechanism of drag reduction in which $100\,\%$ of the drag reduction arises from effects (i) and (ii). The contributions from (iii)–(v) were always drag enhancing, and followed a common scaling with SH longitudinal microgrooves and riblets when expressed as a function of the square root of the microgroove cross-sectional area in wall units. Extrapolation of drag reduction data from DNS to high Reynolds number flows of practical interest is discussed. It is shown that, for a given geometry and size of the surface micro-texture in wall units, the drag reduction performance of micro-textured surfaces degrades with increasing bulk Reynolds number of the flow. Curved SH interfaces at low protrusion angle ($\unicode[STIX]{x1D703}=-30^{\circ }$) were found to enhance the drag reduction by up to 3.6 % compared to flat interfaces, while reducing the instantaneous pressure fluctuations on the SH interfaces by up to a factor of two. This suggests that the longevity of SH interfaces in turbulent flow may be improved by embedding the SH surface within the microgrooves of shallow, scalloped riblets.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Sakuma, Hiroshi, Kenji Kawai, and Toshihiro Kogure. "Interlayer energy of pyrophyllite: Implications for macroscopic friction." American Mineralogist 105, no. 8 (August 1, 2020): 1204–11. http://dx.doi.org/10.2138/am-2020-7333.

Повний текст джерела
Анотація:
Abstract Deformation of phyllosilicate can control the dynamics of the Earth's crust. The phenomenological relationship between stress and deformation is known for some typical phyllosilicates; however, the underlying physics originating from the crystal structures is poorly understood. In this study, the deformation mechanism of pyrophyllite along basal planes was revealed through density functional theory calculations and atomic-scale theory of friction. The stable and metastable interlayer structures formed by interlayer slide were consistent with the experimental results reported previously by high-resolution transmission electron microscopy. The difference in potential energies between stable and metastable interlayer structures can be interpreted as the difference in the stacking of dioctahedral sheets between the adjacent layers. The estimated friction coefficient of the pyrophyllite between adjacent layers was consistent with the results of atomic force microscopy, suggesting that atomic-scale friction can be adequately estimated by this method. The calculated shear stress in our simulations has a linear relationship with the normal stress and has no significant crystallographic dependence on sliding direction along the basal planes. The crystallographic isotropy of interlayer friction is explained by the absence of interlayer cations in pyrophyllite, while muscovite showed crystallographic anisotropy as observed in previous studies. The macroscopic friction of a single crystal of pyrophyllite was estimated from atomic-scale friction by using the area of contact. The macroscopic friction coefficient of ideal interlayer sliding was estimated to be 0.134, which was smaller than a reported value (0.276) in shear experiments conducted for wet polycrystalline gouge layers. This difference can be primarily explained by the degree of orientation of pyrophyllite particles in the gouge layers. The friction coefficient estimated by a simple model of randomly oriented pyrophyllite gouge layer was 0.203 ± 0.001, which was similar to the reported value of 0.276 and clearly smaller than the values (0.6–0.85) of common minerals estimated by the empirical Byerlee's law. These results indicate that weak interlayer friction of phyllosilicates has a large effect on the low frictional strength of gouge layers in natural faults. Our methodology and results are useful for understanding the physics behind the phenomenological friction laws of phyllosilicate gouge.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Bernat-Maso, E., L. Gil, C. Escrig, J. Barbé, and P. Cortés. "Effect of Sporosarcina Pasteurii on the strength properties of compressed earth specimens." Materiales de Construcción 68, no. 329 (February 5, 2018): 143. http://dx.doi.org/10.3989/mc.2018.12316.

Повний текст джерела
Анотація:
Microbial biodeposition of calcite induction for improving the performance of rammed earth is a research area that must be analysed in a representative environment. This analysis must consider the compaction force, particle size distribution and curing process as production variables. This paper investigates the effects of adding specific bacteria, Sporosarcina Pasteurii, into compressed earth cubes and the effect of production variables. Uniaxial compressive tests and direct shear tests have been conducted for 80 specimens. The results indicate that calcite precipitation interacts with the drying process of clay/silt resulting in reducing the compressive strength, the apparent cohesion and the friction angle. Finally, bacterial activity, which is more likely in samples cured in a high humidity environment, tends to reduce the dilatancy effect.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Federico, Francesco, and Chiara Cesali. "An energy-based approach to predict debris flow mobility and analyze empirical relationships." Canadian Geotechnical Journal 52, no. 12 (December 2015): 2113–33. http://dx.doi.org/10.1139/cgj-2015-0107.

Повний текст джерела
Анотація:
Several empirical relationships allowing a preliminary estimate of debris flow runout distances have been proposed to correlate the runout length to the volume of the sliding granular mass, delimit potentially hazardous areas, and design safeguarding measures. To overcome their large variability and define their fields of applicability, an energy-based model, predicting debris flow mobility, is developed. The power balance of a granular mass sliding along two planar surfaces is written by taking into account the volume of the debris mass, the slopes of the sliding surfaces, an assigned interstitial pressure, the possible mass variation along the motion, the energy dissipation due to the grain inelastic collisions (“granular temperature” within a basal “shear layer”), and friction. A system of ordinary differential equations is obtained; its numerical solution allows, through parametrical analyses: (i) highlighting of the role of physical and mechanical parameters on the runout distance, such as grain size material, interstitial pressures, grain collisions, and erodibility of the crossed channel; and (ii) defining of the favourable conditions for debris flows mechanism generation. Finally, through the back-analysis of some cases, an original relationship to estimate the runout length, as well as to interpret the results of the empirical formulas, is proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Kubit, Andrzej, Tomasz Trzepieciński, Elżbieta Gadalińska, Ján Slota, and Wojciech Bochnowski. "Investigation into the Effect of RFSSW Parameters on Tensile Shear Fracture Load of 7075-T6 Alclad Aluminium Alloy Joints." Materials 14, no. 12 (June 19, 2021): 3397. http://dx.doi.org/10.3390/ma14123397.

Повний текст джерела
Анотація:
The aim of the investigations was to determine the effect of parameters of refill friction stir spot welding (RFSSW) on the fracture load and failure mechanisms of the resulting joint. RFSSW joints were made in 7075-T6 Alclad aluminium alloy sheets using different welding parameters. The load capacity of joints was determined under tensile/shear loadings. Finite element-based numerical simulations of the joint-loading process were carried out, taking into account the variability of elasto-plastic properties of weld material through the joint cross-section. The influence of welding parameters on selected phenomena occurring during the destruction of the joint is presented. The considerations were supported by a fractographic analysis based on SEM images of fractures. It was found that there is a certain optimal amount of heat generated, which is necessary to produce the correct joint in terms of its load capacity. This value should not be exceeded, because it leads to weakening of the base material and thus to a reduction in the strength of the joint. Samples subjected to uniaxial tensile shear load showed three types of failure mode (tensile fracture, shear fracture, plug type fracture) depending on the tool rotational speed and duration of welding. Prediction of the fracture mode using FE-based numerical modelling was consistent with the experimental results. The samples that were damaged due to the tensile fracture of the lower sheet revealed a load capacity (LC) of 5.76 KN. The average value of LC for the shear fracture failure mechanism was 5.24 kN. The average value of the LC for plug-type fracture mode was 5.02 kN. It was found that there is an optimal amount of heat generated, which is necessary to produce the correct joint in terms of its LC. Excessive overheating of the joint leads to a weakening of the base metal and thus a reduction in the strength of the joint. Measurements of residual stresses along the axis specimens showed the presence of stresses with a certain constant value for the welded area on the side of the 1.6 mm thick plate.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії