Дисертації з теми "Shape statistics"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Shape statistics".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Tola, Omer Onder. "Generalized Beam Angle Statistics For Shape Description." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/2/12605412/index.pdf.
Повний текст джерелаChen, Yining. "Aspects of shape-constrained estimation in statistics." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648300.
Повний текст джерелаGao, Zhikun. "Automatic Shape-Constrained Non-Parametric Regression." Thesis, The George Washington University, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13813788.
Повний текст джерелаWe propose an automatic shape-constrained non-parametric estimation methodology in least squares and quantile regression, where the regression function and its shape are simultaneously estimated and identified.
We build the estimation based on the quadratic B-spline expansion with penalization about its first and second derivatives on spline knots in a group manner. By penalizing the positive and negative parts of the introduced group derivatives, the shape of the estimated regression curve is determined according to the sparsity of the parameters considered. In the quadratic B-spline expansion, the parameters referring to the shape can be written through some simple linear combinations of the basis coefficients, which makes it convenient to impose penalization for shape identification is efficient in computation and is flexible in various shape identification. In both least squares and quantile regression scenarios, under some regularity conditions, we show that the proposed method can identify the correct shape of the regression function with probability approaching one, and the resulting non-parametric estimator can achieve the optimal convergence rate. Simulation study shows that the proposed method gives more stable curve estimation and more accurate curve shape classification than the conventional unconstrained B-spline estimator in both mean and quantile regressions, and it is competitive in terms of the estimation accuracy to the artificial shape-constrained estimator built by knowing prior information of the curve shape. In addition, across multiple quantile levels, the proposed estimator shows less crossing between the estimated quantile curves than the unpenalized counterpart.
Er, Fikret. "Robust methods in statistical shape analysis." Thesis, University of Leeds, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342394.
Повний текст джерелаButt, R. "Optimal shape design for differential inequalities." Thesis, University of Leeds, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233771.
Повний текст джерелаStrait, Justin. "Elastic Statistical Shape Analysis with Landmark Constraints." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1530966023478484.
Повний текст джерелаWalder, Alistair Neil. "Statistics of shape and size for landmark data." Thesis, University of Leeds, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303425.
Повний текст джерелаPrieto, Bernal Juan Carlos. "Multiparametric organ modeling for shape statistics and simulation procedures." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0010/document.
Повний текст джерелаGeometric modeling has been one of the most researched areas in the medical domain. Today, there is not a well established methodology to model the shape of an organ. There are many approaches available and each one of them have different strengths and weaknesses. Most state of the art methods to model shape use surface information only. There is an increasing need for techniques to support volumetric information. Besides shape characterization, a technique to differentiate objects by shape is needed. This requires computing statistics on shape. The current challenge of research in life sciences is to create models to represent the surface, the interior of an object, and give statistical differences based on shape. In this work, we use a technique for shape modeling that is able to model surface and internal features, and is suited to compute shape statistics. Using this technique (s-rep), a procedure to model the human cerebral cortex is proposed. This novel representation offers new possibilities to analyze cortical lesions and compute shape statistics on the cortex. The second part of this work proposes a methodology to parameterize the interior of an object. The method is flexible and can enhance the visual aspect or the description of physical properties of an object. The geometric modeling enhanced with physical parameters is used to produce simulated magnetic resonance images. This image simulation approach is validated by analyzing the behavior and performance of classic segmentation algorithms for real images
Terriberry, Timothy B. Gerig Guido. "Continuous medial models in two-sample statistics of shape." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2006. http://dc.lib.unc.edu/u?/etd,579.
Повний текст джерелаTitle from electronic title page (viewed Oct. 10, 2007). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science." Discipline: Computer Science; Department/School: Computer Science.
Bhattacharya, Abhishek. "Nonparametric Statistics on Manifolds With Applications to Shape Spaces." Diss., The University of Arizona, 2008. http://hdl.handle.net/10150/194508.
Повний текст джерелаDai, Xiaotian. "Novel Statistical Models for Quantitative Shape-Gene Association Selection." DigitalCommons@USU, 2017. https://digitalcommons.usu.edu/etd/6856.
Повний текст джерелаHyde, Andrew. "Statistical shape analysis of wheat root systems." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/52255/.
Повний текст джерелаZhao, Zhiye. "Shape design sensitivity analysis and optimization using the boundary element method." Thesis, University of South Wales, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254866.
Повний текст джерелаSajib, Anamul. "A Bayesian model for the unlabelled size-and-shape analysis." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/55511/.
Повний текст джерелаZaetz, Jiaqi L. "A Riemannian Framework for Shape Analysis of Annotated 3D Objects." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1440368778.
Повний текст джерелаAmaral, Getulio J. A. "Bootstrap and empirical likelihood methods in statistical shape analysis." Thesis, University of Nottingham, 2004. http://eprints.nottingham.ac.uk/11399/.
Повний текст джерелаGkolias, Theodoros. "Shape analysis in protein structure alignment." Thesis, University of Kent, 2018. https://kar.kent.ac.uk/66682/.
Повний текст джерелаChiang, Lisa Gee. "Passive coincidence technique to determine the shape of plutonium objects using second order statistics." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/17893.
Повний текст джерелаEaston, Valerie J. "Describing size and shape changes in the human mandible from 9 to 15 years : comparison of elliptical Fourier function and Procrustes methods." Thesis, University of Glasgow, 2000. http://theses.gla.ac.uk/8392/.
Повний текст джерелаBrandao, Renata. "Study shows : how statistics are used to articulate and shape discourses of science in the newsroom." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/16438/.
Повний текст джерелаSlezak, Thomas Joseph. "Quantitative Morphological Classification of Planetary Craterforms Using Multivariate Methods of Outline-Based Shape Analysis." BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/6639.
Повний текст джерелаHamsici, Onur C. "Bayes Optimality in Classification, Feature Extraction and Shape Analysis." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1218513562.
Повний текст джерелаParanjape, Harshad Madhukar. "Modeling of Shape Memory Alloys: Phase Transformation/Plasticity Interaction at the Nano Scale and the Statistics of Variation in Pseudoelastic Performance." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417605178.
Повний текст джерелаBartels, Brandon L. "Heterogeneity in Supreme Court decision making how situational factors shape preference-based behavior /." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1148557321.
Повний текст джерелаVan, Bever Germain. "Contributions to nonparametric and semiparametric inference based on statistical depth." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209438.
Повний текст джерелаCelle-ci, originellement introduite afin de généraliser la notion de médiane et de fournir naturellement un ordre (depuis un centre, vers l'extérieur) dans un contexte multivarié, a, depuis son développement, démontré ses nombreuses qualités, tant en termes de robustesse, que d'utilité dans de nombreuses procédures inférentielles.
Les résultats proposés dans ce travail se développent le long de trois axes.
Pour commencer, la thèse s'intéresse à la classification supervisée. La profondeur a, en effet, déjà été utilisée avec succès dans ce contexte. Cependant, jusqu'ici, les outils développés restaient limités aux distributions elliptiques, constituant ainsi une sévère restriction des méthodes utilisant les fonctions de profondeur, qui, pour la plupart, sont par essence nonparamétrique. La première partie de cette thèse propose donc une nouvelle méthode de classification, fondée sur la profondeur, dont on montrera qu'elle est essentiellement universellement convergente. En particulier, la règle de discrimination proposée se fonde sur les idées utilisées dans la classification par plus proches voisins, en introduisant cependant des voisinages fondés sur la profondeur, mieux à même de cerner le comportement des populations sous-jacentes.
Ces voisinages d'un point quelconque, et surtout l'information sur le comportement local de la distribution en ce point qu'ils apportent, ont été réutilisés dans la seconde partie de ce travail. Plusieurs auteurs ont en effet reconnu certaines limitations aux fonctions de profondeur, de par leur caractère global et la difficulté d'étudier par leur biais des distributions multimodales ou à support convexe. Une nouvelle définition de profondeur locale est donc développée et étudiée. Son utilité dans différents problèmes d'inférence est également explorée.
Enfin, la thèse s'intéresse au paramètre de forme pour les distributions elliptiques. Ce paramètre d'importance est utilisé dans de nombreuses procédures statistiques (analyse en composantes principales, analyse en corrélations canoniques, entre autres) et aucune fonction de profondeur pour celui-ci n'existait à ce jour. La profondeur de forme est donc définie et ses propriétés sont étudiées. En particulier, on montrera que le cadre général de la profondeur paramétrique n'est pas suffisant en raison de la présence du paramètre de nuisance (d'influence non nulle) qu'est l'échelle. Une application inférentielle est présentée dans le cadre des tests d'hypothèses.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Vuollo, V. (Ville). "3D imaging and nonparametric function estimation methods for analysis of infant cranial shape and detection of twin zygosity." Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526218557.
Повний текст джерелаTiivistelmä Pään ja kasvojen pehmytkudoksen 3D-kuvantaminen on yleistynyt lääketieteessä, ja siihen tarvittava teknologia on kehittynyt huomattavasti viime vuosina. 3D-mallit ovat melko tarkkoja, ja kuvaus stereofotogrammetriaan perustuvalla laitteella on nopea ja helppo tilanne kuvattavalle. Kasvojen ja pään 3D-mallien analysointi voi kuitenkin olla haastavaa, ja tarve tehokkaille kvantitatiivisille menetelmille on kasvanut. Tässä väitöskirjassa kehitetään uusia matemaattisia kraniofakiaalisten rakenteiden mittausmenetelmiä ja -työkaluja. Työ on jaettu kolmeen osaan. Ensimmäisessä osassa pyritään määrittämään liettualaisten kaksosten tsygositeetti kasvojen 3D-datan perusteella. Luokituksessa hyödynnetään tilastollista hahmontunnistusta, ja tuloksia verrataan DNA-testituloksiin. Toisessa osassa analysoidaan pään epämuodostumia imeväisikäisten päiden 3D-kuvista laskettujen pintanormaalivektorien suuntiin perustuvan jakauman avulla. Tasaisuuden ja epäsymmetrian määrää mitataan normaalivektorien suuntakulmien ydinestimaatin funktionaalien avulla. Kehitettyä menetelmää verrataan joihinkin aiemmin ehdotettuihin lähestymistapoihin mittaamalla kolmen kuukauden ikäisten imeväisten 3D-malleja ja tarkastelemalla asiantuntijoiden tekemiä kliinisiä pisteytyksiä. Menetelmää sovelletaan myös kliiniseen pitkittäistutkimukseen, jossa tutkitaan pään epämuodostumien ja niihin liittyvien riskitekijöiden kehitystä kolmena eri ajankohtana otettujen 3D-kuvien perusteella. Viimeisessä osassa esitellään uusi tilastollinen skaala-avaruusmenetelmä SphereSiZer, jolla tutkitaan yksikköpallon tiheysfunktion rakenteita. Toisessa osassa kehitettyjä työkaluja sovelletaan SphereSiZerin toteutukseen. SphereSiZer-menetelmässä tiheysfunktion eri skaalojen piirteet visualisoidaan projisoimalla tilastollisesti merkitsevät gradientit tiheysfunktiota kuvaavalle isoviivakartalle. Menetelmää sovelletaan imeväisikäisen pään pintanormaalivektoridataan ja simuloituihin, pallotiheysfunktioihin perustuviin otoksiin. Tulosten ja esimerkkien perusteella väitöskirjassa esitetyt uudet menetelmät toimivat hyvin. Menetelmiä voidaan myös kehittää edelleen ja laajentaa jatkotutkimuksissa. Pään ja kasvojen 3D-mallit tarjoavat paljon mahdollisuuksia uusien ja laadukkaiden analyysityökalujen kehitykseen myöhemmissä tutkimuksissa
Ozbahceci, Oztunali Berguzar. "Effect Of Wave Grouping,spectral Shape And Exreme Waves In A Wave Train On The Stability Of Rubble Mound Breakwaters." Phd thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605170/index.pdf.
Повний текст джерелаSu, Z. "Statistical shape modelling : automatic shape model building." Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1213097/.
Повний текст джерелаAlfahad, Mai F. A. M. "Statistical shape analysis of helices." Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/21675/.
Повний текст джерелаMei, Lin. "Statistical analysis of shape and deformation." Thesis, Imperial College London, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.542932.
Повний текст джерелаRuwanthi, Kolamunnage Dona Rasanga. "Statistical shape analysis for bilateral symmetry." Thesis, University of Leeds, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.418233.
Повний текст джерелаDryden, Ian Leslie. "The statistical analysis of shape data." Thesis, University of Leeds, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.392774.
Повний текст джерелаGolland, Poilna 1971. "Statistical shape analysis of anatomical structures." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/86776.
Повний текст джерелаIncludes bibliographical references (p. 123-130).
In this thesis, we develop a computational framework for image-based statistical analysis of anatomical shape in different populations. Applications of such analysis include understanding developmental and anatomical aspects of disorders when comparing patients vs. normal controls, studying morphological changes caused by aging, or even differences in normal anatomy, for example, differences between genders. Once a quantitative description of organ shape is extracted from input images, the problem of identifying differences between the two groups can be reduced to one of the classical questions in machine learning, namely constructing a classifier function for assigning new examples to one of the two groups while making as few mistakes as possible. In the traditional classification setting, the resulting classifier is rarely analyzed in terms of the properties of the input data that are captured by the discriminative model. In contrast, interpretation of the statistical model in the original image domain is an important component of morphological analysis. We propose a novel approach to such interpretation that allows medical researchers to argue about the identified shape differences in anatomically meaningful terms of organ development and deformation. For each example in the input space, we derive a discriminative direction that corresponds to the differences between the classes implicitly represented by the classifier function.
(cont.) For morphological studies, the discriminative direction can be conveniently represented by a deformation of the original shape, yielding an intuitive description of shape differences for visualization and further analysis. Based on this approach, we present a system for statistical shape analysis using distance transforms for shape representation and the Support Vector Machines learning algorithm for the optimal classifier estimation. We demonstrate it on artificially generated data sets, as well as real medical studies.
by Polina Golland.
Ph.D.
Valdés, Amaro Daniel Alejandro. "Statistical shape analysis for bio-structures : local shape modelling, techniques and applications." Thesis, University of Warwick, 2009. http://wrap.warwick.ac.uk/3810/.
Повний текст джерелаGolalizadeh, Lehi Mousa. "Statistical modelling and inference for shape diffusions." Thesis, University of Nottingham, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435446.
Повний текст джерелаLima, VeroÌ‚nica Maria Cadena. "Resistant fitting methods for statistical shape comparison." Thesis, University of Leeds, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275749.
Повний текст джерелаCremers, Daniel. "Statistical shape knowledge in variational image segmentation." [S.l. : s.n.], 2002. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10605028.
Повний текст джерелаXu, Yuan. "Statistical shape analysis for deep brain structures." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1581917061&sid=11&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Повний текст джерелаRayner, Glen. "Statistical methodologies for quantile-based distributional families." Thesis, Queensland University of Technology, 1999.
Знайти повний текст джерелаBell, Paul W. "Statistical inference for multidimensional scaling." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327197.
Повний текст джерелаBesbes, Ahmed. "Image segmentation using MRFs and statistical shape modeling." Phd thesis, Ecole Centrale Paris, 2010. http://tel.archives-ouvertes.fr/tel-00594246.
Повний текст джерелаBrignell, Christopher. "Shape analysis and statistical modelling in brain imaging." Thesis, University of Nottingham, 2007. http://eprints.nottingham.ac.uk/12106/.
Повний текст джерелаRobinson, David L. "Statistical methods for the analysis of tooth shape." Thesis, University of Sheffield, 2005. http://etheses.whiterose.ac.uk/6077/.
Повний текст джерелаEvans, Kim. "Statistical analysis of shape curves and surface matching." Thesis, Nottingham Trent University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444660.
Повний текст джерелаAlemneh, Tewodros. "Articulated Statistical Shape Modelling of the Shoulder Joint." Master's thesis, Faculty of Health Sciences, 2020. http://hdl.handle.net/11427/32190.
Повний текст джерелаTardugno, Angelo. "Novel approaches to statistical shape modelling of bone." Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/5881.
Повний текст джерелаHennessey, Anthony. "Statistical shape analysis of large molecular data sets." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/52088/.
Повний текст джерелаBrombin, Chiara. "A nonparametric permutation approach to statistical shape analysis." Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3426066.
Повний текст джерелаNell'ultimo decennio la comunità statistica ha mostrato un crescente interesse per i problemi di shape analysis, con particolare riferimento allo sviluppo di tecniche inferenziali robuste. In questa tesi di dottorato presentiamo un'estensione della metodologia NPC per la combinazione non parametrica di test di permutazione dipendenti (Pesarin, 2001) nell'ambito della shape analysis. Inizialmente si introduce una revisione dei metodi inferenziali noti in letteratura, evidenziando alcune problematiche legate all'uso della statistica test T^2 di Hotelling. Focalizzandoci poi sul caso di due campioni indipendenti, tramite un esauriente studio di simulazione, abbiamo confrontato il comportamento, in termini di potenza, dei test parametrici tradizionali con quello dei test non parametrici proposti. Sono state utilizzate anche procedure di tipo multi aspetto (MA) e combinazioni per domini. E’ stato anche esaminato il caso in cui i landmark sono correlati tra loro. Inoltre è stato valutato l'impatto della superimposizione sulla potenza dei test NPC. I test di permutazione sono stati valutati in potenza e sotto H_0 nel caso in cui il numero di variabili processate è superiore alla cardinalità dello spazio di permutazione. Abbiamo inoltre effettuato uno studio di simulazione per valutare la potenza dei test multivariati NPC, evidenziando che la potenza di questi test cresce al crescere del numero di variabili processate, qualora apportino un aumento della non centralità, anche quando il numero di variabili è superiore alla cardinalità dello spazio di permutazione. Questi risultati preliminari ci hanno consentito di estendere la nozione di finite-sample consistency per i test NPC nell'ambito della shape analysis. Vengono fornite condizioni sufficienti tali per cui la potenza del test converge a uno, per ampiezze campionarie fissate ad ogni livello raggiungibile alpha, quando il numero di variabili diverge, posto che diverga anche la non centralità indotta dall'aumento del numero di variabili. Sulla base dei risultati ottenuti, possiamo affermare che i test NPC forniscono soluzioni efficienti per i problemi multivariati di shape analysis in presenza di bassa numerosità campionarie, problemi del resto frequenti nell'ambito della shape analysis. Oltre agli studi di simulazione, vengono presentati due casi studio, uno relativo allo studio della forma del cranio della foca monaca del Mediterraneo e l'altro relativo alla morfologia della valvola aortica.
Czogiel, Irina. "Statistical inference for molecular shapes." Thesis, University of Nottingham, 2010. http://eprints.nottingham.ac.uk/12217/.
Повний текст джерелаQuan, Wei. "3-D facial expression representation using statistical shape models." Thesis, University of Central Lancashire, 2009. http://clok.uclan.ac.uk/21147/.
Повний текст джерела