Добірка наукової літератури з теми "Shape Servoing"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Shape Servoing".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Shape Servoing":

1

Shetab-Bushehri, Mohammadreza, Miguel Aranda, Youcef Mezouar, and Erol Ozgur. "As-Rigid-as-Possible Shape Servoing." IEEE Robotics and Automation Letters 7, no. 2 (April 2022): 3898–905. http://dx.doi.org/10.1109/lra.2022.3145960.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yuksel, Tolga. "Sliding Surface Designs for Visual Servo Control of Quadrotors." Drones 7, no. 8 (August 14, 2023): 531. http://dx.doi.org/10.3390/drones7080531.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Autonomy is the main task of a quadrotor, and visual servoing assists with this task while providing fault tolerance under GPS failure. The main approach to visual servoing is image-based visual servoing, which uses image features directly without the need for pose estimation. The classical sliding surface design of sliding mode control is used by the linear controller law of image-based visual servoing, and focuses only on minimizing the error in the image features as convergence. In addition to providing convergence, performance characteristics such as visual-feature-convergence time, error, and motion characteristics should be taken into consideration while controlling a quadrotor under velocity limitations and disturbance. In this study, an image-based visual servoing system for quadrotors with five different sliding surface designs is proposed using analytical techniques and fuzzy logic. The proposed visual servo system was simulated, utilizing the moment characteristics of a preset shape to demonstrate the effectiveness of these designs. The stated parameters, convergence time, errors, motion characteristics, and length of the path, followed by the quadrotor, were compared for each of these design approaches, and a convergence time that was 46.77% shorter and path length that was 6.15% shorter were obtained by these designs. In addition to demonstrating the superiority of the designs, this study can be considered as a reflection of the realization, as well as the velocity constraints and disturbance resilience in the simulations.
3

Guthikonda, Vrithik Raj, Ghananeel Rotithor, and Ashwin P. Dani. "Shape Servoing of Deformable Objects using Adaptive Deformation Model Estimation." IFAC-PapersOnLine 56, no. 2 (2023): 10793–98. http://dx.doi.org/10.1016/j.ifacol.2023.10.750.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Xu, De, Min Tan, Zemin Jiang, and Huosheng Hu. "A shape constraint based visual positioning method for a humanoid robot." Robotica 24, no. 4 (February 21, 2006): 429–31. http://dx.doi.org/10.1017/s0263574705002420.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper proposes a new visual positioning method for a humanoid robot to approach and grasp a valve based on colour and shape constraints. The robot has two cameras in its head and uses constraints of colour rectangle marks to determine the valve's position and pose. When the hands are near the valve, an image-based visual servoing method is employed to catch the handle of the valve via cameras in end-effectors. Experimental results are presented to verify the effectiveness of the proposed method.
5

Yüksel, Tolga. "An intelligent visual servo control system for quadrotors." Transactions of the Institute of Measurement and Control 41, no. 1 (February 1, 2018): 3–13. http://dx.doi.org/10.1177/0142331217751599.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
While quadrotors are becoming more popular, control of these unmanned air vehicles should be improved. In this study, a new intelligent image-based visual servo control system is proposed for the flight guidance control of quadrotors. Features are essential for visual servoing and the proposed system utilizes the features of a shape that provide a clear sight of the landing site instead of point features. Furthermore, the system focuses on three problems of visual servo control: finding an appropriate gain value under velocity limits, keeping the shape features in the field of view and tracking a moving target. As a solution to the first problem, a fuzzy logic unit that uses feature error and error derivative norms as inputs are deployed to assign the gain, adaptively. The second problem is solved by defining safe and risky regions in the image plane to take precautions before field of view missing. Another fuzzy logic unit is activated when the shape passes through a risky region to provide counter velocity in x or y direction and to drag the shape through the safe region. As the last stage, Kalman filtering with Potter’s square root update is added to the proposed system to increase the feature tracking performance. This update also promises divergence avoidance. To show the performance of the proposed system, simulation results for fixed and moving targets under feature disturbance are presented for a quadrotor. The results verify that the proposed system is capable of handling visual servoing problems.
6

Laranjeira, Matheus, Claire Dune, and Vincent Hugel. "Catenary-based visual servoing for tether shape control between underwater vehicles." Ocean Engineering 200 (March 2020): 107018. http://dx.doi.org/10.1016/j.oceaneng.2020.107018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Xu, Fan, Hesheng Wang, Weidong Chen, and Yanzi Miao. "Visual Servoing of a Cable-Driven Soft Robot Manipulator With Shape Feature." IEEE Robotics and Automation Letters 6, no. 3 (July 2021): 4281–88. http://dx.doi.org/10.1109/lra.2021.3067285.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lagneau, Romain, Alexandre Krupa, and Maud Marchal. "Automatic Shape Control of Deformable Wires Based on Model-Free Visual Servoing." IEEE Robotics and Automation Letters 5, no. 4 (October 2020): 5252–59. http://dx.doi.org/10.1109/lra.2020.3007114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cherubini, Andrea, Valerio Ortenzi, Akansel Cosgun, Robert Lee, and Peter Corke. "Model-free vision-based shaping of deformable plastic materials." International Journal of Robotics Research 39, no. 14 (February 25, 2020): 1739–59. http://dx.doi.org/10.1177/0278364920907684.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We address the problem of shaping deformable plastic materials using non-prehensile actions. Shaping plastic objects is challenging, because they are difficult to model and to track visually. We study this problem, by using kinetic sand, a plastic toy material that mimics the physical properties of wet sand. Inspired by a pilot study where humans shape kinetic sand, we define two types of actions: pushing the material from the sides and tapping from above. The chosen actions are executed with a robotic arm using image-based visual servoing. From the current and desired view of the material, we define states based on visual features such as the outer contour shape and the pixel luminosity values. These are mapped to actions, which are repeated iteratively to reduce the image error until convergence is reached. For pushing, we propose three methods for mapping the visual state to an action. These include heuristic methods and a neural network, trained from human actions. We show that it is possible to obtain simple shapes with the kinetic sand, without explicitly modeling the material. Our approach is limited in the types of shapes it can achieve. A richer set of action types and multi-step reasoning is needed to achieve more sophisticated shapes.
10

Shen, Jinglin, and Nicholas Gans. "Robot-to-human feedback and automatic object grasping using an RGB-D camera–projector system." Robotica 36, no. 2 (August 23, 2017): 241–60. http://dx.doi.org/10.1017/s0263574717000339.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
SUMMARYThis paper presents a novel system for human–robot interaction in object-grasping applications. Consisting of an RGB-D camera, a projector and a robot manipulator, the proposed system provides intuitive information to the human by analyzing the scene, detecting graspable objects and directly projecting numbers or symbols in front of objects. Objects are detected using a visual attention model that incorporates color, shape and depth information. The positions and orientations of the projected numbers are based on the shapes, positions and orientations of the corresponding objects. Users select a grasping target by indicating the corresponding number. Projected arrows are then created on the fly to guide a robotic arm to grasp the selected object using visual servoing and deliver the object to the human user. Experimental results are presented to demonstrate how the system is used in robot grasping tasks.

Дисертації з теми "Shape Servoing":

1

Laranjeira, Moreira Matheus. "Visual servoing on deformable objects : an application to tether shape control." Electronic Thesis or Diss., Toulon, 2019. http://www.theses.fr/2019TOUL0007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse porte sur le problème du contrôle de la forme d'ombilicaux pour des robots sous-marins légers téléopérés (mini-ROVs), qui conviennent, grâce à leur petite taille et grande manoeuvrabilité, à l'exploration des eaux peu profondes et des espaces encombrés. La régulation de la forme de l'ombilical est cependant un tâche difficile, car ces robots n'ont pas une puissance de propulsion suffisante pour contrebalancer les forces de traînée du câble. Pour faire face à ce problème, nous avons introduit le concept de Cordée de mini-ROVs, dans lequel plusieurs robots sont reliés à l'ombilical et peuvent, ensemble, contrebalancer les perturbations extérieures et contrôler la forme du câble. Nous avons étudié l'utilisation des caméras embarquées pour réguler la forme d'une portion de l'ombilical reliant deux robots successifs, un leader et un suiveur. Seul le robot suiveur se chargera de la tâche de régulation de la forme du câble. Le leader est libéré pour explorer ses alentours. L'ombilical est supposé être légèrement pesant et donc modélisé par une chaînette. Les paramètres de forme du câble sont estimés en temps réel par une procédure d'optimisation non-linéaire qui adapte le modèle de chaînette aux points détectés dans les images des caméras. La régulation des paramètres de forme est obtenue grâce à une commande reliant le mouvement du robot à la variation de la forme de l'ombilical. L'asservissement visuel proposé s'est avéré capable de contrôler correctement la forme du câble en simulations et expériences réalisées en basin
This thesis addresses the problem of tether shape contrai for small remotely operated underwater vehicles (mini-ROVs), which are suitable, thanks to their small size and high maneuverability, for the exploration of shallow waters and cluttered spaces. The management of the tether is, however, a hard task, since these robots do not have enough propulsion power to counterbalance the drag forces acting on the tether cable. ln order to cape with this problem, we introduced the concept of a Chain of miniROVs, where several robots are linked to the tether cable and can, together, manage the external perturbations and contrai the shape of the cable. We investigated the use of the embedded cameras to regulate the shape of a portion of tether linking two successive robots, a leader and a follower. Only the follower robot deals with the tether shape regulation task. The leader is released to explore its surroundings. The tether linking bath robots is assumed to be negatively buoyant and is modeled by a catenary. The tether shape parameters are estimated in real-time by a nonlinear optimization procedure that fits the catenary model to the tether detected points in the image. The shape parameter regulation is thus achieved through a catenary-based contrai scheme relating the robot motion with the tether shape variation. The proposed visual servoing contrai scheme has proved to properly manage the tether shape in simulations and real experiments in pool
2

Giraud, Victor. "Commande robuste d'objets déformables avec des bras robotiques et application à un procédé industriel." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2024. http://www.theses.fr/2024UCFA0012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les objets déformables sont omniprésents. Sous forme de câbles, vêtements, plastiques, ilsfont parti du quotidien. Ces objets doivent être manipulés, fabriqués, transportés. Leur déforma-bilité rend ces tâches plus ardues que pour leurs homologues rigides. Les travaux de cette thèsese focalisent sur la résolution d'un cas concret industriel, non résolu et applicativement intéres-sant : l'assemblage de bande de roulement de poids lourd, partie au contact de la route, procédéencore manuel actuellement. Ce procédé industriel est proposé par le partenaire industriel Miche-lin au sein du consortium SoftManBot, programme Horizon20 de l'Union Européenne ayant pourambition d'automatiser la production industrielle d'objets déformables. La manipulation d'objetsdéformables soulève plusieurs problèmes que ne présentent pas les objets rigides : un problème demodélisation, un problème de perception, un problème d'asservissement de forme, et un problèmed'ingénierie système pour faire fonctionner tous les composants précédent de concert.Dans cette thèse, nous proposons deux contributions majeures. La première, Optimal ShapeServoing, est une commande par retour d'état basé sur la commande optimale améliorant l'étatde l'art de l'asservissement de forme en ajoutant une gestion implicite de la trajectoire de défor-mation - la manière dont l'objet atteint la déformation finale. De plus, la stratégie de commandepermet de découpler et pondérer les erreurs de forme et de position. Enfin, cette thèse expose unapprentissage par démonstration des paramètres du contrôleur grâce à un algorithme génétiquepour suivre le comportement de l'objet manipulé par un humain, afin de reproduire cette défor-mation lors de tâches de manipulation. L'identification de ces paramètres grâce aux stratégies deMachine Learning permet le meilleur des deux mondes - à la fois un fonctionnement explicable etun comportement proche de l'opération effectuée par un humain.Notre seconde contribution, Holistic Architecture for Deformable Object Software, répond auproblème d'ingénierie système en proposant une architecture logicielle modulaire formalisant be-soins et interfaces nécessaire pour les problèmes de manipulation d'objets déformables, en labora-toire et en contexte industriel, de l'interface utilisateur au driver des préhenseurs. Cette architecturea été validée et testé par l'intégration de nombreuses briques logicielles - modèles, commandes,perception, interface utilisateur, contrôleurs de robots, drivers de caméra, drivers de préhenseurs.Ces briques sont comparées objectivement grâce aux métriques industrielles gouvernant la qualitéd'un produit final, permettant non seulement d'automatiser la tâche proposée mais aussi de choisirla combinaison de modules la plus adaptée à cette même tâche
Deformable objects are ubiquitous. In the form of cables, clothing, plastics, they are part ofeveryday life. These objects need to be manipulated, manufactured, and transported. Their defor-mability makes these tasks more challenging than for their rigid counterparts. The work of thisthesis focuses on solving a specific industrial case, which is unresolved and of practical interest :the assembly of heavy-duty tire treads, the part that comes into contact with the road, which isstill a manual process. This industrial process is proposed by the industrial partner Michelin wi-thin the SoftManBot consortium, a Horizon20 program of the European Union with the ambitionto automate the industrial production of deformable objects. The manipulation of deformable ob-jects raises several problems that rigid objects do not present : a modeling problem, a perceptionproblem, a shape servoing problem, and a system engineering problem to make all the precedingcomponents work together.In this thesis, we propose two major contributions. The first one, Optimal Shape Servoing, is astate feedback control based on optimal control that improves the state of the art in shape controlby adding an implicit management of the deformation trajectory - how the object reaches its finaldeformation. Furthermore, the control strategy allows for decoupling and weighting shape andposition errors. Finally, this thesis presents a demonstration-based learning of controller parametersusing a genetic algorithm to mimic the behavior of an object manipulated by a human, in orderto reproduce this deformation during manipulation tasks. Identifying these parameters throughmachine learning strategies combines the best of both worlds - both explainable operation andbehavior close to that performed by a human.Our second contribution, Holistic Architecture for Deformable Object Software, addresses thesystem engineering problem by proposing a modular software architecture that formalizes theneeds and interfaces required for deformable object manipulation problems, both in the labora-tory and in an industrial context, from user interface to gripper drivers. This architecture has beenvalidated and tested through the integration of numerous software components - models, controls,perception, user interfaces, robot controllers, camera drivers, gripper drivers. These componentsare objectively compared using industrial metrics governing the quality of a final product, allowingnot only the automation of the proposed task but also the selection of the most suitable combinationof modules for the same task
3

Wu, Tien-Pao, and 吳添寶. "A Visual Servoing System for Object Tracking Applications of Mobile Robots Based on Shape Features." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/24926762168812122319.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
聖約翰技術學院
自動化及機電整合研究所
93
In this thesis we have successfully implemented a visual servo system for a nonholonomic mobile robot, mainly focusing on two kinds of tracking applica-tions, namely point tracking and path tracking. For the point tracking applications, we implemented an adaptive shape tracking algorithm which can automatically detect the shape features of objects and track them in real time even subject to partial occlusion. Then using the sliding mode control technique, we implemented a visual servo controller which can cope with uncertainty of object movements to track the object centered at the image plane. We have created a mobile robot as the testbed and successfully fulfilled the experiment of point object tracking on a 2D plane to validate the system performance. For the path tracking applications, we first implemented a lane detection and tracking algorithm, applying the randomized Hough transform and least-square line fitting methods to the images after inverse perspective mapping, to track the line parameters of multiple lanes even subject to temporal disappearance. Then by utilizing the feedback linearization technique, we implemented a visual servo controller to successfully navigate the mobile robot following an elliptical path and keeping a fixed offset distance parallel to the path.

Частини книг з теми "Shape Servoing":

1

"Two-Dimensional ModelBased Tracking of Complex Shapes for Visual Servoing Tasks." In Robust Vision for Vision-Based Control of Motion. IEEE, 2009. http://dx.doi.org/10.1109/9780470546369.ch6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Shape Servoing":

1

Giraud, Victor H., Maxime Padrin, Mohammadreza Shetab-Bushehri, Chedli Bouzgarrou, Youcef Mezouar, and Erol Ozgur. "Optimal Shape Servoing with Task-focused Convergence Constraints." In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2022. http://dx.doi.org/10.1109/iros47612.2022.9981902.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Siradjuddin, I., T. M. McGinnity, L. Behera, and S. Coleman. "Visual servoing of a redundant manipulator using shape moments." In IET Irish Signals and Systems Conference (ISSC 2009). IET, 2009. http://dx.doi.org/10.1049/cp.2009.1725.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Aranda, Miguel, Juan Antonio Corrales Ramon, Youcef Mezouar, Adrien Bartoli, and Erol Ozgur. "Monocular Visual Shape Tracking and Servoing for Isometrically Deforming Objects." In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020. http://dx.doi.org/10.1109/iros45743.2020.9341646.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Smolentsev, Lev, Alexandre Krupa, and François Chaumette. "Shape visual servoing of a tether cable from parabolic features." In 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023. http://dx.doi.org/10.1109/icra48891.2023.10161101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yazicioglu, Ahmet Yasin, Berk Calli, and Mustafa Unel. "Image based visual servoing using algebraic curves applied to shape alignment." In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009). IEEE, 2009. http://dx.doi.org/10.1109/iros.2009.5354310.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Andrianesis, Konstantinos, Anthony Tzes, Efthymios Kolyvas, and Yannis Koveos. "A visual-servoing system for a humanlike shape memory alloy actuated finger." In 2007 IEEE Conference on Emerging Technologies & Factory Automation (EFTA 2007). IEEE, 2007. http://dx.doi.org/10.1109/efta.2007.4416951.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gandhi, Abhinav, Shou-Shan Chiang, Cagdas D. Onal, and Berk Calli. "Shape Control of Variable Length Continuum Robots Using Clothoid-Based Visual Servoing." In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2023. http://dx.doi.org/10.1109/iros55552.2023.10342057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Makiyeh, Fouad, François Chaumette, Maud Marchal, and Alexandre Krupa. "Shape Servoing of a Soft Object Using Fourier Series and a Physics-Based Model." In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2023. http://dx.doi.org/10.1109/iros55552.2023.10342354.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Carpenter, Steven, Xinming Yu, Melih Altun, James Graham, J. Jim Zhu, and Janusz Starzyk. "Vision Guided Motion Control of a Biomimetic Quadruped Robot: RoboCat." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63805.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper presents the vision system and visual processing for a biomimetic elastic cable-driven quadruped robot—RoboCat. The paper is geared towards selection of appropriate visual servoing techniques for RoboCat such as vision algorithms, high-level cognition algorithms, software architecture and hardware implementation. The system uses two video cameras for stereo vision data acquisition and a SUMIT-ism form factor embedded computer for vision data processing. The vision system employs a color based target recognition algorithm, a neural network based shape recognition algorithm and a Color and Zernike moment based face detection algorithm. The paper presents the vision algorithms, vision guidance and motion tracking algorithms, rule-based decision making algorithms and the open architecture of the autonomous vision tracking system. Experimental testing results (including video clips) are also presented.
10

Guo, Congzhong, and Gary K. Fedder. "Bi-State Bifurcation Control of a Shaped-Comb Parametric Resonator." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-13001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This work employs behavioral modeling to develop a bi-state control technique capable of servoing at the onset of the microelectromechanical parametric resonant bifurcation setpoint. The parametric resonance features a sharp “turn-on” in oscillation amplitude at the bifurcation, enhancing sensitivity to resonance frequency change. A bi-state controller is constructed to servo at this sharp jump point. It has two states of operation: one state is within the instability tongue where the oscillation amplitude builds up exponentially; another state resides outside of the tongue where the oscillation turns off. The rapid turn on and off of the parametric resonance keeps the resonant amplitude small and circumvents the slow build-up time. Both the simulated and experimental loop transient responses are presented.

До бібліографії