Добірка наукової літератури з теми "Shape memory assisted self-healing"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Shape memory assisted self-healing".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Shape memory assisted self-healing"

1

Luo, Xiaofan, and Patrick T. Mather. "Shape Memory Assisted Self-Healing Coating." ACS Macro Letters 2, no. 2 (February 2013): 152–56. http://dx.doi.org/10.1021/mz400017x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Xie, Fang, Zhongxin Ping, Wanting Xu, Fenghua Zhang, Yuzhen Dong, Lianjie Li, Chengsen Zhang, and Xiaobo Gong. "A Metal Coordination-Based Supramolecular Elastomer with Shape Memory-Assisted Self-Healing Effect." Polymers 14, no. 22 (November 12, 2022): 4879. http://dx.doi.org/10.3390/polym14224879.

Повний текст джерела
Анотація:
Rubber materials are widely used in aerospace, automotive, smart devices and artificial skin. It is significant to address the aging susceptibility of conventional vulcanized rubber and to impart it rapid self-healing performance for destructive crack damage. Herein, a novel supramolecular rubber elastomer is prepared by introducing metal coordination between carboxyl-terminated polybutadiene and polystyrene-vinylpyridine copolymer. Based on the metal coordination interaction, the elastomer exhibits shape memory and self-healing properties. Moreover, a rapid closure-repair process of destructive cracks is achieved by presetting temporary shapes. This shape memory-assisted self-repair model is shown to be an effective means for rapid repair of severe cracks. An approach to enhance the mechanical and self-healing properties of elastomer was demonstrated by adding appropriate amounts of oxidized carbon nano-onions (O-CNO) into the system. The tensile strength of the elastomer with an O-CNOs content of 0.5 wt% was restored to 83 ± 10% of the original sample after being repaired at 85 °C for 6 h. This study confirms that metal coordination interaction is an effective method for designing shape memory self-healing rubber elastomer. The shape memory-assisted self-healing effect provides a reference for the rapid self-repairing of severe cracks.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bhattacharya, Swapnil, Richard Hailstone, and Christopher L. Lewis. "Thermoplastic Blend Exhibiting Shape Memory-Assisted Self-Healing Functionality." ACS Applied Materials & Interfaces 12, no. 41 (September 15, 2020): 46733–42. http://dx.doi.org/10.1021/acsami.0c13645.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Menon, Aishwarya V., Giridhar Madras, and Suryasarathi Bose. "The journey of self-healing and shape memory polyurethanes from bench to translational research." Polymer Chemistry 10, no. 32 (2019): 4370–88. http://dx.doi.org/10.1039/c9py00854c.

Повний текст джерела
Анотація:
In this critical review, we have enlisted a comprehensive summary of different approaches that have been used over the past decade to synthesize self-healing polyurethanes including “close then heal” and “shape memory assisted self-healing” concept.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xu, Yurun, and Dajun Chen. "Shape memory-assisted self-healing polyurethane inspired by a suture technique." Journal of Materials Science 53, no. 14 (April 20, 2018): 10582–92. http://dx.doi.org/10.1007/s10853-018-2346-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yang, Li, Xili Lu, Zhanhua Wang, and Hesheng Xia. "Diels–Alder dynamic crosslinked polyurethane/polydopamine composites with NIR triggered self-healing function." Polymer Chemistry 9, no. 16 (2018): 2166–72. http://dx.doi.org/10.1039/c8py00162f.

Повний текст джерела
Анотація:
A new kind of ultrafast near-infrared light responsive shape memory assisted self-healing polymer composite was prepared by introducing polydopamine particles (PDAPs) into polyurethane containing Diels–Alder bonds.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wang, Q., J. Meng, Y. Ma, and L. Xia. "Thermally assisted self-healing and shape memory behaviour of natural rubber based composites." Express Polymer Letters 15, no. 10 (2021): 929–39. http://dx.doi.org/10.3144/expresspolymlett.2021.75.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rodriguez, Erika D., Xiaofan Luo та Patrick T. Mather. "Linear/Network Poly(ε-caprolactone) Blends Exhibiting Shape Memory Assisted Self-Healing (SMASH)". ACS Applied Materials & Interfaces 3, № 2 (21 січня 2011): 152–61. http://dx.doi.org/10.1021/am101012c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ručigaj, Aleš, Rok Ambrožič, and Matjaž Krajnc. "Thermally Assisted Self‐Healing and Shape Memory Behavior of Diphenolic Acid‐Based Benzoxazines." Macromolecular Materials and Engineering 305, no. 12 (October 12, 2020): 2000463. http://dx.doi.org/10.1002/mame.202000463.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shojaei, Amir, Soodabeh Sharafi, and Guoqiang Li. "A multiscale theory of self-crack-healing with solid healing agent assisted by shape memory effect." Mechanics of Materials 81 (February 2015): 25–40. http://dx.doi.org/10.1016/j.mechmat.2014.10.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Shape memory assisted self-healing"

1

Dunn, Simon Craig. "A novel self-healing shape memory polymer-cementitious system." Thesis, Cardiff University, 2010. http://orca.cf.ac.uk/54194/.

Повний текст джерела
Анотація:
The polymer model is incorporated into a simulation for the entire material system which is based on a beam idealisation and in which a strong discontinuity approach is used to simulate cracking. It is shown that this model is able to accurately simulate the experiments carried out on the LatConX system.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Peairs, Daniel M. "Development of a Self-Sensing and Self-Healing Bolted Joint." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/33925.

Повний текст джерела
Анотація:
A self-sensing and self-healing bolted joint has been developed. This concept encompasses the areas of health monitoring, joint dynamics and smart materials. In order to detect looseness in a joint the impedance health monitoring method is used. A new method of making impedance measurements for health monitoring that greatly reduces the equipment cost and equipment size was developed. This facilitates implementation of the impedance technique in real-life field applications. Several proof of concept experiments are presented and compared to the traditional method of making impedance measurements. Investigations of bolted joint dynamics were conducted. A literature review of bolted joints and their diagnostics is presented. The application of the transfer impedance method is compared to standard modal tests on various bolt tensions. An investigation of damping in bolted joints was also made comparing a bolted and monolithic beam. Practical issues in adaptive bolted joints are investigated. This includes issues on activating/heating SMA actuators, connecting the actuators to the power source, size selection of SMA actuators and insulations. These issues are examined both experimentally and theoretically.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Hongji. "Matériaux polymères à mémoire de forme et autoréparables contrôlés par la lumière via un effet photothermique." Thèse, Université de Sherbrooke, 2014. http://savoirs.usherbrooke.ca/handle/11143/5337.

Повний текст джерела
Анотація:
Au cours des dernières décennies, le concept de « matériaux intelligents » a suscité un intérêt en croissance rapide en raison de l'apparition de plusieurs nouveaux types de matériaux polymères qui sont capables d'accomplir une fonction désirée en réponse à un stimulus spécifique de façon prédéterminée et contrôlée. Deux exemples représentatifs sont les polymères à mémoire de forme (SMPs) et les polymères autoréparables or réparables par un stimulus (SHPs). Ils sont sujets de cette thèse. D'une part, les SMPs sont des matériaux qui ont la capacité de mémoriser une forme spécifique. Après avoir été déformés et fixés à une forme temporaire, ils peuvent récupérer la forme originale et permanente sous l'effet d'un signal stimulant comme la chaleur, la lumière ou un champ électrique. Bénéficiant de la mise en œuvre relativement facile, les SMPs sont une alternative intéressante aux alliages à mémoire de forme bien établis; et ils ont trouvé un large éventail d'applications potentielles allant des implants pour la chirurgie non-invasive aux actionneurs sensibles aux environnements. D'autre part, les SHPs sont des matériaux qui sont capables de réparer des dommages mécaniques (fissures ou fractures) par eux-mêmes ou avec l'aide d’un stimulus externe. Leur développement a un grand intérêt pour améliorer la sécurité, prolonger la durée de vie et réduire le coût de l'entretien des matériaux. Sauf quelques matériaux souples (certains gels et élastomères) qui sont guérissables de façon vraiment autonome, la plupart des SHPs nécessitent l'intervention d'un stimulus comme c’est le cas pour les SMPs. L'objectif principal de cette thèse est de développer de nouveaux SMPs et SHPs contrôlables par un rayonnement lumineux. La stratégie que nous avons utilisée est basée sur l'ajout d'une petite quantité de nanoparticules d'or (AuNPs ) ou de nanotiges d'or (AuNRs) dans un SMP ou SHP pour absorber la lumière visible ou proche infrarouge. L’idée est d’utiliser la chaleur dégagée par les nanoparticules lors de l’absorption de la lumière due à la résonance plasmonique de surface (SPR) pour contrôler les transitions de phase dans les polymères et, par conséquent, de dicter leurs processus de mémoire de forme ou de guérison. Bien qu’un effet photothermique est à l'origine de ces processus, tous les avantages de l'utilisation de la lumière comme stimulus sont conservés, tels que l'activation à distance et le contrôle spatiotemporel. Plusieurs travaux de recherche ont été réalisés au cours de cette thèse, dont les résultats, nous l'espérons, peuvent constituer une contribution de base faisant l'utilisation d’AuNPs et AuNRs une technologie de plate-forme pour le développement des SMPs et SHPs contrôlables par la lumière. En ce qui concerne les SMPs, nous avons d’abord préparé un nouveau matériau nanocomposite AuNP-polymère à base d’oligo(ε-caprolactone) ramifié et réticulé. En faisant usage de chauffage localisé induit par la lumière, nous avons prouvé que la lumière visible peut être utilisée pour activer un processus de récupération de forme de manière sélective spatialement, et pour réaliser plusieurs formes intermédiaires sur-demande. En outre, nous avons constaté qu'en ajustant l'intensité de la lumière laser ou la quantité d’AuNPs, l'élévation locale de la température dans le matériau peut être importante et atteindre une amplitude prédéterminée sans influence défavorable sur ses environs. Cette caractéristique intéressante permet d'utiliser le même SMP pour des applications couvrant un large domaine de températures environnantes. De plus, dans cette étude, nous avons démontré comment l'énergie libérée dans un processus de récupération de forme contrôlé par la lumière peut être utilisée pour accomplir un travail mécanique. Sur la base du projet précédent, nous avons ensuite fait la première démonstration que la polarisation de la lumière peut également être utilisée pour contrôler l'effet de mémoire de forme ainsi que le processus de récupération de forme. À cette fin, nous avons conçu et préparé un SMP anisotrope contenant des AuNRs orientés par étirage de films de poly(alcool de vinyle) (PVA). L'idée est que la quantité de chaleur dégagée par les nanotiges d’or lors de l'exposition à la lumière proche infrarouge, est déterminée par l’absorption de photons qui, pour un matériau anisotrope, est dépendante de la polarisation de la lumière incidente. Nous avons montré qu’en effet, changeant la direction de polarisation du laser incident par rapport à la direction d'étirage du film tout en conservant toutes les autres conditions inchangées, permet de contrôler le degré d'élévation de température dans le matériau, ce qui détermine le processus de récupération de forme. En découvrant ce nouveau moyen de control, cette étude a élargi la boîte à outils pour les SMPs contrôlables par voie optique. Sur le côté SHPs, notre motivation d’exploiter l'approche photothermique est d'aborder la question difficile de la guérison de matériaux mécaniquement forts et dues. En général, une force mécanique élevée (ou une grande dureté) d'un matériau entrave sa capacité d’auto-guérison ou guérison induite par des stimuli en raison du manque de mobilité de chaînes du polymère, sachant que cette mobilité est cruciale pour la diffusion du polymère dans une région fracturée conduisant à la cicatrisation. Nous avons proposé la stratégie consistant à utiliser l'effet photothermique pour provoquer la transition de phase « fusion – cristallisation » pour la réparation. Dans une première étude, par le chargement d'une très petite quantité d’AuNPs dans deux polymères cristallins, le poly(oxyde d' éthylène ) (PEO, T[indice inférieur m~]63 °C) et le polyéthylène de basse densité (LDPE , T[indice inférieur m~]103 °C), nous avons réussi une guérison optique très rapide et efficace, fusionnant deux morceaux de polymère en contact en un seul avec des propriétés mécaniques bien récupérées. Nous avons confirmé le mécanisme de guérison basé sur la fusion des chaînes cristallisées lors de l’exposition à la lumière, suivie de la cristallisation lors du refroidissement après l'extinction du laser. Cette cristallisation des chaines ayant diffusé à travers les surfaces de coupe a pour effet de les fusionner pour la guérison. En plus de l'activation à distance et la capacité de cicatrisation rapide, nous avons aussi démontré le control spatial de la guérison optique car elle a lieu uniquement dans les régions fracturées exposées au laser. Après avoir appris comment utiliser l'effet photothermique découlant de la SPR d’AuNPs pour réaliser le control des processus de mémoire de forme et de guérison dans des polymères séparés, nous avons continué notre effort pour développer des matériaux qui possèdent les deux fonctions de mémoire de forme et de guérison commandées par la lumière. La réalisation d’un tel matériau est aussi une tâche difficile en raison de l'incompatibilité structurelle entre les SMPs et SHPs, puisque la structure de réseau réticulé nécessaire pour le mémoire de forme réduit généralement la mobilité de chaînes requise pour la guérison. Grâce aux connaissances générées par nos recherches, nous avons proposé un design de matériau consistant à réticuler chimiquement un polymère cristallin (PEO) chargé d’une petite quantité d’AuNPs. Notre étude a montré que ce matériau polymère acquise l’effet de mémoire de forme contrôlable par la lumière et la guérison optique rapide dus au même effet de chauffage localisé induit par un laser. En effet, l'effet photothermique peut activer le processus de récupération de la forme du matériau en élevant sa température au-dessus de la T[indice inférieur m] de la phase cristalline et, dans le même temps, permet la cicatrisation de fissures par l'intermédiaire de fusion des chaînes cristallisées sous exposition au laser et la cristallisation ultérieure lors du refroidissement après l’éteinte du laser. De plus, nous avons démontré que ces deux fonctions peuvent être exécutées de manière séquentielle sur le même matériau, sans interférence entre elles. La mise en œuvre simultanée des deux fonctions distinctes dans un seul matériau peut élargir les applications possibles de SMPs et SHPs. Par la suite, nous avons appliqué la stratégie établie avec des polymères cristallins aux hydrogels polymères. Il est connu depuis longtemps qu’il est très difficile d’obtenir des hydrogels mécaniquement robustes pouvant être réparés par effets de stimuli. Nous avons conçu et préparé un hydrogel hybride en chargeant une petite quantité d’AuNPs dans un hydrogel formé par copolymérisation du N, N-diméthylacrylamide (DMA), de l'acrylate de stéaryle (SA) et du N, N'- méthylène bisacrylamide (MBA). La force mécanique de cet hydrogel est donnée par une réticulation chimique qui coexiste avec une réticulation physique due aux chaînes latérales d’alkyles hydrophobes cristallisées. Encore une fois, par le contrôle de la transition de phase de « fusion-cristallisation » des chaînes SA à l'aide d'un laser, l'hydrogel hybride montre à la fois la fonction de mémoire de forme contrôlé par la lumière et la fonction de guérison optique efficace. Une grande contrainte à la rupture supérieure à 2 MPa a été obtenue pour un hydrogel coupé en deux et puis réparé par la lumièr. La dernière, mais non la moindre, contribution portée par l’étude dans cette thèse est une découverte que nous avons faite sur les SHPs. Nous avons observé que l’hydrogel de PVA physiquement réticulé, étant préparé par la méthode de congélation/décongélation, peut s’auto-guérir à la température ambiante sans l’utilisation d’un stimulus ou d'un agent de guérison. Cette découverte est importante étant donné que cet hydrogel est biocompatible et un matériau largement utilisé pour des applications. Notre étude a montré que la clé pour obtenir une guérison autonome efficace de l'hydrogel de PVA ayant une force mécanique relativement élevée est d'avoir une quantité suffisante de groupements hydroxyle libres sur les chaînes de PVA pour ponts-hydrogène et une bonne mobilité de chaîne assurant la diffusion du polymère à travers les surfaces de coupe.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Huang, Yu-Han, and 黃玉涵. "Shape Memory Assisted Self-healing Behavior of Biobased NR/PCL Blends." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/k8sdjd.

Повний текст джерела
Анотація:
碩士
國立宜蘭大學
化學工程與材料工程學系碩士班
107
This study focused on the processing and preparation of intelligent environmentally friendly elastic materials with self-healing effects. Self-healing ability depends on the depth of crack, temperature, and grafting percentage. The materials we used in this study are natural rubber (NR) and poly(ε-caprolactone) (PCL). In this study, we have modified the PCL and grafted acrylic acid (AA) onto PCL. After grafting PCL, it was mixed with NR. Benzoyl peroxide (BPO) and dicumyl peroxide (DCP) were used as the initiator of grafting reaction and crosslinking agents, respectively. Among them, the reason for the graft reaction that it is desirable to form hydrogen bonding by AA to enhance the self-healing effect by the attraction of hydrogen bonds. Because the material we used in this study has a shape memory effect, it is hoped that the shape memory effect can help the crack on the sample to close together, and then the mobility of molecules chain of the material can diffuse between the crack surface to achieve a higher healing effect. And this mechanism can be called shape memory assisted self-healing (SMASH). In addition, we add multi-walled carbon nanotubes (MWCNTs) into blends, and hope to have a multi-stimulus response mechanism. After adding MWCNTs, the blends can absorb near-infrared (NIR) light and convert it into thermal energy. In the dynamic mechanical analysis test, (D) NR had a low storage modulus at 25 oC, only 1.8 MPa, while (D) PCL had a storage modulus of 672.1 MPa. So it can improve the disadvantage of (D) NR with the addition of PCL. In the mechanical properties tests, the results showed that the (D) NR/PCL-g-2AA and (D) NR/PCL-g-4AA blends systems had a slight increase in Young's modulus compared with (D) NR/PCL blends. It was suggested that (D) NR/PCL-g-2AA and (D) NR/PCL-g-4AA blends had more hydrogen bondings to form physical crosslinking networks through the grafting reaction. In the shape memory tests, it can be seen that NR/PCL blends had excellent shape memory effects with the fixity ratio and recovery ratio of all samples are above 91 %. In the self-healing tests, the depth of the crack and the healing temperature directly affected the self-healing effect. All the samples heated at 80 °C were better than 60 °C. By grafting AA to generate the hydrogen bond. It can effectively improve the healing efficiency. Under the condition of 50% depth crack and 80 oC healing temperature for the (40/60) blend, the efficiency of (D) NR/PCL (40/60) increased from 28.5 % to 56.8 % by grafting 2 phr AA, and to 62.8% by grafting 4 phr AA. Due to the excellent shape memory effects of all the samples, it can helpe to heal by SMASH mechanism. The efficiency of NR/PCL-g-4AA (40/60) has increased from 62.8 % to 79.9 %.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Menon, Aishwarya Vijayan. "Polyurethane based Self-healing Nanocomposites for Electromagnetic Interference Shielding Applications." Thesis, 2019. https://etd.iisc.ac.in/handle/2005/5701.

Повний текст джерела
Анотація:
An augmentation in the growth of modern electronics and telecommunication has led to an increase in electromagnetic interference (EMI) as its aftermath. Device malfunctioning, unwanted noise and radio leakage are the direct consequences of EMI. Modern nanotechnology seeks to integrate the demands of the ever-growing telecommunication industry through the miniaturisation of devices which brings crucial electronic circuitry in close proximity of one another, thereby causing them to cross talk and interfere among each other. In the search for a good EMI shield, nanotechnology has come a long way from metal-based EM wave reflector to now lightweight polymeric EM wave absorbers. The advantage of polymeric materials lies in their ability to be tuned to achieve the desired level of shielding performance by incorporation of suitable fillers. Polymer nanocomposites are however, prone to mechanical damage over a period of time. Therefore, development of self-healable EMI shields is necessary to extend its life-time. This thesis entitled “Polyurethane based self-healing nanocomposites for electromagnetic interference shielding applications” aims to develop polyurethane (PU) based self-healable EMI shielding nanocomposites by combining the self-healing property of suitably functionalised PU and electronic properties of multi-walled carbon nanotubes (MWNTs) and hybrid functional nanoparticles composed of reduced graphene oxide (rGO), MoS2 and Fe3O4. The thesis comprises of 7 chapters. Chapter 1 serves as an introductory note on self-healing polyurethane and EMI shielding. It discusses the existing strategies (both extrinsic and intrinsic type of healing) which have been used till date for the development of self-healing PUs. It also discusses recent literatures and existing state of art in the field of PU based EMI shielding materials. It also discusses the motivation behind development of EMI shielding materials which are self-healable. Chapter 2 discusses the road map of the thesis. It discusses the rationale behind choosing various functional nanoparticles. It also discusses the progression of various chapters and key aspects of each chapter in the thesis. In Chapter 3, self-healing PU was synthesised by tethering Diels-Alder chemistry which has the capability to heal by heating the polymer to 65 °C. The hybrid rGO@Fe3O4 (5 wt %) nanoparticles used in tandem with MWNTs (3 wt %) resulted in excellent EMI shielding efficiency of -31 dB at 18 GHz with up to 90 % absorption of incoming EM waves at a thickness of 5 mm. Additionally, the incorporation of microwave absorbing nanoparticles iv helped in development of an EM shield which could heal using microwaves from a commercial microwave oven. Moving forward in Chapter 4 self-healing ultrathin EMI shielding films were developed. In this case the self-healing disulphide bonds were harnessed on the nanoparticle (MWNTs) itself through suitable chemistry. The disulphide linked MWNTs were composited along with hybrid rGO@MoS2@Fe3O4 in commercial TPU in 80/20 (wt % / wt %) ratio which resulted in high EMI shielding efficiency of -65 dB at 18 GHz with up to 81 % of EM wave being absorbed at a thickness of only 200 μm. The damaged films could be repaired by heating to a temperature of 50 °C. However, it was realised that in spite of the high EMI shielding efficiency of these ultra-thin self-healing shields their flexibility was compromised due to high filler loading. Therefore, in Chapter 5 the disulphide chemistry was harnessed (used in Chapter 4 for self-healing MWNTs) in the PU chain itself which resulted in a polymer which could heal at room temperature, eliminating the need to provide a trigger like temperature such as used in Chapter 3 and 4. MWNTs in tandem with hybrid rGO@MoS2@Fe3O4 resulted in high EMI shielding efficiency of -43 dB at 18 GHz with up to 96 % of EM waves being attenuated by absorption. In Chapter 6 the self-healing effect was combined with shape memory property to design shield with multifunctionality. A mussel-inspired PU was synthesised by incorporating dopamine moiety in the PU chain. In previous chapters the crack closure was initiated manually. However, in this chapter, the polymer exhibited shape memory assisted self-healing (SMASH) behaviour whereby the crack closure in case of damages could be achieved through shape memory property of the polymer by heating it above the Tg of the polymer (50 °C). Additionally, the hydroxyl functionality in dopamine could be crosslinked with Fe3+ ions which could also exhibit moisture triggered healing effect. The hybrid nanoparticles Fe3O4@MoS2 in synergism with MWNTs resulted in high EMI shielding efficiency of -37 dB at 18 GHz with up to 96 % of EM waves being attenuated by absorption. Finally, in Chapter 7 a consolidated summary of the results obtained in the thesis has been provided. The chapter also discussed the possible extension of this work which could be adopted to develop novel self-healing EMI shielding polymer nanocomposites.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Balzano, B., John Sweeney, Glen P. Thompson, Cristina-Luminita Tuinea-Bobe, and A. Jefferson. "Enhanced concrete crack closure with hybrid shape memory polymer tendons." 2020. http://hdl.handle.net/10454/18279.

Повний текст джерела
Анотація:
Yes
The paper presents a new healing system that uses pre-tensioned hybrid tendons to close cracks in cementitious structural elements. The tendons comprise an inner core, formed from aramid fibre ropes, and an outer sleeve made from a shape memory PET. During the manufacturing process, the inner core of a tendon is put into tension and the outer sleeve into compression, such that the tendon is in equilibrium. A set of tendons are then cast in a cementitious structural element and heat activated once cracking occurs. This triggers the shrinkage potential of the PET sleeve, which in turn releases the stored strain energy in the inner core. The tensile force thereby released applies a compressive force to the cementitious element, in which the tendons are embedded, that acts to close any cracks that have formed perpendicular to the axis of the tendons. Details of the component materials used to form the tendon are given along with the tendon manufacturing process. A set of experiments are then reported that explore the performance of three different tendon configurations in prismatic mortar beams. The results from these experiments show that the tendons can completely close 0.3 mm cracks in the mortar beams and act as effective reinforcement both before and after activation. A nonlinear hinge-based numerical model is also described, which is shown to be able to reproduce the experimental behaviour with reasonable accuracy. The model is used to help interpret the results of the experiments and, in particular, to explore the effects of slip at the tendon anchorages and the amount of prestress force that remains after activation. It is shown that, with two of the tendon configurations tested, over 75% of the prestress potential of the tendon remains after crack closure.
UK-EPSRC (Grant No. EP/P02081X/1, Resilient Materials 4 Life, RM4L).
The full-text of this article will be released for public view at the end of the publisher embargo on 17 Oct 2021.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Teall, O., M. Pilegis, R. Davies, John Sweeney, T. Jefferson, R. Lark, and D. Gardner. "A shape memory polymer concrete crack closure system activated by electrical current." 2018. http://hdl.handle.net/10454/16324.

Повний текст джерела
Анотація:
Yes
The presence of cracks has a negative impact on the durability of concrete by providing paths for corrosive materials to the embedded steel reinforcement. Cracks in concrete can be closed using shape memory polymers (SMP) which produce a compressive stress across the crack faces. This stress has been previously found to enhance the load recovery associated with autogenous selfhealing. This paper details the experiments undertaken to incorporate SMP tendons containing polyethylene terephthalate (PET) filaments into reinforced and unreinforced 500 × 100 × 100 mm structural concrete beam samples. These tendons are activated via an electrical supply using a nickelchrome resistance wire heating system. The set-up, methodology and results of restrained shrinkage stress and crack closure experiments are explained. Crack closure of up to 85% in unreinforced beams and 26%–39% in reinforced beams is measured using crack-mouth opening displacement, microscope and digital image correlation equipment. Conclusions are made as to the effectiveness of the system and its potential for application within industry.
EPSRC for their funding of the Materials for Life (M4L) project (EP/K026631/1) and Costain Group PLC for industrial sponsorship of the project and author
Стилі APA, Harvard, Vancouver, ISO та ін.
8

TU, SHU-NING, and 涂書寧. "(I)Preparation of self-healing and shape memory properties for metallocene polyethylene(II)Preparation of TPE Foams." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/3f788t.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Banerjee, S. L., Thomas Swift, Richard Hoskins, Stephen Rimmer, and N. K. Singha. "A muscle mimetic polyelectrolyte–nanoclay organic–inorganic hybrid hydrogel: its self-healing, shape-memory and actuation properties." 2019. http://hdl.handle.net/10454/16784.

Повний текст джерела
Анотація:
yes
Here in, we describe a non-covalent (ionic interlocking and hydrogen bonding) strategy of self-healing in a covalently crosslinked organic-inorganic hybrid 15 nanocomposite hydrogel, with special emphasize on it's improved mechanical stability. The hydrogel was prepared via in-situ free radical polymerization of sodium acrylate (SA) and successive crosslinking in the presence of poly(2-(methacryloyloxy)ethyl trimethyl ammonium chloride) (PMTAC) grafted cationically armed starch and organically modified montmorillonite (OMMT). This hydrogel shows stimuli triggered self-healing following damage in both neutral and acidic solutions (pH=7.4 and pH=1.2). This was elucidated by tensile strength and rheological analyses of the hydrogel segments joined at their fractured points. Interestingly this hydrogel can show water based shape memory effects. It was observed that the ultimate tensile strength (UTS) of the self-healed hydrogel at pH = 7.4 was comparable to extensor digitorum longus (EDL) muscle of the New Zealand white rabbit. The as synthesized self-healable hydrogel was found to be non-cytotoxic against NIH 3T3 fibroblast cells.
Medical Research Council (MRC (MR/N501888/2))
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Maddalena, R., L. Bonanno, B. Balzano, Cristina-Luminita Tuinea-Bobe, John Sweeney, and I. Mihai. "A crack closure system for cementitious composite materials using knotted shape memory polymer (k-SMP) fibres." 2020. http://hdl.handle.net/10454/18127.

Повний текст джерела
Анотація:
Yes
Formation of cracks represents one of the major causes of concrete deterioration, which can lead to durability and safety issues. In this work, a novel crack closure system is developed, using polyethylene terephthalate (PET) polymer fibres embedded in a mortar mix. The PET polymer has shape memory properties and shrinks upon thermal activation, if free to do so, or otherwise exerts shrinkage restraint forces. A single knot was manufactured at each end of the PET fibres to provide mechanical anchorage into the mortar matrix. Mortar samples with embedded knotted fibres were pre-cracked and subsequently placed in an oven to thermally activate the polymers and induce the shrinkage mechanism into the fibres. Crack closure was measured in the range 45–100%, depending on the geometry, dimension and distribution of the fibres, and the size of the initial crack.
This work is supported by UKRI-EPSRC (Grant No. EP/P02081X/1, Resilient Materials 4 Life, RM4L).
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Shape memory assisted self-healing"

1

Li, Guoqiang. Self-Healing Composites: Shape Memory Polymer Based Structures. Wiley & Sons, Incorporated, John, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Guoqiang. Self-Healing Composites: Shape Memory Polymer Based Structures. Wiley & Sons, Incorporated, John, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Guoqiang. Self-Healing Composites: Shape Memory Polymer Based Structures. Wiley, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Li, Guoqiang. Self-Healing Composites: Shape Memory Polymer Based Structures. Wiley & Sons, Limited, John, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sadasivuni, Kishor Kumar, Deepalekshmi Ponnamma, John-John Cabibihan, and Mariam Al-Ali Al-Maadeed. Smart Polymer Nanocomposites: Energy Harvesting, Self-Healing and Shape Memory Applications. Springer, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sadasivuni, Kishor Kumar, Deepalekshmi Ponnamma, John-John Cabibihan, and Mariam Al-Ali Al-Maadeed. Smart Polymer Nanocomposites: Energy Harvesting, Self-Healing and Shape Memory Applications. Springer, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Salim, Nisa, Jaworski C. Capricho, Sabu Thomas, and Nishar Hameed. Multifunctional Epoxy Resins: Self Healing, Self Sensing, Shape Memory, Thermally and Electrically Conductive Resins. Springer, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pollin-Galay, Hannah. Ecologies of Witnessing. Yale University Press, 2018. http://dx.doi.org/10.12987/yale/9780300226041.001.0001.

Повний текст джерела
Анотація:
This book reassesses contemporary Holocaust testimony, focusing on the power of language and place to shape personal narrative. Oral histories of Lithuanian Jews serve as the textual base for this exploration. Comparing the remembrances of Holocaust victims who remained in Lithuania with those who resettled in Israel and North America after World War II, the analysis reveals meaningful differences based on where they chose to live out their postwar lives and whether their language of testimony was Yiddish, English, or Hebrew. The differences between their testimonies relate to notions of love, justice, community—and how the Holocaust did violence to these aspects of the self. The argument illuminates the multiple places that the Holocaust can fill in Jewish historical memory. Beyond the particular Jewish case, the book raises fundamental questions about how people draw from their linguistic and physical environments in order to understand their own suffering. The analysis challenges the assumption of a universal vocabulary for describing and healing human pain.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Shape memory assisted self-healing"

1

Zhang, Sheng, Shi-Lin Zeng, and Bang-Jing Li. "Cyclodextrins-Based Shape Memory Polymers and Self-Healing Polymers." In Handbook of Macrocyclic Supramolecular Assembly, 587–600. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2686-2_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhang, Sheng, Shi-Lin Zeng, and Bang-Jing Li. "Cyclodextrins-Based Shape Memory Polymers and Self-Healing Polymers." In Handbook of Macrocyclic Supramolecular Assembly, 1–15. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1744-6_24-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Thomas, Deepu, John-John Cabibihan, Sasi Kumar, S. K. Khadheer Pasha, Dipankar Mandal, Meena Laad, Bal Chandra Yadav, et al. "Biodegradable Nanocomposites for Energy Harvesting, Self-healing, and Shape Memory." In Smart Polymer Nanocomposites, 377–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50424-7_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mohd Khairi, Nur Aliah, Hanizah Ab Hamid, and Azmi Ibrahim. "Self-healing Shape-Memory Alloy (SMA) in Reinforced Concrete Structures: A Review." In InCIEC 2015, 641–52. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0155-0_54.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gupta, Sujasha, and Bankim Chandra Ray. "Self-Healing and Shape Memory Effects of Carbon Nanotube–Based Polymer Composites." In Handbook of Carbon Nanotubes, 1113–46. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91346-5_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gupta, Sujasha, and Bankim Chandra Ray. "Self-Healing and Shape Memory Effects of Carbon Nanotube Based Polymer Composites." In Handbook of Carbon Nanotubes, 1–34. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-70614-6_18-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rabeeh, Bakr Mohamed, and Yasser Fouad. "The Synthesis and Processing of Self-Healing Materials: A Lamellar Shape Memory Alloy in Composite Structure." In Advanced Composites for Aerospace, Marine, and Land Applications II, 285–94. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093213.ch22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rabeeh, Bakr Mohamed, and Yasser Fouad. "The Synthesis and Processing of Self-Healing Materials: A Lamellar Shape Memory Alloy in Composite Structure." In Advanced Composites for Aerospace, Marine, and Land Applications II, 285–94. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48141-8_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Antoun, Mario, and Liam J. Butler. "A New Class of Hybrid Self-healing Cementitious Materials Combining Shape Memory Alloy Wires and Super Absorbent Polymers." In International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures, 888–98. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-33187-9_81.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wu, Wenjing, James Ekeocha, Christopher Ellingford, Sreeni Narayana Kurup, and Chaoying Wan. "Shape memory-assisted self-healing polymer systems." In Self-Healing Polymer-Based Systems, 95–121. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-818450-9.00004-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Shape memory assisted self-healing"

1

Elsisy, Moataz, Evan Poska, and Mostafa Bedewy. "Current-Dependent Kinetics of Self-Folding for Multi-Layer Polymers Using Local Resistive Heating." In ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6628.

Повний текст джерела
Анотація:
The purpose of this paper is to characterize the kinetics and direction of self-folding of pre-strained polystyrene (PSPS) and non-pre-strained styrene (NPS), which results from local shrinkage using a resistively heated ribbon in contact with the polymer sheet. A temperature gradient across the thickness of this shape memory polymer (SMP) sheet induces folding along the line of contact with the heating ribbon. Varying the electric current changes the degree of folding and extent of local material flow. This method can be used to create practical 3D structures. Sheets of PSPS and NPS were cut to 10 × 20 mm samples and their folding angles were plotted with respect to time, as obtained from in situ videography. In addition, the use of polyimide tape (Kapton) was investigated for controlling the direction of self-folding. Results show that folding happens on the opposite side of the sample with respect to the tape, regardless of which side the heating ribbon is on, or whether gravity is opposing the folding direction. Given the tunability of fold times and extent of local material flow, heat-assisted folding is a promising approach for manufacturing complex 3D lightweight structures by origami engineering.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Muntges, Daniel E., Gyuhae Park, and Daniel J. Inman. "Self-healing bolted joint employing a shape memory actuator." In SPIE's 8th Annual International Symposium on Smart Structures and Materials, edited by L. Porter Davis. SPIE, 2001. http://dx.doi.org/10.1117/12.436530.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chang, Hajoo, Changgil Lee, and Seunghee Park. "Self-Monitoring and Self-Healing Bolted Joints Using Shape Memory Alloy." In 28th International Symposium on Automation and Robotics in Construction. International Association for Automation and Robotics in Construction (IAARC), 2011. http://dx.doi.org/10.22260/isarc2011/0153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liu, Yingtao, Abhishek Rajadas, and Aditi Chattopadhyay. "Self-healing nanocomposite using shape memory polymer and carbon nanotubes." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Jerome P. Lynch, Chung-Bang Yun, and Kon-Well Wang. SPIE, 2013. http://dx.doi.org/10.1117/12.2009908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Espinha, André, Maria Concepción Serrano, Álvaro Blanco, and Cefe López. "Shape-memory effect for self-healing and biodegradable photonic systems." In SPIE Photonics Europe, edited by Sergei G. Romanov, Gabriel Lozano, Dario Gerace, Christelle Monat, and Hernán R. Míguez. SPIE, 2014. http://dx.doi.org/10.1117/12.2058568.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Harursampath, Dinesh, and Arvind Sharma. "Variational Asymptotic Simulation of a Self-Healing Shape Memory Alloy Composite." In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
16th AIAA/ASME/AHS Adaptive Structures Conference
10t
. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-1741.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kirkby, Eva L., Joseph D. Rule, Véronique J. Michaud, Nancy R. Sottos, Scott R. White, and Jan-Anders E. Månson. "Active repair of self-healing polymers with shape memory alloy wires." In The 14th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, edited by Marcelo J. Dapino. SPIE, 2007. http://dx.doi.org/10.1117/12.715408.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Heo, Yunseon, and Henry A. Sodano. "Thermo-Responsive Shape Memory Self-Healing Polyurethanes and Composites With Continuous Carbon Fiber Reinforcement." In ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-8916.

Повний текст джерела
Анотація:
Thermally responsive self-healing polyurethanes (1DA1T, 1.5DA1T, and 2DA1H) with shape memory property were developed and the fully reversible Diels-Alder (DA) and retro Diels-Alder (rDA) reactions were employed for the healing mechanism. The transition temperatures of the DA and rDA reactions were confirmed through a differential scanning calorimetry and the molecular level of analysis on the reversibility and the repeatability between the DA and rDA reactions were completed though a variable temperature proton nuclear magnetic resonance at the reaction temperatures. Also, compact tension specimens were made to observe the healing efficiencies. These specimens were healed without the use of external forces to close the crack surfaces after testing for the repeatable healing ability with three cycles. As a result, the average first healing cycle efficiencies of 80%, 84%, and 96% for 1DA1T, 1.5DA1T and 2DA1H, respectively, were achieved and small drops for the second and third healing cycles were observed. Then, using two of the self-healing polyurethanes as resins, continuous carbon fiber fabric reinforced polymer matrix composites (C1.5DA1T and C2DA1H) were fabricated and short beam shear testing was conducted to determine the healing capability on the delamination. Accordingly, the first healing efficiencies of 88% and 85% were measured without any additional treatments on the fibers; however, an external pressure was applied during the composite healing process.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Thapa, Mishal, Bodiuzzaman Jony, Sameer B. Mulani, and Samit Roy. "Experimental Characterization of Shape Memory Polymer Enhanced Thermoplastic Self-Healing Carbon/Epoxy Composites." In AIAA Scitech 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-1112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Li, Guoqiang, and Tao Xu. "A Shape Memory Polymer Based Self-Healing Syntactic Foam Sealant for Expansion Joint." In Structures Congress 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41171(401)181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії