Добірка наукової літератури з теми "SERS SUBSTRAT"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "SERS SUBSTRAT".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "SERS SUBSTRAT"
Sari, Kartika, Rosy Hutami, Azzahra Putri Rialdi, Marlinda Indriati, and Anna Mardiana Handayani. "Ulasan Kritis Artikel : Democratizing Robust SERS Nano-Sensors for Food Safety Diagnostics." Karimah Tauhid 3, no. 11 (November 12, 2024): 12175–96. https://doi.org/10.30997/karimahtauhid.v3i11.15859.
Повний текст джерелаMayerhöfer, Thomas G., and Jürgen Popp. "Periodic array-based substrates for surface-enhanced infrared spectroscopy." Nanophotonics 7, no. 1 (January 1, 2018): 39–79. http://dx.doi.org/10.1515/nanoph-2017-0005.
Повний текст джерелаOssig, R., Y. H. Kwon, F. Hubenthal, and H. D. Kronfeldt. "Naturally grown Ag nanoparticles on quartz substrates as SERS substrate excited by a 488 nm diode laser system for SERDS." Applied Physics B 106, no. 4 (February 7, 2012): 835–39. http://dx.doi.org/10.1007/s00340-011-4866-8.
Повний текст джерелаLiu, Chang, Qianqian Su, Li Li, Jie Sun, Jian Dong, and Weiping Qian. "Substrate-Immersed Solvothermal Synthesis of Ordered SiO2/Ag Arrays as Catalytic SERS Substrates." Nano 13, no. 05 (May 2018): 1850049. http://dx.doi.org/10.1142/s1793292018500492.
Повний текст джерелаYao Senhao, 姚森浩, 冉娜 Ran Na, 王宁 Wang Ning та 张洁 Zhang Jie. "银纳米树SERS基底拉曼增强特性". Acta Optica Sinica 44, № 21 (2024): 2130001. http://dx.doi.org/10.3788/aos241183.
Повний текст джерелаZhang, Liyuan, Xu Li, Lydia Ong, Rico F. Tabor, Brianna A. Bowen, Aeshin I. Fernando, Azadeh Nilghaz, et al. "Cellulose nanofibre textured SERS substrate." Colloids and Surfaces A: Physicochemical and Engineering Aspects 468 (March 2015): 309–14. http://dx.doi.org/10.1016/j.colsurfa.2014.12.056.
Повний текст джерелаWu Chunfang, 吴春芳, 段鹏飞 Duan Pengfei, 潘浩 Pan Hao, 朱业传 Zhu Yechuan, 张凯锋 Zhang Kaifeng, 李坤 Li Kun та 魏杰 Wei Jie. "一种光栅/纳米颗粒结构的双共振SERS基底". Acta Optica Sinica 42, № 14 (2022): 1405002. http://dx.doi.org/10.3788/aos202242.1405002.
Повний текст джерелаLai Chunhong, 赖春红, 赖林 Lai lin, 张芝峻 Zhang Zhijun, 张帅康 Zhang Shuaikang, 姜小明 Jiang Xiaoming та 刘家瑜 Liu Jiayu. "基于金纳米颗粒-半胱胺SERS基底的水中硝酸根检测". Chinese Journal of Lasers 49, № 11 (2022): 1111002. http://dx.doi.org/10.3788/cjl202249.1111002.
Повний текст джерелаWu Chunfang, 吴春芳, 张焱 Zhang Yan, 潘浩 Pan Hao, 朱业传 Zhu Yechuan, 杨占君 Yang Zhanjun та 魏杰 Wei Jie. "金光栅/金纳米颗粒SERS基底的设计、制备及其性能". Acta Optica Sinica 43, № 21 (2023): 2124001. http://dx.doi.org/10.3788/aos230867.
Повний текст джерелаCintra, Suzanne, Mamdouh E. Abdelsalam, Philip N. Bartlett, Jeremy J. Baumberg, Timothy A. Kelf, Yoshihiro Sugawara, and Andrea E. Russell. "Sculpted substrates for SERS." Faraday Discuss. 132 (2006): 191–99. http://dx.doi.org/10.1039/b508847j.
Повний текст джерелаДисертації з теми "SERS SUBSTRAT"
Gillibert, Raymond. "Développement d’un substrat SPRi/SERS pour des applications en détection moléculaire." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCD003/document.
Повний текст джерелаIn this thesis, we briefly describe the techniques used, which are surface plasmon resonanceimaging (SPRi) and surface enhanced Raman scattering (SERS). The main goal of the Piranexproject in which the thesis is based is the development of a bimodal nanostructured biochipallowing the coupling of the two techniques SPRi and SERS. This bio-chip consists of a goldfilm over which we have deposited a square array of gold nanocylinders. A set of studies hasbeen carried out to characterize plasmonic properties of the biosensor in order to optimize theSERS signal. We have thus found that the emission of the signal was strongly anisotropic, due tothe excitation of the Bragg Mode and that the near field was mainly enhanced on the edges of thenanostructure. The properties were also compared with those of identical gratings depositeddirectly on a dielectric substrate. Subsequently a set of plasmonic and SERS studies were carriedout for aluminum, other plasmonic materials of interest. Finally, a detection protocol by SERS ofochratoxin based on an aptamer was developed and allowed the detection of ochratoxin with adetection threshold of 10 pM, well below the limit allowed by food regulatory agencies
Dridi, Hamida. "Méthodologies pour la réalisation d'un substrat SERS à base de silicium poreux pour la détection de molécules chimiques et biologiques." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S012/document.
Повний текст джерелаThe work of this thesis focuses on the realization of SERS substrates (Surface Enhanced Raman Scattering) for the detection of chemical and biological species. This is to implement the methodologies using as the starting surface of a porous silicon layer and a surface Plasmon effect induced by the presence of a noble metal in general. The specificities of the porous layers which are firstly a nanometer roughness and secondly a porosity and therefore an inner surface have a direct impact on the target molecule detection sensitivity. We have developed in this PhD thesis different substrates development methodologies SERS-based on porous silicon layers. We considered two ways, the first is based on the use of gold nanoparticles in colloidal solution. The second route, more original, uses the deposition of gold by sputtering on a porous layer prepared on the rough side of a silicon wafer. Interesting SERS results regarding the detection of chemical (Rhodamine 6G) and biological (Bovin Serum Albumin) molecules, have been described and explained for considering various solutions to optimize them
Iakab, Stefania-Alexandra. "Gold-Coated Black Silicon Nanostructured Surfaces for SERS and SALDI-MS Multimodal Imaging of Biological Applications." Doctoral thesis, Universitat Rovira i Virgili, 2021. http://hdl.handle.net/10803/672198.
Повний текст джерелаLa caracterización in situ de la composición molecular de los tejidos biológicos es indispensable en la investigación clínica, farmacéutica y forense. Las técnicas de imagen molecular, como la espectrometría de masas de imagen y las imágenes por espectroscopia Raman, emplean materiales nanoestructurados para abordar desafíos como la baja sensibilidad, la especificidad y la resolución lateral. El objetivo de esta tesis es diseñar, fabricar, evaluar y aplicar un sustrato nanoestructurado basado en oro y silicio (que denominamos “AuBSi”) compatible con aplicaciones de espectrometría de masas de imágenes por desorción / ionización por láser asistidas por superficie (SALDI-MS) y espectroscopía Raman intensificada por superficie (SERS). Los resultados demuestran que el sustrato AuBSi es reproducible, fácil de usar, rentable y altamente confiable. Garantiza una fácil preparación de la muestra y es totalmente compatible con ambas modalidades de imagen, lo que permite un enfoque verdaderamente multimodal. Mostramos que existe una unificación entre los formatos de datos SALDI y SERS, que permite la integración completa del flujo de trabajo de procesamiento de imágenes y el coregistro de imágenes.Se han probado las capacidades de obtención de imágenes del sustrato AuBSi en varias soluciones de estándares, secciones histológicas de tejido animal (hígado, riñón y cerebro de ratón) y huellas dactilares. El análisis multimodal de huellas dactilares destacó las excelentes capacidades del sustrato para acoplar imágenes SALDI y SERS, al tiempo que se consiguen paliar las limitaciones de cada técnica. Así, el sustrato AuBSi desarrollado en esta tesis facilita los estudios de metabolómica in situ dirigidos y / o no dirigidos para diversos campos como la investigación clínica, medioambiental, forense y farmacéutica.
Characterising in situ the molecular composition of biological tissues is an indispensable tool in clinical, pharmaceutical and forensic research. Imaging modalities such as mass spectrometry imaging and Raman spectroscopy imaging employ nanostructured materials for addressing challenges such as low sensitivity, specificity and lateral resolution. The aim of this thesis is to design, fabricate, evaluate and apply a gold- and silicon-based nanostructured substrate (named AuBSi) compatible with surface-assisted laser desorption/ionization (SALDI) and surface-enhanced Raman spectroscopy (SERS) imaging applications. Results demonstrate that the AuBSi substrate is reproducible, user-friendly, cost effective and highly reliable. It ensures easy sample preparation and is fully compatible with both imaging modalities, enabling a genuine multimodal approach. We show that there is a unification between SALDI and SERS data formats that allows the full integration of the image processing workflow and the straightforward coregistration of images. We tested the imaging capabilities of the AuBSi on several standard solutions, animal tissue sections (mouse liver, kidney and brain) and fingerprints. The multimodal analysis of fingerprints highlighted the excellent capabilities of the substrate to couple SALDI and SERS imaging, while dealing with the challenges of each technique. Thus, the AuBSi substrate developed in this thesis facilitates targeted and/or untargeted in situ metabolomics studies for various fields such as clinical, environmental, forensics, and pharmaceutical research.
Azziz, Aicha. "Étude structurale des brins d'ADN et de leurs interactions par diffusion Raman exaltée de surface." Electronic Thesis or Diss., Le Mans, 2024. https://cyberdoc-int.univ-lemans.fr/Theses/2024/2024LEMA1024.pdf.
Повний текст джерелаThe development of rapid and sensitive methods for DNA detection and analysis is gaining increasing interest, particularly in the biomedical field for molecular diagnostics.In this context, surface-enhanced Raman scattering (SERS) has proven to be an ideal tool for studying the structure of DNA strands and the molecular interactions between two DNA strands.Initially, we assessed the detection capabilities of several commercial SERS substrates using a diluted 4-MBA solution. This study allowed us to determine which substrate exhibited the best SERS performance and could be exploited for the study of DNA strands. Colloidal nanoparticles were also employed for experiments in liquid media.The spectral signatures of several DNA sequences were studied using monobase or polybase sequences. We were able to obtain reference spectra for each base and demonstrate a signal dependency based on the sequence.Spectral characterization of DNA strands before and after hybridization with a complementary strand allowed us to track structural changes in the DNA strands induced by hybridization. We were able to highlight modifications in orientation or reduced flexibility of the strands during hybridization, both in the presence and absence of mismatches. Through the use of analytical tools such as principal component analysis, it was possible to analyze and interpret the data, leading to proposed models of molecular interaction
Rahmani, Meryem. "Analyses Raman multispectrales exaltées pour la détection de molécules sous forme de trace." Electronic Thesis or Diss., Le Mans, 2024. http://www.theses.fr/2024LEMA1004.
Повний текст джерелаIn recent decades, the use of phytosanitary products commonly called pesticides has increased. These substances have become increasingly present in our environment, accumulating in soil, air and water. Even at very low concentration these products represent a danger to human, plant and animal health. For all these reasons it is important to regulate the use of phytosanitary products by prohibiting the use of certain of these substances and by strengthening regulations to set Maximum Residue Limits (MRLs) as low as possible. It is also necessary to develop new methods for detecting and identifying trace pollutants because conventional techniques require large laboratory capabilities which are not compatible with on-site analyses.In my PhD. work, we have used Surface Enhanced Raman Scattering (SERS) to detect and identify trace molecules. We studied and analyzed the performance of three commercial DRES substrates (Hamamatsu, SERSitive and Ocean Insight) for the detection and identification of a model molecule at concentrations of the order of 10-6 M and 10-8 M. We compared the Raman responses from the Raman maps recorded on their surfaces at two incident wavelengths. We have also developed and optimized efficient nanorough metallic substrates to detect and identify molecules with a detection limit of 10-9 M. We will present the experimental protocol used to fabricate our nanorough gold substrates. The topographical properties of the surfaces were studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) to better understand the reason of SERS properties of the substrates. The optical responses of our nanorough substrates were studied in the near field by electron photoemission (PEEM) and in the far field by Raman spectrometry after putting them in contact with solutions containing molecules at very low concentrations. We compared the spectral response, intensity distributions, and stability under laser beam, of gold nanorough substrates and the most efficient substrate among the three commercial DRES substrates by analyzing the Raman spectra at a concentration of 10-8 M.The stability of the Raman response of the commercial SERS substrates and our optimized nanorough substrates was studied over time, for a period of several months. The effectiveness of the substrates decreases over time and it is no longer possible to detect the presence of the molecules after several months. In my PhD work we have tested a method that makes it possible to improve the Raman performance of these aged substrates. The performance of these improved substrates was studied by analyzing Raman intensity distributions from imaging containing several hundred spectra. Finally, we used the gold nanorough substrates to detect molecules present in a binary mixture of model molecules at a concentration of 10-8 M. We analyzed the Raman maps using chemometric tools, namely Component Analysis. Principal (ACP), and Multivariate Curve Resolution (MCR)
Michel, Beat A. "Phénomène, sens et substrat : pour une métaphysique phénoménologique." Thesis, Paris 10, 2020. http://www.theses.fr/2020PA100056.
Повний текст джерелаWhat is the substrate of consciousness, or what is it that “makes consciousness”? Asking this question amounts to not being satisfied with an answer that may seem self-evident: this substrate is the brain. In fact, situating the substrate of consciousness in the objective body, as part of the world - whether in the context of phenomenology, philosophy of mind or naturalism - leads to a circular ontology: consciousness in the body, the body in the world, the world thought, perceived, conceived, constituted by consciousness. However, even if all circularity is not necessarily problematic, we seek to show that this circularity of a general ontology is indeed fatal. So we take another path, from the subjective body to a substrate that is not located in the world. This substrate is constructed as an abstract notion, by operating two consecutive merges of existing concepts. First we bring together in a single concept, that of abstract substrate, the Aristotelian hylemorphism, on the one hand, and the idea of supervenience, from the philosophy of the mind, on the other hand, by establishing that the two are, in a way, coextensive. We then appeal to the notion of absolute Life, introduced by Michel Henry in the last period of his work, interpreting it as a particular case of the notion of abstract substrate. The result of this second conceptual unification, is what we call transcendental substrate - transcendental in the Kantian sense. Finally we use the term adherence to designate the lived experience that the transcendental subject makes of the transcendental substrate
Speed, Jonathon. "Tailoring plasmonic substrates for SERS." Thesis, University of Southampton, 2011. https://eprints.soton.ac.uk/191315/.
Повний текст джерелаEliasson, Kasper. "Quantification using SERS on a colloidal substrate." Thesis, Uppsala universitet, Fasta tillståndets fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-443582.
Повний текст джерелаYan, Bo. "Rationally designed substrates for SERS biosensing." Thesis, Boston University, 2013. https://hdl.handle.net/2144/12894.
Повний текст джерелаThe large electromagnetic field enhancement provided by nanostructured noble metal surfaces forms the foundation for a series of enabling optical analytical techniques, such as surface enhanced Raman spectroscopy (SERS), surface enhanced IR absorption spectroscopy (SEIRA), surface enhanced fluorescent microscopy (SEF), to name only a few. Critical sensing applications have, however, other substrate requirements than mere peak signal enhancement. The substrate needs to be reliable, provide reproducible signal enhancements, and be amenable to a combination with microfluidic chips or other integrated sensor platforms. These needs motivate the development of engineerable SERS substrate "chips" with defined near- and far-field responses. In this dissertation, two types of rationally designed SERS substrates - nanoparticle cluster arrays (NCAs) and SERS stamp - will be introduced and characterized. NCAs were fabricated through a newly developed template guided self-assembly fabrication approach, in which chemically synthesized nanoparticles are integrated into predefined patterns using a hybrid top-down/bottom-up approach. Since this method relies on chemically defined building blocks, it can overcome the resolution limit of conventional lithographical methods and facilitates higher structural complexity. NCAs sustain near-field interactions within individual clusters as well as between entire neighboring clusters and create a multi-scale cascaded E-field enhancement throughout the entire array. SERS stamps were generated using an oblique angle metal deposition on a lithographically defined piston. When mounted on a nanopositioning stage, the SERS stamps were enabled to contact biological surfaces with pristine nanostructured metal surfaces for a label-free spectroscopic characterization. The developed engineered substrates were applied and tested in critical sensing applications, including the ultratrace detection of explosive vapors, the rapid discrimination of bacterial pathogens, and the label-free monitoring of the enzymatic degradation of pericellular matrices of cancer cells.
Sharma, Narayan. "Solution Processable Surface Enhanced Raman Spectroscopy (SERS) Substrate." Bowling Green State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1434375587.
Повний текст джерелаКниги з теми "SERS SUBSTRAT"
Hortin, N. J. The development of new sers substrates for remote optical sensing. Manchester: UMIST, 1997.
Знайти повний текст джерелаCarneiro, Maria Luiza Tucci. Dez Mitos sobre os Judeus. Imprensa da Universidade de Coimbra, 2021. http://dx.doi.org/10.14195/978-989-26-2167-8.
Повний текст джерелаBucher, Taina. Conclusion. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190493028.003.0007.
Повний текст джерелаLeite, Maria José de Holanda. Co-produtos da extração de vermiculita na produção de mudas de espécies arbóreas da Caatinga. Editora Amplla, 2021. http://dx.doi.org/10.51859/amplla.cpe535.1121-0.
Повний текст джерелаDomhoff, G. William. The Emergence of Dreaming. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190673420.001.0001.
Повний текст джерелаLeite, Maria José de Holanda. Gesso e rejeitos de mineração na correção de um solo salino-sódico e no crescimento inicial do maracujazeiro amarelo. Amplla Editora, 2022. http://dx.doi.org/10.51859/amplla.grm747.1122-0.
Повний текст джерелаBalsiger, Jörg, and Stacy D. VanDeveer. Regional Governance and Environmental Problems. Oxford University Press, 2018. http://dx.doi.org/10.1093/acrefore/9780190846626.013.416.
Повний текст джерелаDaguerre, Blandine. Passage et écriture de l’entre-deux dans El Pasajero de Cristóbal Suárez de Figueroa. Presses Universitaires de Pau et des Pays de l'Adour, 2020. http://dx.doi.org/10.46608/primaluna3.9782353111220.
Повний текст джерелаЧастини книг з теми "SERS SUBSTRAT"
Wang, Yuling, and Erkang Wang. "Nanoparticle SERS Substrates." In Surface Enhanced Raman Spectroscopy, 39–69. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632756.ch2.
Повний текст джерелаGarrett, N. L. "Naturally Inspired SERS Substrates." In Raman Spectroscopy for Nanomaterials Characterization, 75–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20620-7_4.
Повний текст джерелаHasna, Kudilatt, and M. K. Jayaraj. "Metal Oxides-Based SERS Substrates." In Materials Horizons: From Nature to Nanomaterials, 155–75. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3314-3_5.
Повний текст джерелаBaia, Monica, Simion Astilean, and Traian Iliescu. "New Developments in SERS-Active Substrates." In Raman and SERS Investigations of Pharmaceuticals, 187–205. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78283-4_8.
Повний текст джерелаde la Chapelle, Marc Lamy. "Optimisation of Plasmonic Substrates for SERS Application." In Encyclopedia of Nanotechnology, 1–7. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6178-0_101018-1.
Повний текст джерелаde la Chapelle, Marc Lamy. "Optimization of Plasmonic Substrates for SERS Application." In Encyclopedia of Nanotechnology, 3074–80. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_101018.
Повний текст джерелаFasolato, Claudia. "Nanoparticle-Based SERS Substrates for Molecular Sensing Applications." In Surface Enhanced Raman Spectroscopy for Biophysical Applications, 85–112. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03556-3_4.
Повний текст джерелаRigó, I., M. Veres, L. Himics, T. Váczi, and P. Fürjes. "Preparation and Characterization of SERS Substrates of Different Morphology." In NATO Science for Peace and Security Series B: Physics and Biophysics, 63–68. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-024-1298-7_8.
Повний текст джерелаHabermehl, Anne, Xin Liu, Carsten Eschenbaum, and Uli Lemmer. "Fabrication of SERS Substrates by Roll-to-Roll Hot Embossing." In NATO Science for Peace and Security Series B: Physics and Biophysics, 513–15. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-0850-8_55.
Повний текст джерелаLiu, Mei, Yan Peng, and Zhizheng Wu. "Simulation and Optimization of Nanoparticle Patterned Substrates for SERS Effect." In Progress in Optomechatronic Technologies, 133–39. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05711-8_14.
Повний текст джерелаТези доповідей конференцій з теми "SERS SUBSTRAT"
Portes, Ary V. R., Felipe M. F. Teixeira, Talles E. M. Marques, and Jhonattan C. Ramirez. "Electrically Tunable SERS Substrate Using Gold Nanopyramids on Graphene." In Frontiers in Optics, JW4A.45. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jw4a.45.
Повний текст джерелаChoudhary, Riya, Kaushal Vairagi, Samir K. Mondal, and Sachin K. Srivastava. "Bessel Beam-Instigated Two-Fold SERS Enhancement in AuNP Structures Compare to Drop Casting." In JSAP-Optica Joint Symposia, 17a_A34_6. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.17a_a34_6.
Повний текст джерелаChopra, Aditi, Sudipta Sarkar Pal, and Girish C. Mohanta. "Evaluation of silica TLC plates as Low-cost substrates for surface-enhanced Raman spectroscopy (SERS)." In Optical Sensors. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/sensors.2023.stu5d.4.
Повний текст джерелаZou, Wenlong, Zhijian Cai, and Jianhong Wu. "Periodic nanostructures for SERS-active substrate." In International Conference on Optical Instruments and Technology 2015, edited by Jigui Zhu, Hwa-Yaw Tam, Kexin Xu, Hai Xiao, and Sen Han. SPIE, 2015. http://dx.doi.org/10.1117/12.2192207.
Повний текст джерелаHsu, C. H., L. T. Chiu, C. H. Chen, and C. S. Lai. "Effective Membrane-based SERS Substrate Fabrication." In 2016 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2016. http://dx.doi.org/10.7567/ssdm.2016.h-1-05.
Повний текст джерелаMotla, Akanksha, Sumaya Nisar, Vikas Baranwal, Kavita Sharma, B. Sundarawel, Nita Dilawar Shrama, S. A. Khan, and D. K. Avasthi. "Ion Beam Synthesis of SERS Substrate." In 2021 International Conference on Electrical Engineering and Photonics (EExPolytech). IEEE, 2021. http://dx.doi.org/10.1109/eexpolytech53083.2021.9614915.
Повний текст джерелаPérez-Mayen, Leonardo, Jorge Oliva, and Elder De la Rosa Cruz. "Selection criteria for SERS substrates." In Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/laop.2014.lm4a.40.
Повний текст джерелаIgnat, Teodora, Irina Kleps, Mihaela Miu, Florin Craciunoiu, Adina Bragaru, and Monica Simion. "Preparation of SERS-active porous gold substrate." In 2008 International Semiconductor Conference. IEEE, 2008. http://dx.doi.org/10.1109/smicnd.2008.4703367.
Повний текст джерелаKitahama, Yasutaka, Huanhuan Zhang, Jun-Yu Dong, Xuke Tang, Naoki Kishimoto, Yunjie Deng, Yuji Kagotani, Motoyasu Adachi, Ting-Hui Xiao, and Keisuke Goda. "Cost-effective flexible substrate for ultrabroadband SERS." In Plasmonics in Biology and Medicine XXI, edited by Tuan Vo-Dinh, Ho-Pui A. Ho, and Krishanu Ray. SPIE, 2024. http://dx.doi.org/10.1117/12.3001988.
Повний текст джерелаZhao, Yiping, Yongjun Liu, P. M. Champion, and L. D. Ziegler. "The Silver Nanorod Array SERS Substrates." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482510.
Повний текст джерелаЗвіти організацій з теми "SERS SUBSTRAT"
Mu, Richard. Development of Focus-Free SERS Substrate Assembly. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada524871.
Повний текст джерелаSardana, Neha, Heena Sammi, and Rajesh V. Nair. Reusable SERS substrate based on interconnected metal network structure. Peeref, June 2023. http://dx.doi.org/10.54985/peeref.2306p3513910.
Повний текст джерелаHalas, Naomi, and Joseph Jackson. Detection of Molecular and Biomolecular Species by Surface-Enhanced Raman Scattering: Nanoengineered Substrates for SERS Detection. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada426233.
Повний текст джерелаTidd, Alexander N., Richard A. Ayers, Grant P. Course, and Guy R. Pasco. Scottish Inshore Fisheries Integrated Data System (SIFIDS): work package 6 final report development of a pilot relational data resource for the collation and interpretation of inshore fisheries data. Edited by Mark James and Hannah Ladd-Jones. Marine Alliance for Science and Technology for Scotland (MASTS), 2019. http://dx.doi.org/10.15664/10023.23452.
Повний текст джерелаPalhares Neto, Luiz, Leilane Gomes, José Marangon, Genilton Santos, and Cecílio Caldeira Júnior. Protocolo de micropropagação de Cattleya milleri, espécie endêmica do quadrilátero ferrífero criticamente ameaçada de extinção. ITV, May 2022. http://dx.doi.org/10.29223/prod.tec.itv.ds.2022.12.palharesneto.
Повний текст джерела