Статті в журналах з теми "Sequential deposition"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Sequential deposition.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Sequential deposition".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Wang, X., J. Ma, A. Maximenko, E. A. Olevsky, M. B. Stern, and B. M. Guenin. "Sequential deposition of copper/alumina composites." Journal of Materials Science 40, no. 12 (June 2005): 3293–95. http://dx.doi.org/10.1007/s10853-005-2704-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, X., J. Ma, A. Maximenko, E. A. Olevsky, M. B. Stern, and B. M. Guenin. "Sequential deposition of copper/alumina composites." Journal of Materials Science 40, no. 18 (September 2005): 4963–65. http://dx.doi.org/10.1007/s10853-005-3869-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Eisenberg, Eli, and Asher Baram. "Diffusional relaxation in random sequential deposition." Journal of Physics A: Mathematical and General 30, no. 9 (May 7, 1997): L271—L276. http://dx.doi.org/10.1088/0305-4470/30/9/003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ermanova, Inga, Narges Yaghoobi Nia, Enrico Lamanna, Elisabetta Di Bartolomeo, Evgeny Kolesnikov, Lev Luchnikov, and Aldo Di Carlo. "Crystal Engineering Approach for Fabrication of Inverted Perovskite Solar Cell in Ambient Conditions." Energies 14, no. 6 (March 22, 2021): 1751. http://dx.doi.org/10.3390/en14061751.

Повний текст джерела
Анотація:
In this paper, we demonstrate the high potentialities of pristine single-cation and mixed cation/anion perovskite solar cells (PSC) fabricated by sequential method deposition in p-i-n planar architecture (ITO/NiOX/Perovskite/PCBM/BCP/Ag) in ambient conditions. We applied the crystal engineering approach for perovskite deposition to control the quality and crystallinity of the light-harvesting film. The formation of a full converted and uniform perovskite absorber layer from poriferous pre-film on a planar hole transporting layer (HTL) is one of the crucial factors for the fabrication of high-performance PSCs. We show that the in-air sequential deposited MAPbI3-based PSCs on planar nickel oxide (NiOX) permitted to obtain a Power Conversion Efficiency (PCE) exceeding 14% while the (FA,MA,Cs)Pb(I,Br)3-based PSC achieved 15.6%. In this paper we also compared the influence of transporting layers on the cell performance by testing material depositions quantity and thickness (for hole transporting layer), and conditions of deposition processes (for electron transporting layer). Moreover, we optimized second step of perovskite deposition by varying the dipping time of substrates into the MA(I,Br) solution. We have shown that the layer by layer deposition of the NiOx is the key point to improve the efficiency for inverted perovskite solar cell out of glove-box using sequential deposition method, increasing the relative efficiency of +26% with respect to reference cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kant, Pallav, Andrew L. Hazel, Mark Dowling, Alice B. Thompson, and Anne Juel. "Sequential deposition of microdroplets on patterned surfaces." Soft Matter 14, no. 43 (2018): 8709–16. http://dx.doi.org/10.1039/c8sm01373j.

Повний текст джерела
Анотація:
We use a combination of experiments and numerical modelling to investigate the influence of physico-chemical-patterned substrates on the spreading of fluid deposited as a partially overlapping sequence of droplets via inkjet printing. We find that both topography and wettability variations are required for robust pixel filling without overspill.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

NOVOTNY, M. A., and A. KOLAKOWSKA. "MIXING DIFFERENT RANDOM DEPOSITIONS IN NONEQUILIBRIUM SURFACE GROWTH MODELS." International Journal of Modern Physics C 20, no. 09 (September 2009): 1377–85. http://dx.doi.org/10.1142/s0129183109014448.

Повний текст джерела
Анотація:
An exact solution is presented for mixing two or more different types of Random Deposition (RD) nonequilibrium surface growth processes. The depositions may be made in a sequential mode, or in a random mode by first randomly choosing the lattice site for deposition. The results hold in all dimensions d. Simulations are presented in d = 1 for comparison. Furthermore, a mean-field type of approach to mixing RD with other surface growth processes is tested against the exact solution.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Groenendijk, D. J., and S. Gariglio. "Sequential pulsed laser deposition of homoepitaxial SrTiO3thin films." Journal of Applied Physics 120, no. 22 (December 14, 2016): 225307. http://dx.doi.org/10.1063/1.4971865.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Lijian, Chunyan Wu, Weifeng Liu, Shangfeng Yang, Mingtai Wang, Tao Chen, and Changfei Zhu. "Sequential deposition route to efficient Sb2S3 solar cells." Journal of Materials Chemistry A 6, no. 43 (2018): 21320–26. http://dx.doi.org/10.1039/c8ta08296k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Penrose, Mathew D., and J. E. Yukich. "Limit Theory for Random Sequential Packing and Deposition." Annals of Applied Probability 12, no. 1 (February 2002): 272–301. http://dx.doi.org/10.1214/aoap/1015961164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Danwanichakul, Panu, and Eduardo D. Glandt. "Sub-monolayer growth by sequential deposition of particles." Journal of Colloid and Interface Science 294, no. 1 (February 2006): 38–46. http://dx.doi.org/10.1016/j.jcis.2005.07.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Lau, Y. L., I. G. Droppo, and B. G. Krishnappan. "Sequential erosion/deposition experiments—demonstrating the effects of depositional history on sediment erosion." Water Research 35, no. 11 (August 2001): 2767–73. http://dx.doi.org/10.1016/s0043-1354(00)00559-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Morino, Yusuke, Yuta Kanai, Akihito Imanishi, Yasuyuki Yokota, and Ken-ichi Fukui. "Fabrication of ionic liquid ultrathin film by sequential deposition." Japanese Journal of Applied Physics 53, no. 5S1 (January 1, 2014): 05FY01. http://dx.doi.org/10.7567/jjap.53.05fy01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Hass, N., U. Dai, and G. Deutscher. "Sequential deposition of YBaCuO thin film on sapphire substrates." Superconductor Science and Technology 4, no. 1S (January 1, 1991): S262—S264. http://dx.doi.org/10.1088/0953-2048/4/1s/073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Mazzone, A. M. "Molecular dynamics simulations of sequential deposition of metallic superlattices." Philosophical Magazine B 79, no. 4 (April 1999): 625–42. http://dx.doi.org/10.1080/13642819908205739.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Aubin, Eric, and Laurent J. Lewis. "Growth of metallic superlattices by sequential deposition of atoms." Physical Review B 47, no. 11 (March 15, 1993): 6780–83. http://dx.doi.org/10.1103/physrevb.47.6780.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Karandikar, Prathamesh, and Malancha Gupta. "Fabrication of ionic liquid gel beads via sequential deposition." Thin Solid Films 635 (August 2017): 17–22. http://dx.doi.org/10.1016/j.tsf.2017.01.046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Penrose, Mathew D. "Limit theorems for monotonic particle systems and sequential deposition." Stochastic Processes and their Applications 98, no. 2 (April 2002): 175–97. http://dx.doi.org/10.1016/s0304-4149(01)00152-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Pitt, William G., Kinam Park, and Stuart L. Cooper. "Sequential protein adsorption and thrombus deposition on polymeric biomaterials." Journal of Colloid and Interface Science 111, no. 2 (June 1986): 343–62. http://dx.doi.org/10.1016/0021-9797(86)90039-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Mazzone, A. M. "Molecular dynamics simulations of sequential deposition of metallic superlattices." Applied Physics A Materials Science & Processing 63, no. 3 (September 1996): 217–21. http://dx.doi.org/10.1007/bf01567872.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Mazzone, A. M. "Molecular dynamics simulations of sequential deposition of metallic superlattices." Applied Physics A: Materials Science & Processing 63, no. 3 (August 27, 1996): 217–21. http://dx.doi.org/10.1007/s003390050375.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Zhao, Yixin, and Kai Zhu. "Three-step sequential solution deposition of PbI2-free CH3NH3PbI3perovskite." Journal of Materials Chemistry A 3, no. 17 (2015): 9086–91. http://dx.doi.org/10.1039/c4ta05384b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Vandewalle, N., S. Galam, and M. Kramer. "A new universality for random sequential deposition of needles." European Physical Journal B 14, no. 3 (March 2000): 407–10. http://dx.doi.org/10.1007/s100510051047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Schaaf, Pierre, Jean-Claude Voegel, and Bernard Senger. "From Random Sequential Adsorption to Ballistic Deposition: A General View of Irreversible Deposition Processes." Journal of Physical Chemistry B 104, no. 10 (March 2000): 2204–14. http://dx.doi.org/10.1021/jp9933065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Stephanie, Chaltiel, Bravo Maite, and Ibrahim Abdullah. "Adaptive Strategies for Mud Shell Robotic Fabrication." International Journal of Environmental Science & Sustainable Development 3, no. 2 (December 31, 2018): 64. http://dx.doi.org/10.21625/essd.v3iss2.382.

Повний текст джерела
Анотація:
The digital fabrication of monolithic shell structures is presenting some challenges related to the interface between computational design, materialist, and fabrication techniques. This research proposes a singular method for the sequential robotic spray deposition in layers of diverse clay mixes over a temporary fabric form-work pulled in between peripheral and cross section arches. This process relies mainly on the continuity of the construction phases for stability and durability but has encountered some challenges in physical tests related to sagging, displacement, and deformations during the robotic deposition of the material. Adaptive strategies during the digital fabrication stages are proposed for a sequential exploration of the geometry, structural analysis, and construction techniques. Alternative adjustments of protocols for the robotic material deposition include both predictable and unsuspected behaviors preventing the structure to reach non-viable geometric thresholds. Two case studies of physical tests describe, analyze, and simulate some of these strategies and identify specific parameters inquiring the sequential adjustments of the robotic material deposition. These strategies will drive future full-scale tests within a sustainable use of materials and adaptive construction methods, seeking an optimized structural performance that could open a new chapter for the digital fabrication of earthen shells.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Borbora, Angana, and Uttam Manna. "Synthesis of orthogonally reactive multilayered microcapsules." Chemical Communications 56, no. 57 (2020): 7853–56. http://dx.doi.org/10.1039/d0cc00618a.

Повний текст джерела
Анотація:
An orthogonally chemically reactive microcapsule is derived from a single polymer following a layer-by-layer-deposition process, where a 1,4 conjugate addition reaction provided a basis for sequential deposition of a chemically reactive nanocomplex.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Gao, Yuan, Omid Zandi, and Thomas W. Hamann. "Atomic layer stack deposition-annealing synthesis of CuWO4." Journal of Materials Chemistry A 4, no. 8 (2016): 2826–30. http://dx.doi.org/10.1039/c5ta06899a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Thompson, Alice B., Carl R. Tipton, Anne Juel, Andrew L. Hazel, and Mark Dowling. "Sequential deposition of overlapping droplets to form a liquid line." Journal of Fluid Mechanics 761 (November 21, 2014): 261–81. http://dx.doi.org/10.1017/jfm.2014.621.

Повний текст джерела
Анотація:
AbstractMicrodroplet deposition is a technology that spans applications from tissue engineering to microelectronics. Our new high-speed imaging measurements reveal how sequential linear deposition of overlapping droplets on flat uniform substrates leads to striking non-uniform morphologies for moderate contact angles. We develop a simple physical model, which for the first time captures the post-impact dynamics drop-by-drop: surface-tension drives liquid redistribution, contact-angle hysteresis underlies initial non-uniformity, while viscous effects cause subsequent periodic variations.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Pantaler, Martina, Christian Fettkenhauer, Hoang L. Nguyen, Irina Anusca, and Doru C. Lupascu. "Deposition routes of Cs2AgBiBr6 double perovskites for photovoltaic applications." MRS Advances 3, no. 32 (2018): 1819–23. http://dx.doi.org/10.1557/adv.2018.151.

Повний текст джерела
Анотація:
ABSTRACTThe lead free double perovskite Cs2AgBiBr6 is an upcoming alternative to lead based perovskites as absorber material in perovskite solar cells. So far, the majority of investigations on this interesting material have focused on polycrystalline powders and single crystals. We present vapor and solution based approaches for the preparation of Cs2AgBiBr6 thin films. Sequential vapor deposition processes starting from different precursors are shown and their weaknesses are discussed. Single source evaporation of Cs2AgBiBr6 and sequential deposition of Cs3Bi2Br9 and AgBr result in the formation of the double perovskite phase. Additionally, we show the possibility of the preparation of planar Cs2AgBiBr6 thin films by spin coating.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Case, Francine C. "Deposition and patterning of Y‐Ba‐Cu‐O superconducting thin films by sequential multilayer deposition." Journal of Applied Physics 67, no. 9 (May 1990): 4365–67. http://dx.doi.org/10.1063/1.344929.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Aloui, Lyacine, Thomas Duguet, Fanta Haidara, Marie-Christine Record, Diane Samélor, François Senocq, Dominique Mangelinck, and Constantin Vahlas. "Al–Cu intermetallic coatings processed by sequential metalorganic chemical vapour deposition and post-deposition annealing." Applied Surface Science 258, no. 17 (June 2012): 6425–30. http://dx.doi.org/10.1016/j.apsusc.2012.03.053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Johansson, A., J. Lu, J. O. Carlsson, and M. Boman. "Deposition of palladium nanoparticles on the pore walls of anodic alumina using sequential electroless deposition." Journal of Applied Physics 96, no. 9 (November 2004): 5189–94. http://dx.doi.org/10.1063/1.1788843.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Choo, Youngwoo, Hanqiong Hu, Kristof Toth, and Chinedum O. Osuji. "Sequential deposition of block copolymer thin films and formation of lamellar heterolattices by electrospray deposition." Journal of Polymer Science Part B: Polymer Physics 54, no. 2 (September 27, 2015): 247–53. http://dx.doi.org/10.1002/polb.23913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Olson, Darin S., Michael A. Kelly, Sanjiv Kapoor, and Stig B. Hagstrom. "Sequential deposition of diamond from sputtered carbon and atomic hydrogen." Journal of Applied Physics 74, no. 8 (October 15, 1993): 5167–71. http://dx.doi.org/10.1063/1.354281.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Zirkle, Thomas E., Syd R. Wilson, Sam L. Sundaram, Timothy S. Cale, and Gregory B. Raupp. "Sequential deposition of SiO2 and poly‐Si in isolation trenches." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 11, no. 4 (July 1993): 905–10. http://dx.doi.org/10.1116/1.578325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Dianat, Golnaz, and Malancha Gupta. "Sequential deposition of patterned porous polymers using poly(dimethylsiloxane) masks." Polymer 126 (September 2017): 463–69. http://dx.doi.org/10.1016/j.polymer.2017.05.023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Ma, Jie, Henitsoa M. Andriambololona, Damien Quemener, and Mona Semsarilar. "Membrane preparation by sequential spray deposition of polymer PISA nanoparticles." Journal of Membrane Science 548 (February 2018): 42–49. http://dx.doi.org/10.1016/j.memsci.2017.11.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Lin, Wen-Hsiung, and Hsin-Fu Chang. "Characterizations of Pd–Ag membrane prepared by sequential electroless deposition." Surface and Coatings Technology 194, no. 1 (April 2005): 157–66. http://dx.doi.org/10.1016/j.surfcoat.2004.07.089.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Dinescu, M., A. Perrone, A. P. Caricato, L. Mirenghi, C. Gerardi, C. Ghica, and L. Frunza. "Boron carbon nitride films deposited by sequential pulses laser deposition." Applied Surface Science 127-129 (May 1998): 692–96. http://dx.doi.org/10.1016/s0169-4332(97)00727-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Pérez, Edgar Serrano, Javier Serrano Pérez, Fernando Martínez Piñón, José Manuel Juárez García, Omar Serrano Pérez, and Fernando Juárez López. "Sequential microcontroller-based control for a chemical vapor deposition process." Journal of Applied Research and Technology 15, no. 6 (December 2017): 593–98. http://dx.doi.org/10.1016/j.jart.2017.07.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Stanley, Kevin G., Eva K. Czyzewska, Tom P. K. Vanderhoek, Lilian L. Y. Fan, Keith A. Abel, Q. M. Jonathan Wu, and M. (Ash) Parameswaran. "A hybrid sequential deposition fabrication technique for micro fuel cells." Journal of Micromechanics and Microengineering 15, no. 10 (September 6, 2005): 1979–87. http://dx.doi.org/10.1088/0960-1317/15/10/026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Webb, D. J., R. G. Walmsley, K. Parvin, P. H. Dickinson, T. H. Geballe, and R. M. White. "Sequential deposition and metastable states in rare-earth/Co films." Physical Review B 32, no. 7 (October 1, 1985): 4667–75. http://dx.doi.org/10.1103/physrevb.32.4667.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Ding, Xihong, Yingke Ren, Yahan Wu, Yafeng Xu, Jun Zhu, Tasawar Hayat, Ahmed Alsaedi, Zhaoqian Li, Yang Huang, and Songyuan Dai. "Sequential deposition method fabricating carbonbased fully-inorganic perovskite solar cells." Science China Materials 61, no. 1 (October 27, 2017): 73–79. http://dx.doi.org/10.1007/s40843-017-9117-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Bayrakçeken, Ayşe, Betül Cangül, L. C. Zhang, Mark Aindow, and Can Erkey. "PtPd/BP2000 electrocatalysts prepared by sequential supercritical carbon dioxide deposition." International Journal of Hydrogen Energy 35, no. 21 (November 2010): 11669–80. http://dx.doi.org/10.1016/j.ijhydene.2010.08.059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Strange, Lyndi E., Sourav Garg, Patrick Kung, Md Ashaduzzaman, Gregory Szulczewski, and Shanlin Pan. "Electrodeposited Transition Metal Dichalcogenides for Use in Hydrogen Evolution Electrocatalysts." Journal of The Electrochemical Society 169, no. 2 (February 1, 2022): 026510. http://dx.doi.org/10.1149/1945-7111/ac4f25.

Повний текст джерела
Анотація:
Hydrogen is a promising alternative to gasoline due to its higher energy density and ability to burn cleanly only producing H2O as a by-product. Electrolytic water splitting is an effective technique for generating molecular hydrogen. However, for hydrogen to be a viable alternative energy source to be produced from water electrolysis, affordable and durable electrocatalysts need to be developed to replace platinum. Transition metal dichalcogenides (TMDs) are a promising alternative since they are abundant, inexpensive, and have a tunable structure. There are various ways to produce TMD films including chemical and mechanical exfoliation, chemical vapor deposition (CVD), and electrodeposition. Exfoliation and CVD techniques often require a transfer of TMDs from the growth substrate to an electrode, which introduces impurities and possible defects to the film. Electrodeposition, however, provides a way to produce TMDs directly onto the electrode with excellent surface coverage. This work uses electrodeposition to produce TMD and TMD bilayer electrodes using sequential electrodeposition for electrocatalytic hydrogen evolution reaction (HER). The results presented include cost-effective deposition techniques along with enhanced proton reduction activity for the sequentially deposited bilayer TMD structure consisting of MoS2 and MoSe2, which suggests the electron transfer kinetics from the conductive glass substrate to the top-layer is enhanced with a MoS2 layer. Furthermore, the bilayer structures synthesized by sequential deposition are characterized via XPS, XPS depth-profiling, and SEM-EDS for enhanced understanding of the fabricated structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Ratnayake, Samantha Prabath, Jiawen Ren, Joel van Embden, Chris F. McConville, and Enrico Della Gaspera. "SILAR deposition of bismuth vanadate photoanodes for photoelectrochemical water splitting." Journal of Materials Chemistry A 9, no. 45 (2021): 25641–50. http://dx.doi.org/10.1039/d1ta07710d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Marinotto, D., S. G. Danelli, A. Giaretta, E. Lucenti, P. Stadler, E. Tordin, G. Mattei, G. Scavia, R. Ugo, and E. Cariati. "Thermal layer-by-layer preparation of oriented films of a Cu(i) ionic inorganic–organic hybrid material showing semiconducting and SHG properties." Journal of Materials Chemistry C 4, no. 29 (2016): 7077–82. http://dx.doi.org/10.1039/c6tc02388f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Ramachandran, Ranjith K., Jolien Dendooven, Jonas Botterman, Sreeprasanth Pulinthanathu Sree, Dirk Poelman, Johan A. Martens, Hilde Poelman, and Christophe Detavernier. "Plasma enhanced atomic layer deposition of Ga2O3thin films." J. Mater. Chem. A 2, no. 45 (2014): 19232–38. http://dx.doi.org/10.1039/c4ta05007j.

Повний текст джерела
Анотація:
We demonstrate an ALD process for Ga2O3that relies upon sequential pulsing of tris(2,2,6,6-tetramethyl-3,5-heptanedionato)gallium(iii), [Ga(TMHD)3] and O2plasma and enables the deposition from temperatures as low as 100 °C.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Li, Ge, Taiyang Zhang, and Yixin Zhao. "Hydrochloric acid accelerated formation of planar CH3NH3PbI3 perovskite with high humidity tolerance." Journal of Materials Chemistry A 3, no. 39 (2015): 19674–78. http://dx.doi.org/10.1039/c5ta06172e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Volk, Kirsten, Florian Deißenbeck, Suvendu Mandal, Hartmut Löwen, and Matthias Karg. "Moiré and honeycomb lattices through self-assembly of hard-core/soft-shell microgels: experiment and simulation." Physical Chemistry Chemical Physics 21, no. 35 (2019): 19153–62. http://dx.doi.org/10.1039/c9cp03116b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

NIELABA, P., and V. PRIVMAN. "RANDOM SEQUENTIAL ADSORPTION ON A LINEAR LATTICE: EFFECT OF DIFFUSIONAL RELAXATION." Modern Physics Letters B 06, no. 09 (April 20, 1992): 533–39. http://dx.doi.org/10.1142/s0217984992000612.

Повний текст джерела
Анотація:
We offer phenomenological arguments, supported by numerical Monte Carlo data, suggesting that the asymptotic large-time behavior of the coverage in the 1D lattice deposition of k-mers with k > 3, accompanied by k-mer diffusion, is governed by the same mean-field dynamics as the lattice chemical reaction [Formula: see text]. The latter reaction is considered to occur with partial probability. The coverage in the deposition process approaches full saturation for any nonzero diffusion rate, and the void fraction decreases according to the power-law t−1/(k−1).
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії