Добірка наукової літератури з теми "Sensor magnetostrictive"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Sensor magnetostrictive".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Sensor magnetostrictive"
Sun, Ruoqi, Liang Zhang, Heming Wei, Yunzhe Gu, Fufei Pang, Huanhuan Liu, and Tingyun Wang. "Quasi-Distributed Magnetic Field Fiber Sensors Integrated with Magnetostrictive Rod in OFDR System." Electronics 11, no. 7 (March 24, 2022): 1013. http://dx.doi.org/10.3390/electronics11071013.
Повний текст джерелаZhou, Xin Zhi, Chao Yu, Yin Qi Xiong, and Qian Ning. "Research on Fe(100-x)Gax Alloy Applied to Magnetostrictive Displacement Sensors." Applied Mechanics and Materials 226-228 (November 2012): 2154–59. http://dx.doi.org/10.4028/www.scientific.net/amm.226-228.2154.
Повний текст джерелаHathaway, Kristl B., and Arthur E. Clark. "Magnetostrictive Materials." MRS Bulletin 18, no. 4 (April 1993): 34–41. http://dx.doi.org/10.1557/s0883769400037337.
Повний текст джерелаXu, Shaoyi, Qiang Peng, Chuansheng Li, Bo Liang, Junwen Sun, Fangfang Xing, Hongyu Xue, and Ming Li. "Optical Fiber Current Sensors Based on FBG and Magnetostrictive Composite Materials." Applied Sciences 11, no. 1 (December 26, 2020): 161. http://dx.doi.org/10.3390/app11010161.
Повний текст джерелаYang, Zijing, Jiheng Li, Zhiguang Zhou, Jiaxin Gong, Xiaoqian Bao, and Xuexu Gao. "Recent Advances in Magnetostrictive Tb-Dy-Fe Alloys." Metals 12, no. 2 (February 15, 2022): 341. http://dx.doi.org/10.3390/met12020341.
Повний текст джерелаYan, Rong Ge, Li Hua Zhu, and Qing Xin Yang. "New Giant Magnetostrictive Force Sensors." Advanced Materials Research 816-817 (September 2013): 424–28. http://dx.doi.org/10.4028/www.scientific.net/amr.816-817.424.
Повний текст джерелаNakajima, Kenya, Marc Leparoux, Hiroki Kurita, Briac Lanfant, Di Cui, Masahito Watanabe, Takenobu Sato, and Fumio Narita. "Additive Manufacturing of Magnetostrictive Fe–Co Alloys." Materials 15, no. 3 (January 18, 2022): 709. http://dx.doi.org/10.3390/ma15030709.
Повний текст джерелаFuruya, Yasubumi, Teiko Okazaki, Chihiro Saito, and Munekatsu Shimada. "Magnetostrictive Galfenol Torque Sensor Devices for Smart by-Wire Steering System in Automobile Technology." Advances in Science and Technology 67 (October 2010): 74–81. http://dx.doi.org/10.4028/www.scientific.net/ast.67.74.
Повний текст джерелаLiu, Hui Fang, Han Yu Wang, and Yu Zhang. "Research on the Application Status of Giant Magnetostrictive Material in Drive Field." Applied Mechanics and Materials 733 (February 2015): 249–52. http://dx.doi.org/10.4028/www.scientific.net/amm.733.249.
Повний текст джерелаZhu, Zhi Wen, Qing Xin Zhang, and Jia Xu. "Hysteretic Nonlinear Characteristics of Giant Magnetostrictive Sensors." Applied Mechanics and Materials 479-480 (December 2013): 667–71. http://dx.doi.org/10.4028/www.scientific.net/amm.479-480.667.
Повний текст джерелаДисертації з теми "Sensor magnetostrictive"
Lu, Yong. "Thin film magnetostrictive sensor with on-chip readout." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq22216.pdf.
Повний текст джерелаLiang, Cai Prorok Barton Charles. "Development of bulk-scale and thin-film magnetostrictive sensor." Auburn, Ala., 2007. http://repo.lib.auburn.edu/EtdRoot/2007/FALL/Materials_Engineering/Dissertation/Liang_Cai_15.pdf.
Повний текст джерелаOrono, Lisa Lorraine. "Novel sensor for rapid detection of blood cell types magnetostrictive microcantilevers /." Auburn, Ala., 2005. http://repo.lib.auburn.edu/2005%20Summer/master's/ORONA_LISA_41.pdf.
Повний текст джерелаLi, Menghui. "Fabrication of reliable, self-biased and nonlinear magnetoelectric composites and their applications." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/50656.
Повний текст джерелаPh. D.
Munusamy, Rajkumar. "Cordless displacement sensor using Fe₇₇_.â‚…Si₇_.â‚…Bâ‚â‚… and Metglas 2605SC magnetostrictive materials." Thesis, University of Hull, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440228.
Повний текст джерелаMarciszko, Fredrik. "Torque Sensor based Powertrain Control." Thesis, Linköping University, Department of Electrical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2248.
Повний текст джерелаThe transmission is probably the drivetrain component with the greatest impact on driveability of an automatic transmission equipped vehicle. Since the driver only has an indirect influence on the gear shift timing, except for situations like kick-down accelerations, it is desirable to improve shift quality as perceived by the driver. However, improving shift quality is a problem normally diametrically opposed to minimizing transmission clutch energy dissipation. The latter has a great impact on transmission lifetime, and has to be defined and taken into consideration along with the notion of shift quality. The main focus of this thesis is the modeling of a drivetrain of an automatic transmission vehicle, and the implementation in MatLab/Simulink, including the first to second gear upshift. The resulting plant based on the derived equations is validated using data from a test vehicle equipped with a torque sensor located at the transmission output shaft. The shaft torque is more or less proportional to the driveline jerk, and hence of great interest for control purposes. Control strategies are discussed and a PID controller structure is developed to control the first to second gear upshift, as opposed to the traditional open-loop upshift control. Furthermore, the proposed controller structure uses the transmission output torque and the differential speed of the engaging clutch as inputs, to control the clutch pressure and the engine output torque, respectively. The structure is unsophisticated and transparent compared to other approaches, but shows great theoretical results in terms of improved shift quality and decreased clutch wear.
Starke, E., U. Marschner, A. B. Flatau, and J. H. Yoo. "Improved equivalent circuit modeling and simulation of magnetostrictive tuning fork gyro sensors." SPIE, 2017. https://tud.qucosa.de/id/qucosa%3A35136.
Повний текст джерелаZhou, Yuan. "Magnetoelectric Composites for On-Chip Near-Resonance Applications." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/50488.
Повний текст джерелаPh. D.
Felizari, Alessandra. "Caracterização e monitoramento remoto aplicado a um sensor magnetoelástico." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/149791.
Повний текст джерелаNew amorphous magnetic materials have magnetic and elastic properties which allows the identification and control of environmental parameters remotely. This work was based in the investigation of a magnetoelastic thin strip, widely used as anti-theft device. In this study it was discussed the employment of this material as a sensor capable identify an environmental change through magnetoelasticity. In order to characterize the strips it was employed several techniques, namely: finite element modeling of the vibrational modes, electromagnetic impedance and laser interferometry. It was presented an analysis of the displacement of the longitudinal modes. The knowledge of the vibration mode allowed the sensor electric characterization when subjected to environmental changes. According to the sample dimensions under magnetic field, test systems were developed in order to perform optic and electric measurements. A proper parameter adjustment of the power supply allowed the determination of the fundamental and higher order resonance frequencies. The magnetostrictive behaviour of the anti-theft strips is related to the Young modulus where the vibration frequency is inversely proportional to the length of the strip. Studies showed that the strip performance is also related to many other parameters, such as the mechanical and electromagnetic properties and the environment to which it is exposed. The strips here presented are largely employed as sensor for temperature, pressure, density, mas variation, viscosity and flux velocity mainly because their wireless capabilities. The data from the polarization field are a section of the knowledge required to better investigate the best performance of the sensor. The sensor characterization through several techniques applied in viscous media and under pressure raise some issues. However, the construction of some devices allowed the application of different values of viscosity and pressure upon the magnetized strip. This made the results interpretation less complex. The resonances were observed in the experimental data and mathematical modellin. Calibration curves were defined to make the results interpretation easier.Previously applied and studied techniques which cover the characterization and behaviour of the material provide valid justifications for the implementation of remote sensors made of amorphous metallic strips. The results presented here justify the application of the analysed amorphous strip as a viscosity and pressure sensor in isolated enviroments.
Скворчевський, Олександр Євгенович, та Христина Михайлівна Віленська. "Електрогідравлічні мехатронні модулі поступального руху: історія, сучасний стан, перспективи розвитку". Thesis, Харківський національний автомобільно-дорожній університет, 2014. http://repository.kpi.kharkov.ua/handle/KhPI-Press/28258.
Повний текст джерелаThe aim is to analyze existing electro-mechatronic modules translational motion, identifying the main areas of development and prospects for further improvement. The result followed the evolution of such systems. The proposed schematics mechatronic module for further research and design work in this direction.
Книги з теми "Sensor magnetostrictive"
Kwun, H. Feasibility of magnetostrictive sensor inspection of containments. Washington, DC: Division of Engineering Technology, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1999.
Знайти повний текст джерелаЧастини книг з теми "Sensor magnetostrictive"
Zhao, Xuan, Bowen Wang, Shaoyang Gao, Shasha Liu, Yuanye Zhang, and Ling Weng. "Magnetostrictive Tactile Sensor Array for Robotic Grasping." In Proceedings of 2021 Chinese Intelligent Automation Conference, 599–606. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6372-7_65.
Повний текст джерелаWallin, C., and L. Gustavsson. "Non-Contact Magnetostrictive Torque Sensor — Opportunities and Realisation." In Advanced Microsystems for Automotive Applications Yearbook 2002, 184–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-18213-6_22.
Повний текст джерелаRamasamy, M., and B. C. Prorok. "Resonance Behavior of Magnetostrictive Sensor in Biological Agent Detection." In Experimental and Applied Mechanics, Volume 6, 875–76. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9792-0_124.
Повний текст джерелаYanbing, Liu, and Zhang Jinru. "The Relation of the Sensitivity of an Optical Fibre Magnetostrictive Sensor to It’s Magnetostrictive Jacket Thickness." In Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 774–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-48372-1_164.
Повний текст джерелаDong, Liyuan, Shaopeng Yu, Tingting Han, Bowen Wang, and Xinxin Cui. "Study of Giant Magnetostrictive Thin Film Pressure Sensor Based on Villari Effect." In Lecture Notes in Electrical Engineering, 459–67. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6508-9_55.
Повний текст джерелаLi, Runyu, Zhizhong Zhao, Zhiqiang Wang, Haifeng Wang, Wensheng Zhang, and Bowen Wang. "Design and Output Characteristics of Magnetostrictive Sensor Array for Tire Pattern Detection." In Proceedings of 2021 Chinese Intelligent Automation Conference, 90–97. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6372-7_11.
Повний текст джерелаXu, Cheng, Yueming Liu, and Yuchan Liu. "Design of Resonant Magnetic Field Sensor Based on Magnetostrictive Optical Fiber Micro-cantilever." In Lecture Notes in Electrical Engineering, 233–42. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4110-4_29.
Повний текст джерелаDagenais, D. M., F. Bucholtz, and K. P. Koo. "Heterodyne Detection of Magnetic Fields from 0.1 Hz to 10 MHz in a Magnetostrictive Fiber Sensor." In Springer Proceedings in Physics, 255–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-75088-5_39.
Повний текст джерелаLiu, Xiucheng, Bin Wu, and Cunfu He. "A Novel Integrated Sensor for Stress Measurement in Steel Strand Based on Elastomagnetic and Magnetostrictive Effect." In Lecture Notes in Mechanical Engineering, 65–73. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09507-3_7.
Повний текст джерелаUrakami, Seigo, Kota Fukuda, Junji Ono, Tomoyuki Miyazaki, and Shinji Okada. "Proposal of Application of Magnetostrictive Torque Sensor in EV—Seamless 2-Speed Shifting with Torque Feedback Control." In Proceedings, 509–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-61515-7_45.
Повний текст джерелаТези доповідей конференцій з теми "Sensor magnetostrictive"
Weld, Kevin, Mehmet Uras, and A. Galip Ulsoy. "Modeling and Validation of a Constant Flux Magnetostrictive Impact Sensor." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5085.
Повний текст джерелаKlauber, Robert D., Erik B. Vigmostad, Jon Van Gerpen, Delmar Van Meter, Frederick P. Sprague, and Fred Reiter. "Miniature Magnetostrictive Misfire Sensor." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/920236.
Повний текст джерелаUtsui, Yoshihiko, Hiroshi Satoh, and Yasuyuki Makigawa. "Magnetostrictive Type Torque Sensor." In Autotechnologies Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/910003.
Повний текст джерелаUras, Mehmet H. "Magnetostrictive Dynamic Strain Sensor." In SAE 2001 World Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-0617.
Повний текст джерелаAlbach, Th, P. Horn, J. Ilg, S. Friedrich, A. Sutor, and R. Lerch. "C6.4 - Towards a Magnetostrictive Mirco-Loudspeaker." In SENSOR+TEST Conferences 2011. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2011. http://dx.doi.org/10.5162/sensor11/c6.4.
Повний текст джерелаCalkins, Frederick, Alison Flatau, and Marcelo Dapino. "Overview of magnetostrictive sensor technology." In 40th Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-1551.
Повний текст джерелаAlbach, Thorsten, Alexander Sutor, and Reinhard Lerch. "A8.4 - Measuring Technology for a Magnetostrictive Microactuator." In SENSOR+TEST Conferences 2009. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2009. http://dx.doi.org/10.5162/sensor09/v2/a8.4.
Повний текст джерелаRamasamy, Madhumidha, and Barton C. Prorok. "Resonance Behavior of Magnetostrictive Sensor in Biological Agent Detection." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37162.
Повний текст джерелаYuan, Mei, Dongya Sun, Ke Sun, Jinghui Wu, Zhaoyang Wang, and Lei Shi. "Key Technology of Magnetostrictive Fuel Sensor." In 2006 IEEE International Conference on Industrial Informatics. IEEE, 2006. http://dx.doi.org/10.1109/indin.2006.275734.
Повний текст джерелаRaghunath, Ganesh, Alison B. Flatau, Suok-Min Na, and Brett Barkley. "Development of a Bio-Inspired Tactile Magnetostrictive Whisker Sensor Using Alfenol." In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7550.
Повний текст джерелаЗвіти організацій з теми "Sensor magnetostrictive"
Glass, Samuel W., John P. Lareau, Kenneth A. Ross, Sayed Ali, Francisco Hernandez, and Borja Lopez. Magnetostrictive Cold Spray Sensor Feasibility Assessment. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475067.
Повний текст джерелаKwun, H. Feasibility of Magnetostrictive Sensor Inspection of Containments. Office of Scientific and Technical Information (OSTI), March 1999. http://dx.doi.org/10.2172/5052.
Повний текст джерелаJT Evans. Testing Results of Magnetostrictive Ultrasonic Sensor Cables for Signal Loss. Office of Scientific and Technical Information (OSTI), May 2005. http://dx.doi.org/10.2172/883695.
Повний текст джерелаDapino, Marcelo J., Ralph C. Smith, Frederick T. Calkins, and Alison B. Flatau. A Magnetoelastic Model for Villari-Effect Magnetostrictive Sensors. Fort Belvoir, VA: Defense Technical Information Center, January 2002. http://dx.doi.org/10.21236/ada451947.
Повний текст джерелаChen, Yonghua. Development of highly magnetostrictive composites for applications in magnetomechanical torque sensors. Office of Scientific and Technical Information (OSTI), December 1999. http://dx.doi.org/10.2172/754838.
Повний текст джерела