Добірка наукової літератури з теми "Semi-Semantic knowledge base"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Semi-Semantic knowledge base".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Semi-Semantic knowledge base"
Willmes, Christian, Finn Viehberg, Sarah Esteban Lopez, and Georg Bareth. "CRC806-KB: A Semantic MediaWiki Based Collaborative Knowledge Base for an Interdisciplinary Research Project." Data 3, no. 4 (October 25, 2018): 44. http://dx.doi.org/10.3390/data3040044.
Повний текст джерелаMonteiro, Luciane Lena Pessanha, and Mark Douglas de Azevedo Jacyntho. "Use of Linked Data principles for semantic management of scanned documents." Transinformação 28, no. 2 (August 2016): 241–51. http://dx.doi.org/10.1590/2318-08892016000200010.
Повний текст джерелаJuan and Faber. "Extraction of Terms Related to Named Rivers." Languages 4, no. 3 (June 27, 2019): 46. http://dx.doi.org/10.3390/languages4030046.
Повний текст джерелаCelik, Duygu, and Atilla Elci. "Semantic composition of business processes using Armstrong's Axioms." Knowledge Engineering Review 29, no. 2 (March 2014): 248–64. http://dx.doi.org/10.1017/s0269888914000083.
Повний текст джерелаRangel, Carlos Ramón, Junior Altamiranda, Mariela Cerrada, and Jose Aguilar. "Procedure Based on Semantic Similarity for Merging Ontologies by Non-Redundant Knowledge Enrichment." International Journal of Knowledge Management 14, no. 2 (April 2018): 16–36. http://dx.doi.org/10.4018/ijkm.2018040102.
Повний текст джерелаZhou, Lu-jie, Zhi-peng Zhao, and Jian-wu Dang. "Combining BERT Model with Semi-Supervised Incremental Learning for Heterogeneous Knowledge Fusion of High-Speed Railway On-Board System." Computational Intelligence and Neuroscience 2022 (May 31, 2022): 1–15. http://dx.doi.org/10.1155/2022/9948218.
Повний текст джерелаWang, Tiexin, Jingwen Cao, Chuanqi Tao, Zhibin Yang, Yi Wu, and Bohan Li. "A Configurable Semantic-Based Transformation Method towards Conceptual Models." Discrete Dynamics in Nature and Society 2020 (September 27, 2020): 1–14. http://dx.doi.org/10.1155/2020/6718087.
Повний текст джерелаLeón-Paredes, Gabriel Alejandro, Liliana Ibeth Barbosa-Santillán, Juan Jaime Sánchez-Escobar, and Antonio Pareja-Lora. "Ship-SIBISCaS: A First Step towards the Identification of Potential Maritime Law Infringements by means of LSA-Based Image." Scientific Programming 2019 (March 3, 2019): 1–14. http://dx.doi.org/10.1155/2019/1371328.
Повний текст джерелаLaukaitis, Algirdas, and Neda Laukaitytė. "SEMI-AUTOMATIC ONTOLOGICAL ALIGNMENT OF DIGITIZED BOOKS PARALLEL CORPORA." Mokslas - Lietuvos ateitis 13 (July 2, 2021): 1–8. http://dx.doi.org/10.3846/mla.2021.15034.
Повний текст джерелаGarcía-Manotas, Ignacio, Eduardo Lupiani, Francisco García-Sánchez, and Rafael Valencia-García. "Populating Knowledge Based Decision Support Systems." International Journal of Decision Support System Technology 2, no. 1 (January 2010): 1–20. http://dx.doi.org/10.4018/jdsst.2010101601.
Повний текст джерелаДисертації з теми "Semi-Semantic knowledge base"
Mrabet, Yassine. "Approches hybrides pour la recherche sémantique de l'information : intégration des bases de connaissances et des ressources semi-structurées." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00737282.
Повний текст джерелаBen, marzouka Wissal. "Traitement possibiliste d'images, application au recalage d'images." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2022. http://www.theses.fr/2022IMTA0271.
Повний текст джерелаIn this work, we propose a possibilistic geometric registration system that merges the semantic knowledge and the gray level knowledge of the images to be registered. The existing geometric registration methods are based on an analysis of the knowledge at the level of the sensors during the detection of the primitives as well as during the matching. The evaluation of the results of these geometric registration methods has limits in terms of the perfection of the precision caused by the large number of outliers. The main idea of our proposed approach is to transform the two images to be registered into a set of projections from the original images (source and target). This set is composed of images called “possibility maps”, each map of which has a single content and presents a possibilistic distribution of a semantic class of the two original images. The proposed geometric registration system based on the possibility theory presents two contexts: a supervised context and an unsupervised context. For the first case, we propose a supervised classification method based on the theory of possibilities using learning models. For the unsupervised context, we propose a possibilistic clustering method using the FCM-multicentroid method. The two proposed methods provide as a result the sets of semantic classes of the two images to be registered. We then create the knowledge bases for the proposed possibilistic registration system. We have improved the quality of the existing geometric registration in terms of precision perfection, reductionin the number of false landmarks and optimization of time complexity
Частини книг з теми "Semi-Semantic knowledge base"
Gorroñogoitia, Jesús, Dragan Radolović, Zoe Vasileiou, Georgios Meditskos, Anastasios Karakostas, Stefanos Vrochidis, and Michail Bachras. "The SODALITE Model-Driven Approach." In Deployment and Operation of Complex Software in Heterogeneous Execution Environments, 23–52. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04961-3_3.
Повний текст джерелаReeve, Lawrence, and Hyoil Han. "A Comparison of Semantic Annotation Systems for Text-Based Web Documents." In Web Semantics & Ontology, 165–88. IGI Global, 2006. http://dx.doi.org/10.4018/978-1-59140-905-2.ch006.
Повний текст джерелаTsou, Ming-Cheng. "Geographic Information Retrieval and Text Mining on Chinese Tourism Web Pages." In Models for Capitalizing on Web Engineering Advancements, 219–39. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-0023-2.ch012.
Повний текст джерелаGarcía-Manotas, Ignacio, Eduardo Lupiani, Francisco García-Sánchez, and Rafael Valencia-García. "Populating Knowledge Based Decision Support Systems." In Integrated and Strategic Advancements in Decision Making Support Systems, 1–20. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-1746-9.ch001.
Повний текст джерелаSanchez-Alonso, Salvador, Miguel-Ángel Sicilia, and Elena Garcia-Barriocanal. "Ontologies and Contracts in the Automation of Learning Object Management Systems." In Web-Based Intelligent E-Learning Systems, 216–34. IGI Global, 2006. http://dx.doi.org/10.4018/978-1-59140-729-4.ch011.
Повний текст джерелаMendes, David, and Irene Pimenta Rodrigues. "A Semantic Web Pragmatic Approach to Develop Clinical Ontologies, and thus Semantic Interoperability, based in HL7 v2.xml Messaging." In Information Systems and Technologies for Enhancing Health and Social Care, 205–14. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-3667-5.ch014.
Повний текст джерелаKo, Andrea, and Saira Gillani. "Ontology Maintenance Through Semantic Text Mining." In Innovations, Developments, and Applications of Semantic Web and Information Systems, 350–71. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5042-6.ch013.
Повний текст джерелаFanizzi, Nicola, Claudia d’Amato, and Floriana Esposito. "Evolutionary Conceptual Clustering Based on Induced Pseudo-Metrics." In Advances in Semantic Web and Information Systems, 257–80. IGI Global, 2010. http://dx.doi.org/10.4018/978-1-60566-992-2.ch012.
Повний текст джерелаXue, Xingsi, and Junfeng Chen. "Semi-Automatic Sensor Ontology Matching Based on Interactive Multi-Objective Evolutionary Algorithm." In Handbook of Research on Advancements of Swarm Intelligence Algorithms for Solving Real-World Problems, 27–42. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-3222-5.ch002.
Повний текст джерелаSerafini, Luciano, Artur d’Avila Garcez, Samy Badreddine, Ivan Donadello, Michael Spranger, and Federico Bianchi. "Chapter 17. Logic Tensor Networks: Theory and Applications." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2021. http://dx.doi.org/10.3233/faia210498.
Повний текст джерелаТези доповідей конференцій з теми "Semi-Semantic knowledge base"
Pasini, Tommaso. "The Knowledge Acquisition Bottleneck Problem in Multilingual Word Sense Disambiguation." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/687.
Повний текст джерелаWang, Weizhen. "Semi-supervised Semantic Segmentation Network based on Knowledge Distillation." In 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). IEEE, 2021. http://dx.doi.org/10.1109/imcec51613.2021.9482145.
Повний текст джерела"SEMANTIC CLASSIFICATION OF UNKNOWN WORDS BASED ON GRAPH-BASED SEMI-SUPERVISED CLUSTERING." In International Conference on Knowledge Engineering and Ontology Development. SciTePress - Science and and Technology Publications, 2011. http://dx.doi.org/10.5220/0003633100370046.
Повний текст джерелаMarquez, Alejandra, and Alex Cuadros. "3D Medical Image Segmentation based on 3D Convolutional Neural Networks." In LatinX in AI at Neural Information Processing Systems Conference 2018. Journal of LatinX in AI Research, 2018. http://dx.doi.org/10.52591/lxai201812031.
Повний текст джерелаObradovic, Ines, Mario Milicevic, Boris Vrdoljak, and Krunoslav Zubrinic. "Ontology-based Approaches to Medical Data Integration." In Human Systems Engineering and Design (IHSED 2021) Future Trends and Applications. AHFE International, 2021. http://dx.doi.org/10.54941/ahfe1001111.
Повний текст джерелаYan, Yuguang, Wen Li, Hanrui Wu, Huaqing Min, Mingkui Tan, and Qingyao Wu. "Semi-Supervised Optimal Transport for Heterogeneous Domain Adaptation." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/412.
Повний текст джерелаChen, Muhao, Yingtao Tian, Kai-Wei Chang, Steven Skiena, and Carlo Zaniolo. "Co-training Embeddings of Knowledge Graphs and Entity Descriptions for Cross-lingual Entity Alignment." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/556.
Повний текст джерела