Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Selfoscillations in a pneumatic system.

Статті в журналах з теми "Selfoscillations in a pneumatic system"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Selfoscillations in a pneumatic system".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Konovalov, Vladimir, Artem Kravtsov, Vladimir Zaitsev, Alexander Petrov, and Svetlana Petrova. "Pneumatic system of a seeder with pneumatic sowing." IOP Conference Series: Earth and Environmental Science 403 (December 19, 2019): 012131. http://dx.doi.org/10.1088/1755-1315/403/1/012131.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lazarev, V. L. "STUDY OF PERIODIC PROCESSES TAKING INTO ACCOUNT THE UNCERTAINTY STATE FACTOR OF THE ANALYZED PARAMETER." SOFT MEASUREMENTS AND COMPUTING 1, no. 7 (2021): 5–15. http://dx.doi.org/10.36871/2618-9976.2021.07.001.

Повний текст джерела
Анотація:
The paper describes the approach and methodology for the numerical assessment of the quality of periodic processes. With regard to their particular case the processes of selfoscillations, on the basis of the proposed approach, the problem of optimization of the control system is formulated and possible ways of solving it are shown. The practical implementation of the approach is possible when synthesizing a control system, as well as in the variant of automatic adaptive control during its operation. The proposed solutions are based on the use of methods of the theory of entropy potentials. The implementation of the proposed solutions will improve the quality of monitoring of periodic processes and the efficiency of regulation systems in selfoscillation modes.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sharma, Mr Subramanya. "Pneumatic Bumper Activation System." International Journal for Research in Applied Science and Engineering Technology 6, no. 3 (March 31, 2018): 3418–22. http://dx.doi.org/10.22214/ijraset.2018.3721.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Temmyo, Ichiro, Michio SHIKANO, and Toshiyuki Nishimura. "FESTO PNEUMATIC SERVO SYSTEM." Proceedings of the JFPS International Symposium on Fluid Power 1996, no. 3 (1996): 657–60. http://dx.doi.org/10.5739/isfp.1996.657.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Toomey, Christopher G. "Pneumatic Conveying System Optimization." IEEE Transactions on Industry Applications 50, no. 6 (November 2014): 4319–22. http://dx.doi.org/10.1109/tia.2014.2346695.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ligman, Gary R. "Pneumatic tool muffler system." Journal of the Acoustical Society of America 95, no. 5 (May 1994): 2791. http://dx.doi.org/10.1121/1.409776.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ligman, Gary A. "Pneumatic tool muffler system." Journal of the Acoustical Society of America 94, no. 2 (August 1993): 1178. http://dx.doi.org/10.1121/1.406896.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

NISHIOKA, Yasutaka, Koichi SUZUMORI, Takefumi KANDA, and Shuichi WAKIMOTO. "A NEW PNEUMATIC CONTROL SYSTEM USING MULTIPLEX PNEUMATIC TRANSMISSION." Proceedings of the JFPS International Symposium on Fluid Power 2008, no. 7-2 (2008): 439–42. http://dx.doi.org/10.5739/isfp.2008.439.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

NISHIOKA, Yasutaka, Koichi SUZUMORI, Takefumi KANDA, and Shuichi WAKIMOTO. "1A1-B02 Multiplex Pneumatic Transmission for Simplification of Pneumatic system." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2008 (2008): _1A1—B02_1—_1A1—B02_3. http://dx.doi.org/10.1299/jsmermd.2008._1a1-b02_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

N., Witrisnanto S., T. Futami, T. Arai, and M. Kimura. "Negative Pressure Pneumatic Servo System." Hydraulics & Pneumatics 27, no. 1 (1996): 159–64. http://dx.doi.org/10.5739/jfps1970.27.159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

YAMADA, Yuji, Kanya TANAKA, Akira SHIMIZU, and Toru YAMAMOTO. "STC for Pneumatic Servo System." Transactions of the Society of Instrument and Control Engineers 32, no. 12 (1996): 1629–36. http://dx.doi.org/10.9746/sicetr1965.32.1629.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

SHIBATA, Yu. "Study on Opto-pneumatic System." Proceedings of the JSME annual meeting 2002.5 (2002): 89–90. http://dx.doi.org/10.1299/jsmemecjo.2002.5.0_89.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

NISHIOKA, Yasutaka, Koichi SUZUMORI, Takefumi KANDA, and Shuichi WAKIMOTO. "2A2-C30 Driving Multi-DOF Pneumatic System by Multiplex Pneumatic Control." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2010 (2010): _2A2—C30_1—_2A2—C30_4. http://dx.doi.org/10.1299/jsmermd.2010._2a2-c30_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

SHIN, HEUNG-YEOUL, and JAE-WON LEE. "An expert system for pneumatic design." Artificial Intelligence for Engineering Design, Analysis and Manufacturing 12, no. 1 (January 1998): 3–11. http://dx.doi.org/10.1017/s0890060498121121.

Повний текст джерела
Анотація:
One of the biggest problems in pneumatic system design is over design. Thus, the results are excessive in costs of the initial investment and it requires too much energy. This article describes the development of expert system based pneumatic design system, PNEUDES (PNEUmatic Design Expert System), prototype that enables the user the optimal design of pneumatic system. Once the design requirements such as cylinder type and work load, etc. are input to the system, optimal cylinder specifications with standardized order-based size, valves types, and necessary accessories are all determined. Also the configuration information such as the connectivity among components and cylinder image data are supplied to the user. It can also help the novice of pneumatic design. The rule-based reasoning approach is used as a reasoning strategy with Intelligent Rule Element shell.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Mîndru, Rares Ciprian, Vistrian Maties, Ciprian Lapusan, and Ioan Adrian Cosma. "Aspects Regarding Pneumatic System Simulated Control." Solid State Phenomena 166-167 (September 2010): 291–96. http://dx.doi.org/10.4028/www.scientific.net/ssp.166-167.291.

Повний текст джерела
Анотація:
The paper proposes a large approach to pneumatic systems starting from the mathematical laws, written in the form of differential equations, which govern the operation of pneumatic systems and continuing with the simulation model. The concept of integrated design includes all approaches, needed for an optimal and deep system understanding, such as modeling, simulation and control. Pneumatic actuators have a nonlinear functionality because of air compressibility, the existing frictions and the valves nonlinearities. Because of these, they are used in high speed applications and simple positioning systems. Thus, the mathematical analyses of pneumatic systems have received a special attention. The differential equations were implemented in Matlab Simulink, and the model input represents the voltage on the electromagnetic valve, and the output seen on the "scope" represents the movement of the piston pneumatic axis. Some control algorithms are implemented and applied to the model and seen the basic differences.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Xie, Jian Ping, Xiao Hong Kong, Yi Zhou, Yan Feng Chen, and Xin Hua Mao. "Application of Intelligent Control in the Servo System." Key Engineering Materials 464 (January 2011): 171–74. http://dx.doi.org/10.4028/www.scientific.net/kem.464.171.

Повний текст джерела
Анотація:
The pneumatic valves are widely used in the actual industrial production, and their practical performances are very important to the control system. Traditionally, the common PID controller is widely used in the control of the pneumatic valves. Due to the strong nonlinearity of the pneumatic valve, the control effect of the PID method for the pneumatic valve is below what is desired. In order to address this problem, a fuzzy PID control scheme is presented to be used in the pneumatic system in this paper. Simulation results and the practical control effect show that this kind of compound control structure has better performance than the classical PID control method and satisfactory effects have been obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

VLADU, Ionel-Cristian, Daniela ROȘCA, Nicu BÎZDOACĂ, and Viorel STOIAN. "DYNAMIC CONTROL OF PNEUMATIC ACTUATOR SYSTEM." SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE 18, no. 1 (June 24, 2016): 399–404. http://dx.doi.org/10.19062/2247-3173.2016.18.1.54.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

VARDHAN, BANDARI VISHNU. "Design of Pneumatic Powered Drive System." International Journal for Research in Applied Science and Engineering Technology 7, no. 11 (November 30, 2019): 320–26. http://dx.doi.org/10.22214/ijraset.2019.11051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

YAMAMOTO, Iwao. "Pneumatic Gripping Device Including Sensor System." Transactions of the Society of Instrument and Control Engineers 22, no. 5 (1986): 574–79. http://dx.doi.org/10.9746/sicetr1965.22.574.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Deaconescu, Andrea, and Tudor Deaconescu. "Pneumatic Muscle Actuated Rotation-Translation System." Applied Mechanics and Materials 555 (June 2014): 129–34. http://dx.doi.org/10.4028/www.scientific.net/amm.555.129.

Повний текст джерела
Анотація:
Mounting robot arms on wheelchairs has been identified as means of allowing persons with locomotor disabilities to conduct certain tasks autonomously. The paper presents an innovative solution of a pneumatic muscle actuated rotation-translation system, as an improved alternative to the vast majority of electrically actuated robot arms. This system acts as an interface between the wheelchair and the actual arm, and its light and compliant constructions ensures impact safety in the immediate vicinity of humans or in narrow working spaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

LI, Jinhua, Yoshiki MIZUKAMI, and Kanya TANAKA. "Intelligent Control for Pneumatic Servo System." Proceedings of the JFPS International Symposium on Fluid Power 2002, no. 5-3 (2002): 705–8. http://dx.doi.org/10.5739/isfp.2002.705.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

SATO, Kenkichi, and Yasuhiro TAKAMURA. "118 Innovation in Pneumatic Transfer System." Proceedings of the Tecnology and Society Conference 2012 (2012): 35–36. http://dx.doi.org/10.1299/jsmetsd.2012.35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Ying-zi, Jin, Wang Zu-wen, and Bao Gang. "Condensation During Discharging of Pneumatic System." Journal of Fluids Engineering 126, no. 3 (May 1, 2004): 430–35. http://dx.doi.org/10.1115/1.1758261.

Повний текст джерела
Анотація:
In order to make sure what factors have an effect on condensation, a mathematical model has been established for the discharging process of a pneumatic system using the fluid grid theory, an analytic equation has been derived to determine the maximum humidity of air during discharging of pneumatic system, and an analytic equation has been established as the first necessary condition for the determination of internal condensation in a pneumatic system. Flowing air may produce water droplets in a pneumatic system when the system satisfies the first necessary condition. An analytic equation has been developed as the second necessary condition for determination of internal condensation in a pneumatic system by introducing stroke and establishing an analytic equation for the stroke. The water droplets produced by satisfaction of the first necessary condition form drops of water inside the system when the system satisfies the second necessary condition. Internal condensation does not occur when the system does not satisfy the first necessary condition, and internal condensation occurs only when the system satisfies both conditions at the same time. The experimental results indicate that the points of internal condensation, external condensation and no condensation exhibit a regular distribution on the plane formed by the dimensionless volume of the discharging pipe and the average velocity of air, and the plane can then be divided into regions, providing a graphic discrimination method for determination of condensation in a pneumatic system.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Sikorski, Jakub. "Pneumatic actuator supported with hydraulic system." Mechanik 92, no. 5-6 (May 27, 2019): 372–74. http://dx.doi.org/10.17814/mechanik.2019.5-6.42.

Повний текст джерела
Анотація:
A design experiment involving the addition of the hydraulic line to the pneumatic cylinder to trigger dynamic phenomena in the cylinder is presented. Thanks to this, it is possible to limit the occurrence of the stick-slip phenomenon, often occurring in linear actuators at low mutual speed of the piston and the cylinder. The purpose of this operation is to obtain the possibility of precise control of the piston position of the pneumatic cylinder without using complicated systems using algorithms with nonlinear functions.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

LI, Jinhua, and Kanya TANAKA. "Intelligent Control for Pneumatic Servo System." JSME International Journal Series C 46, no. 2 (2003): 699–704. http://dx.doi.org/10.1299/jsmec.46.699.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Merriman, David, and Charles Mertes. "Repair of a Pneumatic Instrumentation System." Opflow 13, no. 3 (March 1987): 6–7. http://dx.doi.org/10.1002/j.1551-8701.1987.tb00448.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Fok, S. C., and E. K. Ong. "Analysis of a Pneumatic Cylinder System." International Journal of Mechanical Engineering Education 24, no. 2 (April 1996): 93–100. http://dx.doi.org/10.1177/030641909602400201.

Повний текст джерела
Анотація:
Pneumatic cylinder systems have the potential to provide fast and reliable motion characteristics with large power output to weight at low cost to benefit ratios. To properly utilize pneumatic cylinder systems in industrial applications (especially in control situations), mechanical engineers must appreciate and understand the dynamic characteristics of these devices. In this paper, the linearized continuous time dynamics of a pneumatic rodless cylinder system are examined. Two transfer functions, based upon the midstroke and off-centre operation conditions respectively, are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Pang, S. S., and W. Goldsmith. "Model of a pneumatic jackhammer system." International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 29, no. 4 (July 1992): 242. http://dx.doi.org/10.1016/0148-9062(92)90809-e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Ryder, C. "Design: The greenawald pneumatic latch system." Museum Management and Curatorship 12, no. 4 (December 1993): 426–27. http://dx.doi.org/10.1016/0964-7775(93)90049-o.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Fleiss, Michael, Ragnar Burenius, Göran Almkvist, and Jonas Björkholtz. "The Pneumatic Turbocharger Support System PowerPulse." MTZ worldwide 77, no. 6 (May 14, 2016): 10–15. http://dx.doi.org/10.1007/s38313-016-0042-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Nazarov, V. D., V. I. Mamontov, G. A. Snitivker, S. M. Chasnyk, and O. K. Panin. "System for pneumatic transport of dust." Metallurgist 33, no. 11 (November 1989): 214–15. http://dx.doi.org/10.1007/bf00749038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Pradeep. R, Mr Nale. "Automated Pneumatic Braking and Bumper System." International Journal for Research in Applied Science and Engineering Technology 9, no. VII (July 31, 2021): 3305–8. http://dx.doi.org/10.22214/ijraset.2021.37111.

Повний текст джерела
Анотація:
Automobiles have been used to move human beings or things and the automobile technology has been developed within the last few years. The traffic accidents are increasing as automobile production has been increasing. The number of casualties during the vehicle accidents is very large as compared to the other causes of death. It is important to prevent accidents and to protect the driver and pedestrian when accidents occur. Though there are different causes for these accidents but proper technology of braking system and technology to reduce the damage during accident (such as pneumatic bumper system) can be effective on the accident rates. Therefore, pre-crashing system is demanded. Automotive safety has gained an increasing amount of interest from the general public, governments, and the car industry. The pre-crash system is to prevent accidents on roads with poor visibility by using sensor network to find invisible vehicles, which are to be detected by autonomous on-vehicle sensors. The pre-crashing system is processing the sensor data and controlling the vehicle to prevent accidents and accidents caused by careless driving. The pneumatic system is simple and easy in operation and hence can be used in automation industry.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Virgala, Ivan, Michal Kelemen, Erik Prada, and Tomáš Lipták. "Positioning of Pneumatic Actuator Using Open-Loop System." Applied Mechanics and Materials 816 (November 2015): 160–64. http://dx.doi.org/10.4028/www.scientific.net/amm.816.160.

Повний текст джерела
Анотація:
In the paper, we experimentally analyze a pneumatic actuator and possibilities of piston positioning. Paper shows mathematical model of pneumatic actuator. Actuator is experimentally tested and therefor experimental stand is assembled for the purposes of positioning of actuator piston. The changing parameters during the experiment are weight of load and pneumatic pressure. The results show how these parameters can have influence on precise positioning of pneumatic actuator. For experiment there is purposely used open loop control system. The aim of the study is not to show control method for positioning but to show influence of mentioned parameters.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Murtaza, M. A., and S. B. L. Garg. "Parametric Study of a Railway Air Brake System." Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 206, no. 1 (January 1992): 21–36. http://dx.doi.org/10.1243/pime_proc_1992_206_214_02.

Повний текст джерела
Анотація:
This paper deals with the parametric study of a twin-pipe graduated release railway air brake system. The air brake model is based on the analysis of a pneumatic train circuit and a vehicle pneumatic circuit. The parametric study includes the effect of variation of the pneumatic train circuit and vehicle pneumatic circuit parameters. This shows that the computer simulation can be used to predict the performance while varying the design parameters during a brake application. The information is of vital importance for train operation and for laying maintenance and manufacturing tolerances of air brake system design parameters.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Tan, Sheng Ming, Bin Chen, Kenneth Charles Williams, and Mark Glynne Jones. "Analysis of Low Velocity Dense Phase Pneumatic Conveying System to Extend System Conveying Capability." Advanced Materials Research 239-242 (May 2011): 112–15. http://dx.doi.org/10.4028/www.scientific.net/amr.239-242.112.

Повний текст джерела
Анотація:
This paper reports the current development of technologies to analyse the conveying performance of bypass low velocity dense phase pneumatic conveying system for transporting powder bulk materials and slug flow low velocity dense phase pneumatic conveying system for transporting granular sized bulk materials. It reveals that the bypass system can be operated at a lowered air velocity than conventional pipe line and slug flow system can be also controlled to operate at a lower velocity zone. Hence these technologies have the potential to extend the conveying capability of a pneumatic conveying system to a broader range of materials, also provide better performance in reduction in pipe wear and product degradation.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Mao, Kai Ge, Xiao Hang Xiong, and Shao Feng Yan. "The Design of Pneumatic Control System for CHT Hydrolysis Device." Advanced Materials Research 538-541 (June 2012): 1365–68. http://dx.doi.org/10.4028/www.scientific.net/amr.538-541.1365.

Повний текст джерела
Анотація:
The working medium of the pneumatic control system is air, which is delivered to each branch pipe through the role of the governing valve , and then the divided gas delivers the compressed air to each solenoid valve and pneumatic control valve. The solenoid valves and pneumatic control valve is connected through terminals and PLC, PLC obtains corresponding signal and makes judgment, conveying signal which is delivered to the solenoid valves and pneumatic control valve to achieve ventilation and breathe action, and finally the gas reaches the cylinder . The cylinder can complete the valve body on and off, so as to realize the pneumatic system of the automatic control.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Földi, L., Z. Béres, and E. Sárközi. "Novel cylinder positioning system realised by using solenoid valves." International Journal Sustainable Construction & Design 2, no. 1 (November 6, 2011): 142–51. http://dx.doi.org/10.21825/scad.v2i1.20492.

Повний текст джерела
Анотація:
This paper presents a novel control design, developed to realise fast and accurate positioncontrol of a pneumatic actuator using inexpensive on/off solenoid valves. In contrast to conventional controlmethods, the proposed control method operates chatter free, based on air compression. The controlprinciple was developed by investigating the dynamics of a pneumatic actuator with an identifiedmathematical model. This new approach is applied to a pneumatic double acting cylinder, controlled by apair of 5/3 way directional single solenoid valves. The described closed-loop circuit copes with thediscontinuities associated with the valve’s switching dynamics, and relatively long response time. Theexperimental apparatus uses an analogue displacement encoder for metering the piston’s position andvelocity, and doesn’t incorporate pressure sensors thus ensuring a low cost system design. The results ofexperiments with various step responses show that the proposed control method performs well. Themeasured steady-state position errors are equal to the used potentiometer’s travel resolution, which is 0,01mm. Therefore this novel control and the related pneumatic system design could be a cost effectivealternative to the servo-pneumatic positioning systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Noritsugu, Toshiro, Tsutomu Wada, and Toshiaki Asanoma. "Impedance Control of a Pneumatic Servo System with Adaptive Control Method." Journal of Robotics and Mechatronics 3, no. 6 (December 20, 1991): 463–69. http://dx.doi.org/10.20965/jrm.1991.p0463.

Повний текст джерела
Анотація:
One of the typical features of a pneumatic servo is a relatively high compliance due to air compressibility. This feature may be useful for constrained tasks such as deburring, polishing, and assisting humans, in which the relationship between position and force is important. If this relationship of a pneumatic servo becomes actively controllable, it can be effectively applied to these tasks. In order to control this relationship, an impedance control concept has recently been proposed. The impedance of the overall control system depends not only on the manipulator but also on the manipulated object of which the characteristics are usually unknown. Therefore, to attain the desired impedance over extensive operating conditions, an adaptive control strategy is required. This paper proposes an impedance control method of a pneumatic servo, using a position based approach, where an adaptive position control system is constructed inside the force feedback loop. The proposed method is applied to an experimental pneumatic servo system comprised of a pneumatic cylinder, electro-pneumatic proportional control valves, and a spring object. From the experiments, the following has been verified: 1) both static stiffness and dynamic impedance of the pneumatic servo system can be independently regulated by setting a desired reference model; 2) the impedance can be held constant with changes in system parameter such as object stiffness; and 3) the instability problem for the low stiffness setting can be overcome by setting high damping in the reference model. The proposed impedance control method may prove to be effective for both improving a pneumatic servo and developing its new applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Li, Baoren. "MODELING AND SIMULATION OF PNEUMATIC MUSCLE SYSTEM." Chinese Journal of Mechanical Engineering 39, no. 07 (2003): 23. http://dx.doi.org/10.3901/jme.2003.07.023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Wang, Zuwen. "DEVELOPMENTS AND PROSPECTS OF PNEUMATIC POSITIONING SYSTEM." Chinese Journal of Mechanical Engineering 39, no. 12 (2003): 10. http://dx.doi.org/10.3901/jme.2003.12.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Pastukhov, A. G., D. N. Bakharev, S. F. Volvak, and R. V. Chernikov. "Pneumatic System of Variable-Force Corn Threshing." Agricultural Machinery and Technologies 13, no. 4 (October 3, 2019): 42–47. http://dx.doi.org/10.22314/2073-7599-2019-13-4-42-47.

Повний текст джерела
Анотація:
Differentiation of the force applied to the cobs of seed corn in the process of threshing allows minimizing the amount of macro- and micro-damage to the grain, which maintains the potential yield level of this crop. (Research purpose) To develop an automatic control system for active pneumatic elements of the deck of the threshing-and-separating unit capable of varying the pressing force of the spikes applied to the cobs of seed corn in different parts of the threshing chamber to minimize the crop damage. (Materials and methods) The authors have used the methods of system analysis, designing the operating algorithms of automated mechanical systems, electronics and general electrical engineering. (Results and discussions) The authors offer an advanced design of the threshing-and-separating unit for seed corn. The design features an active pneumatic deck with an automatic control system varying the pressing force of separate deck spikes to the cob grain directly in the course of threshing. For air inflating and lowering, two valves are installed in each of the 16 airbags, 32 control relays being used. The operation process is automatized through the Atmega 2560 controller regulating the amount of pressure in the airbags forcing the spikes against the grain in the process of threshing. The authors propose a schematic diagram describing the operation algorithm of the controller with pressure control units in deck airbags. By programming the controller, an operator can change the amount of pressure in the airbags, thus adjusting the force of direct and precise pressing the deck spikes to the corn cobs, for any airbag and in any part of the deck. (Conclusions) It has been determined that the destructive pressing force of 55 Newtons can be achieved in certain combinations of the membrane thickness, the pressure in the airbags and the pressing depth of the spikes. The proposed design of the threshing device with a system of automated pressure control in the deck airbags allows varying the force of threshing, which minimizes the amount of macro- and micro-damage to the seed corn grain and thus maintains the potential yield level of this crop.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

UCHIDA, Makoto, and Sanai KOSUGI. "Pneumatic Capsule Pipeline System for Tunnel Construction." JAPANESE JOURNAL OF MULTIPHASE FLOW 7, no. 1 (1993): 13–22. http://dx.doi.org/10.3811/jjmf.7.13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Popławski, Krzysztof, Leszek Ambroziak, and Mirosław Kondratiuk. "Electro Pneumatic Control System for Inverted Pendulum." Acta Mechanica et Automatica 14, no. 2 (June 1, 2020): 91–97. http://dx.doi.org/10.2478/ama-2020-0013.

Повний текст джерела
Анотація:
AbstractThe paper concerns the inverted pendulum control system with using pneumatic cylinder. A mathematical model of the pendulum used to derive the LQG controller was presented. Prepared laboratory stand was presented and described in detail. The main purpose of the work was experimental researches. A number of control process tests were conducted with variable model parameters such as additional mass, injected disturbances and so on. The results were shown on the time plots of the control object states.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

NORITSUGU, Toshiro, Tsutomu WADA, and Masami YANOSAKA. "Adaptive Control of a Pneumatic Servo System." Transactions of the Society of Instrument and Control Engineers 24, no. 11 (1988): 1187–94. http://dx.doi.org/10.9746/sicetr1965.24.1187.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

NORITSUGU, Toshiro, and Tsutomu WADA. "Microcomputer Controlled PCM Digital Pneumatic Servo System." Transactions of the Society of Instrument and Control Engineers 23, no. 3 (1987): 253–59. http://dx.doi.org/10.9746/sicetr1965.23.253.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Xiong, Wei. "STUDY OF CAD OF PNEUMATIC DRIVING SYSTEM." Chinese Journal of Mechanical Engineering 37, no. 06 (2001): 53. http://dx.doi.org/10.3901/jme.2001.06.053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

LIU, Yu. "Pressure Control of Pneumatic Gravity Compensation System." Journal of Mechanical Engineering 54, no. 16 (2018): 212. http://dx.doi.org/10.3901/jme.2018.16.212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Obukhova, Elena. "SYNERGETIC CONTROL OF ELECTRIC PNEUMATIC CONTROL SYSTEM." University News. North-Caucasian Region. Technical Sciences Series, no. 3 (September 2020): 27–33. http://dx.doi.org/10.17213/1560-3644-2020-3-27-33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

KAGAWA, TOSHIHARU. "Temperature change of air in pneumatic system." Proceedings of the JFPS International Symposium on Fluid Power 1993, no. 2 (1993): 601–6. http://dx.doi.org/10.5739/isfp.1993.601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Ming, Chang Shih, and Kei-Ren Pai. "DEVELOPMENT OF THE PNEUMATIC SERVO CONTROL SYSTEM." Proceedings of the JFPS International Symposium on Fluid Power 2002, no. 5-1 (2002): 11–22. http://dx.doi.org/10.5739/isfp.2002.11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії