Добірка наукової літератури з теми "Self-modelocked"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Self-modelocked".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Self-modelocked":

1

Selker, M. D., and J. L. Dallas. "Modelocked self-frequency doubling neodymium doped fiber laser." Journal de Physique III 2, no. 4 (April 1992): 675–78. http://dx.doi.org/10.1051/jp3:1992107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Spence, D. E., W. E. Sleat, J. M. Evans, W. Sibbett, and J. D. Kafka. "Time synchronisation measurements between two self-modelocked Ti:sapphire lasers." Optics Communications 101, no. 3-4 (August 1993): 286–96. http://dx.doi.org/10.1016/0030-4018(93)90378-i.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Miller, Alan, Patrick LiKamWa, and Bruice H. T. Chai. "A New Family of Self-Modelocked Chromium Doped Solid State Lasers." Optics and Photonics News 3, no. 12 (December 1, 1992): 39. http://dx.doi.org/10.1364/opn.3.12.000039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bamford, Douglas J., and David A. G. Deacon. "The “rectangle rule” and the self-modelocked oscillator/amplifier FEL configuration." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 318, no. 1-3 (July 1992): 546–49. http://dx.doi.org/10.1016/0168-9002(92)91115-p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Okhotnikov, O. G., and J. R. Salcedo. "Self-starting passively modelocked fibre laser exploiting polarisation evolution in MQW waveguide." Electronics Letters 30, no. 17 (August 18, 1994): 1421–22. http://dx.doi.org/10.1049/el:19940973.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Brovelli, L. R., M. Moser, U. Keller, I. D. Jung, M. Kamp, D. Kopf, and F. X. Kärtner. "Self-starting soliton modelocked Ti-sapphire laser using a thin semiconductor saturable absorber." Electronics Letters 31, no. 4 (February 16, 1995): 287–89. http://dx.doi.org/10.1049/el:19950184.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mozdy, E. J., and C. R. Pollock. "Self-starting of additive-pulse modelocked laser using novel bonded saturable Bragg reflector." Electronics Letters 34, no. 15 (1998): 1497. http://dx.doi.org/10.1049/el:19981032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Seong, N. H., Dug Y. Kim, and Seong K. Oh. "Self-adjustments of positions of quantised modelocked pulses in figure-eight fibre laser." Electronics Letters 37, no. 3 (2001): 157. http://dx.doi.org/10.1049/el:20010138.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Anisuzzaman Talukder, Muhammad, and Curtis R. Menyuk. "Calculation of the microscopic parameters of a self-induced transparency modelocked quantum cascade laser." Optics Communications 295 (May 2013): 115–18. http://dx.doi.org/10.1016/j.optcom.2012.12.094.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Radzewicz, Czeslaw, Gary W. Pearson, and Jerzy S. Krasinski. "Use of ZnS as an additional highly nonlinear intracavity self-focusing element in a Ti: sapphire self-modelocked laser." Optics Communications 102, no. 5-6 (October 1993): 464–68. http://dx.doi.org/10.1016/0030-4018(93)90423-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Self-modelocked":

1

Evans, Jonathan Michael. "Ultrashort pulse generation and synchronisation in self-modelocked vibronic lasers." Thesis, University of St Andrews, 1994. http://hdl.handle.net/10023/13809.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis is concerned with the generation of ultrashort pulses from vibronic lasers. The two laser active materials used in the course of the work were Ti:sapphire and Cr:LiSAF. A self-modelocked Ti:sapphire laser has been described which generated pulses as short as 2ps, tunable over the wavelength range 730 - 850nm. The average output power was 400mW corresponding to a peak pulse power of 1kW. Using a prism sequence to implement intracavity dispersion-compensation resulted in the generation of near-transform limited pulses as short as 53fs with a peak pulse power of ~100kW. Two initiation techniques have been developed for the generally non-self-starting self- modelocking process, based upon intracavity insertion of either a regeneratively driven acousto-optic modulator or a solid-state saturable absorber. A cw Cr:LiSAF laser pumped by the 476.5nm line of the argon-ion laser output, was demonstrated; this generated a maximum output power of 300mW with a slope efficiency of 20% at 825nm. A dispersion-compensated self-modelocked Cr:LiSAF laser has been described that generated pulses as short as 45fs over the tuning range 770-910nm. The peak pulse power generated was 40kW. The phase noise of a modelocked Ti: sapphire laser has been reduced by referencing the cavity frequency to an ultrastable crystal oscillator. The phase noise of the frequency locked laser was 410fs (100-500Hz), 305fs (500Hz-5kHz) and 263fs (5-50kHz). By referencing two modelocked Ti:sapphire lasers to a common crystal oscillator two independently tunable pulse sequences with a relative timing jitter of ~1ps have been generated. A novel laser based upon a single Ti:sapphire gain element generating synchronised pulses at two different wavelengths has been demonstrated. Cross-correlation data recorded between the two output pulse sequences indicated a relative timing jitter of 26fs.
2

Ghawas, Muhammad. "Sources picosecondes et femtosecondes à base de fibre dopées Ytterbium et applications." Electronic Thesis or Diss., Bordeaux, 2023. http://www.theses.fr/2023BORD0463.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les recherches industrielles ou académiques autour laser délivrant des impulsions ultracourtes reposent de plus en plus sur la technologie des lasers à fibre. Elles s’appuient sur les avantages intrinsèques des systèmes à fibre, tels que leur stabilité, compacité, l'excellente qualité modale du faisceau délivré, leur robustesse et leur facilité d'utilisation. Au cours de ce travail, nous avons réalisé l’étude détaillée d’un laser à fibre délivrant des impulsions picosecondes fonctionnant dans un régime de dispersion normale (ANDi). Ce laser a par la suite été déployé pour étudier de la génération paramétrique dans une fibre à cristal photonique. Nous avons tout d’abord développé une source laser à fibre de haute puissance délivrant des impulsions picosecondes dont on peut accorder à la fois la longueur d'onde centrale et la largeur spectrale. La source développée autour d’une cavité en anneau comprend la combinaison d’une fibre d'ytterbium à grande surface modale du type « rod-type », une fente et un réseau de diffraction en transmission. À la longueur d'onde centrale de ∼ 1030 nm et à un taux de répétition de 78 MHz, ce laser délivre des impulsions picosecondes avec une puissance moyenne allant jusqu'à 25 W. La durée des impulsions peut être ajustée en continu entre ∼ 1,8 ps et ∼ 4,5 ps alors que l'énergie des impulsions varie entre ∼ 320 nJ et ∼ 225 nJ. Nous avons également démontré que la longueur d'onde centrale des impulsions laser peut-être finement réglée entre ∼ 1010 nm à ∼ 1060 nm tout en s’assurant que l'énergie de l'impulsion est supérieure ∼ 150 nJ. Nous avons également développé un modèle numérique pour rendre compte de l'ensemble de nos données expérimentales. Nos simulations sont en bon accord avec nos résultats expérimentaux. Les impulsions délivrées par cette source ont été utilisées pour étudier et réaliser un oscillateur paramétrique optique dans une fibre optique. Les ondes signal et idler générées résultent d’un mélange paramétrique à quatre-onde induit dans une fibre à cristal photonique. Cet OPO à fibre est simplement résonnant pour l’onde signal. L'efficacité de conversion pour l’onde signal est proche de 20 %. Le profil de dispersion spectrale de la fibre à cristal photonique et l’accordabilité spectrale de notre laser de pompe nous ont permis de générer des ondes du signal (resp. idler) comprises respectivement entre ∼ 770 nm et ∼ 1000 nm ( ∼ 1130 nm et ∼ 1590nm) lorsque la longueur d'onde des impulsions pompe est ajustée entre ∼ 1024 nm et ∼ 1059 nm
Ultrashort laser pulses in both industrial and research applications progressively rely on fiber laser technology, guided by its intrinsic benefits, for instance, stability, compact nature, excellent beam quality, robustness, and easy operation. In this work, a detailed study has been done to investigate picosecond fiber laser working in an all-normal-dispersion (ANDi) regime for the application of parametric generation in photonic crystal fiber. In summary, we have developed a high-power fiber laser source delivering picosecond pulses with tunability both in central wavelength and spectral width. It incorporates a combination of a large-mode-area rod-type ytterbium fiber, a slit, and a transmission grating inside the ring laser cavity configuration. At the central wavelength of ∼ 1030 nm and with a repetition of 78 MHz, this laser delivers picosecond pulses with an average power of up to 25 W. The pulse duration can be continuously adjusted from ∼ 1.8 ps to ∼ 4.5 ps and pulse energy from ∼ 320 nJ and ∼ 225 nJ, respectively. Additionally, we have also demonstrated that the central wavelength of the laser pulse can be finely tuned from ∼ 1010 nm to ∼ 1060 nm while keeping the pulse energy above ∼ 150 nJ. We have also proposed a numerical model to account for the ensemble of our experimental data and the simulations are in good agreement with the experimental data. The output of this fiber oscillator is propagated through the photonic crystal fiber for the parametric generation of the signal (higher frequencies than the pump) and idler (lower frequencies than the pump). The fiber OPO singly-resonant cavity was built in such a way that only signal wavelengths are allowed to propagate through it. The conversion efficiency for the signal was close to 20 % in the fiber OPO. Based on the dispersion profile of the photonic crystal fiber and our homebuilt tunable pump laser, the signal wavelength (resp. idler) was tuned from ∼ 770 nm to ∼ 1000 nm (∼ 1130 nm to ∼ 1590nm) for the corresponding pump wavelengths of ∼ 1024 nm to ∼ 1059 nm

Частини книг з теми "Self-modelocked":

1

Spence, D. E., W. E. Sleat, J. M. Evans, W. Sibbett, and J. D. Kafka. "Time Synchronization Measurements Between Two Self-Modelocked Ti:Sapphire Lasers." In Ultrafast Phenomena VIII, 194–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84910-7_55.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Self-modelocked":

1

Wang, Shuicai, Jianming Tang, Hao Li, Dong Xiao, and Xun Hou. "Dynamic study on self-modelocked Ti:sapphire femtosecond lasers." In OE/LASE '94, edited by Rick P. Trebino and Ian A. Walmsley. SPIE, 1994. http://dx.doi.org/10.1117/12.175846.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, C. J., P. K. A. Wai, and C. R. Menyuk. "Self-starting of passively-mode-locked lasers with fast saturable absorbers." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/oam.1993.woo.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yanovsky, Victor P., Y. Pang, and Frank W. Wise. "Self-modelocked Cr:forsterite laser with optimized group-delay dispersion." In OE/LASE '94, edited by Rick P. Trebino and Ian A. Walmsley. SPIE, 1994. http://dx.doi.org/10.1117/12.175865.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Harvey, J. D., J. M. Dudley, P. F. Curley, C. Spielmann, and F. Krausz. "Coherent Pulse Shaping in a Self-Modelocked Ti:Sapphire Laser." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/up.1994.thd.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The recent development of nonresonant passive modelocking techniques has stimulated considerable interest in the generation of ultrashort optical pulses from broadband solid state laser media. Self-modelocking [1] is now routinely exploited to generate sub-100 fs pulses from solid state lasers in the near infrared. Optimization of a solitonlike interplay between negative group delay dispersion (GDD) and self-phase modulation (SPM), and minimization of high-order dispersive perturbations [2] have resulted in sub-20 fs pulse generation from Ti:sapphire lasers [3 - 6]. In particular, the minimisation of the cubic phase distortion arising from intracavity prism pairs has resulted in the generation of exceptionally broad modelocked spectra with FWHM of up to 150 nm and pulse durations ≈ 10 fs [7].
5

Spence, D. E., W. E. Sleat, J. M. Evans, W. Sibbett, and J. D. Kafka. "Time Synchronization Measurements Between Two Self-Modelocked Ti:sapphire Lasers." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/up.1992.tuc9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper we describe a method which was used to lock the pulse repetition frequency and phase of one (passively modelocked) laser to that of another so that the pulses from both lasers were maintained in temporal synchronism. Both lasers retained their independence in all respects so that different wavelengths and pulse durations could be selected as required. Such a system would provide a relatively cheap, simple and versatile tool for applications requiring dual wavelength pump-probe measurements.
6

Howie, C. J., A. L. Ferguson, S. T. Lee, D. Burns, and M. D. Dawson. "A High Power SBR Modelocked Nd:YLF Laser." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.cwd10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In recent years significant developments have been made in passively modelocked solid-state lasers by the application of semiconductor-based saturable absorbers1,2. Such saturable absorbers have been developed for use in broadly tunable lasers such as Ti:sapphire and Cr:LiSAF where attractive features such as improved reliability and self-starting are introduced, although at the expense of wavelength tunability compared to Kerr-Lens-Modelocked lasers.
7

Asaki, Melanie, Chung-Po Huang, Dennis M. Garvey, Jianping Zhou, Howard Nathel, Henry C. Kapteyn, and Margaret Mary Murnane. "11 femtosecond pulses from a modelocked Ti:sapphire laser." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.pd17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Stock, M. L., and M. E. Fermann. "The Soliton-Self-Frequency Shift in Passively Modelocked Soliton Fiber Lasers." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/up.1994.thd.29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Modelocked lasers are typically subject to a variety of instabilities that affect the quality of the output pulses. Particularly noticeable effects arise from the discreteness of the cavity elements[1] and third-order dispersion, which in turn lead to the formation of spectral side bands[2] and an asymmetric pulse spectrum[3]. However, any gain-pulling from these instabilities is minimal and therefore the spectrum of the modelocked pulses remains located close to the peak of the gain profile.
9

Dykaar, D. R., W. H. Knox, and S. B. Darack. "Frequency Domain Study of Cross-coupling in a Two-wavelength Self-modelocked Ti:Sapphire Laser." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/up.1994.wb.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The recent demonstration of self-modelocking in broadband solid state gain media [1] has caused an resurgence of interest in studies of bulk self-focusing interactions. In particular, two-color nonlinear interactions have been the subject of much interest in soliton communications [2], and operation of the Ti:Sapphire laser some soliton-like features [3]. Recently, the Ti:Sapphire laser has been modelocked at two wavelengths simultaneously using a single laser rod [4-6]. These lasers produce two independently tunable trains of pulses of <100 fs duration. Under certain conditions these pulse trains will precisely synchronize themselves, exhibiting a jitter of < 50 fs. In the present paper we discuss measurements of the frequency-pulling characteristics of a 2-color self-modelocked Ti.Sapphire laser based on the design of Dykaar [6]. These measurements demonstrate the strong nonlinearity of the cross-modelocking process, and may provide insight into two-wavelength soliton interactions.
10

Knox, W. H. "Femtosecond Intracavity Dispersion Measurements." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/up.1992.mc18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the new class of CW-pumped widely tunable femtosecond solid-state self-modelocked lasers [1], dispersive phenomena represent an important limit. We present the first complete measurements of intracavity dispersion in a "live" femtosecond modelocked laser. These measurements illustrate the importance of higher order dispersion and its effects on the modelocking physics in the operating laser, and show for the first time the dispersive behavior of a complete operating system.

До бібліографії