Добірка наукової літератури з теми "Selenite bioreduction"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Selenite bioreduction".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Selenite bioreduction"

1

Soda, S., A. Hasegawa, M. Kuroda, A. Hanada, M. Yamashita, and M. Ike. "Selenium recovery from kiln powder of cement manufacturing by chemical leaching and bioreduction." Water Science and Technology 72, no. 8 (July 7, 2015): 1294–300. http://dx.doi.org/10.2166/wst.2015.339.

Повний текст джерела
Анотація:
A novel process by using chemical leaching followed by bacterial reductive precipitation was proposed for selenium recovery from kiln powder as a byproduct of cement manufacturing. The kiln powder at a slurry concentration of 10 w/v% with 0.25 M Na2CO3 at 28°C produced wastewater containing about 30 mg-Se/L selenium. The wastewater was diluted four-fold and adjusted to pH 8.0 as preconditioning for bioreduction. A bacterial strain Pseudomonas stutzeri NT-I, capable of reducing selenate and selenite into insoluble elemental selenium, could recover about 90% selenium from the preconditioned wastewater containing selenium of 5 mg-Se/L when supplemented with lactate or glycerol. The selenium concentrations in the treated wastewater were low around the regulated effluent concentration of 0.1 mg-Se/L in Japan.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mal, J., Y. V. Nancharaiah, E. D. van Hullebusch, and P. N. L. Lens. "Effect of heavy metal co-contaminants on selenite bioreduction by anaerobic granular sludge." Bioresource Technology 206 (April 2016): 1–8. http://dx.doi.org/10.1016/j.biortech.2016.01.064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ruiz-Fresneda, Miguel Angel, Jaime Gomez-Bolivar, Josemaria Delgado-Martin, Maria del Mar Abad-Ortega, Isabel Guerra-Tschuschke, and Mohamed Larbi Merroun. "The Bioreduction of Selenite under Anaerobic and Alkaline Conditions Analogous to Those Expected for a Deep Geological Repository System." Molecules 24, no. 21 (October 27, 2019): 3868. http://dx.doi.org/10.3390/molecules24213868.

Повний текст джерела
Анотація:
The environmental conditions for the planned geological disposal of radioactive waste —including hyper-alkaline pH, radiation or anoxia—are expected to be extremely harsh for microbial activity. However, it is thought that microbial communities will develop in these repositories, and this would have implications for geodisposal integrity and the control of radionuclide migration through the surrounding environment. Nuclear waste contains radioactive isotopes of selenium (Se) such as 79Se, which has been identified as one of the main radionuclides in a geodisposal system. Here, we use the bacterial species Stenotrophomonas bentonitica, isolated from bentonites serving as an artificial barrier reference material in repositories, to study the reduction of selenite (SeIV) under simulated geodisposal conditions. This bacterium is able to reduce toxic SeIV anaerobically from a neutral to alkaline initial pH (up to pH 10), thereby producing elemental selenium (Se0) nanospheres and nanowires. A transformation process from amorphous Se (a-Se) nanospheres to trigonal Se (t-Se) nanowires, through the formation of monoclinic Se (m-Se) aggregates as an intermediate step, is proposed. The lesser solubility of Se0 and t-Se makes S. bentonitica a potential candidate to positively influence the security of a geodisposal system, most probably with lower efficiency rates than those obtained aerobically.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ahmed, Faheem, Sourabh Dwivedi, Nagih M. Shaalan, Shalendra Kumar, Nishat Arshi, Adil Alshoaibi, and Fohad Mabood Husain. "Development of Selenium Nanoparticle Based Agriculture Sensor for Heavy Metal Toxicity Detection." Agriculture 10, no. 12 (December 8, 2020): 610. http://dx.doi.org/10.3390/agriculture10120610.

Повний текст джерела
Анотація:
The presence of heavy metals in increased concentrations in the environment has become a global environmental concern. This rapid increase in heavy metals in the environment is attributed to enhanced industrial and mining activities. Metal ions possess a lengthy half-life and property to bioaccumulate, are non-biodegradable and, thus, are a threat to the human health. A number of conventional spectroscopic and chromatographic techniques are being used for the detection of heavy metals, but these suffer from various limitations. Nano-based sensors have emerged as potential candidates for the sensitive and selective detection of heavy metals. Thus, the present study was focused on the synthesis of selenium nanoparticles (SeNPs) by using selenite-reducing bacteria in the development of a heavy metal toxicity biosensor. During the biosynthesis of selenium nanoparticles, supernatants of the overnight-grown culture were treated with Na2SeO32− and incubated for 24 h at 37 °C. The as-synthesized nanoparticles were characterized by UV–Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) and transmission electron microscopy (TEM) analyses. XRD and TEM results confirmed the formation of SeNPs in sizes ranging from 35 to 40 nm, with face-centered cubic (FCC) structures. The bioreduction process and validation of the formation of SeNPs was further confirmed by FTIR studies. The reduction in the biosynthesis of SeNPs using bacterial metabolite due to heavy metal cytotoxicity was analyzed by the colorimetric bioassay (SE Assay). The inhibition of selenite reduction and loss of red color in the presence of heavy metals may serve as a biosensor for heavy metal toxicity analysis. Thus, this biosensor development is aimed at improving the sensitivity and specificity of analytic detection.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Borah, Siddhartha Narayan, Lalit Goswami, Suparna Sen, Deepa Sachan, Hemen Sarma, Milka Montes, Jose R. Peralta-Videa, Kannan Pakshirajan, and Mahesh Narayan. "Selenite bioreduction and biosynthesis of selenium nanoparticles by Bacillus paramycoides SP3 isolated from coal mine overburden leachate." Environmental Pollution 285 (September 2021): 117519. http://dx.doi.org/10.1016/j.envpol.2021.117519.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wadgaonkar, Shrutika L., Joyabrata Mal, Yarlagadda V. Nancharaiah, Neeraj O. Maheshwari, Giovanni Esposito, and Piet N. L. Lens. "Formation of Se(0), Te(0), and Se(0)–Te(0) nanostructures during simultaneous bioreduction of selenite and tellurite in a UASB reactor." Applied Microbiology and Biotechnology 102, no. 6 (February 4, 2018): 2899–911. http://dx.doi.org/10.1007/s00253-018-8781-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chung, Jinwook, Robert Nerenberg, and Bruce E. Rittmann. "Bioreduction of Selenate Using a Hydrogen-Based Membrane Biofilm Reactor." Environmental Science & Technology 40, no. 5 (March 2006): 1664–71. http://dx.doi.org/10.1021/es051251g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Van Ginkel, Steven W., Chen Zhou, Michael Lien, and Bruce E. Rittmann. "Hydrogen-Based Nitrate and Selenate Bioreductions in Flue-Gas Desulfurization Brine." Journal of Environmental Engineering 137, no. 1 (January 2011): 63–68. http://dx.doi.org/10.1061/(asce)ee.1943-7870.0000288.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Eregowda, Tejaswini, Eldon R. Rene, and Piet N. L. Lens. "Bioreduction of selenate in an anaerobic biotrickling filter using methanol as electron donor." Chemosphere 225 (June 2019): 406–13. http://dx.doi.org/10.1016/j.chemosphere.2019.02.158.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ratnakomala, Shanti, Nurul Fitri Sari, Fahrurrozi Fahrurrozi, and Puspita Lisdiyanti. "Antimicrobial Activity of Selenium Nanoparticles Synthesized by Actinomycetes Isolated from Lombok Island Soil Samples." Jurnal Kimia Terapan Indonesia 20, no. 1 (August 21, 2018): 8–15. http://dx.doi.org/10.14203/jkti.v20i1.374.

Повний текст джерела
Анотація:
AbstractA total of 98 actinomycetes were isolated from the soil and litter samples collected from the cacao and coffee plantation in Lombok Island, West Nusa Tenggara, Indonesia. These isolates were screened for their antimicrobial activity. Among 98 isolated strains, only 24 isolates showed antimicrobial activity against test microorganisms of which 20.4% were active against Bacillus subtilis BTCC B-612, 14.3% against Staphylococcus aureus BTCC B-611, and 5.1% against Escherichia coli BTCC B-609. Out of these 24 isolates, 3 were found to be able to grow in medium containing 3 mM Selenium oxide of which the culture were changed color to red. Two of the best strains, L-155 and L-156, were selected for assessing production of Selenium nanoparticles. Bioreduction of selenium nanoparticles was confirmed by UV–visible spectrophotometer which showed peak between 300 and 320 nm. Biosynthesized selenium nanoparticle from isolate actinomycetes L-155 and L-156 were found to have a broad spectrum of activity against the tested microorganisms: Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Micrococcus luteus, and Candida albicans. This study showed rapid and eco-friendly synthesis of selenium nanoparticles from soil actinomycetes. Most of these active isolates revealed to possess antibacterial property.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Selenite bioreduction"

1

Espinosa, Ortiz Erika. "Bioreduction of selenite and tellurite by Phanerochaete chrysosporium." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1193/document.

Повний текст джерела
Анотація:
Le sélénium et le tellurium partagent des propriétés chimiques communes et appartiennent à la colonne des éléments chalcogènes de la classification périodique des éléments. Ces métalloïdes ont des propriétés physico-chimiques remarquables et ils ont été utilisés dans un grand nombre d'applications dans le domaine des hautes technologies (électronique, semi-conducteurs, alliages). Ces éléments, qui se retrouvent généralement sous formes d'oxyanions, sont extrêmement solubles dans l'eau et présentent une forte toxicité. Leur libération dans l'environnement est donc d'un enjeu capital. Différentes méthodes physico-chimiques ont été développées pour la récupération de ces metalloïdes, en particulier pour le sélénium. Néanmoins, ces méthodes requièrent un équipement lourd et couteux et ne sont pas très recommandables sur le plan écologique. Le traitement biologique est donc une bonne alternative pour la récupération de Se et de Te provenant des effluents pollués. Cette approche réside dans la bioréduction des différents oxyanions sous formes métalliques. Ceux-ci sont moins toxiques et d'intérêts commerciales notables surtout lorsqu'ils se présentent sous forme nanométrique. L'utilisation de micro-champignons comme microorganismes catalyseur de la réduction de Se et de Te a été démontrée dans cette étude. La réactivité du champignon responsable de la pourriture blanche, Phanerochaete chrysosporium en présence de sélénite et de tellurite a été évaluée, ainsi que son application potentielle pour le traitement des eaux contaminées et la production de nanoparticules. La présence de Se et de Te a une influence importante sur la croissance et la morphologie du champignon. Il s'avère que P. chrysosporium est très sensible à la présence de sélénites. La synthèse de Se° et de Te° sous forme de nanoparticules piégées dans la biomasse fongique a été observée, ainsi que la formation de nano-composites Se-Te lorsque le champignon était cultivé simultanément en présence des deux métalloïdes. L'usage potentiel de biofilm fongiques pour le traitement des effluents semi-acides (pH 4.5) contenant du Se et du Te a été suggéré. De plus, le traitement en mode continu de sélénite dans un réacteur à biofilm fongique granulaire a été évalué. Le réacteur a montré un rendement d'élimination du sélénium en régime permanent de 70% pour differentes conditions opératoires. Celui-ci s'est montré efficace pendant une période supérieure à 35 jours. La bonne sédimentation du biofilm granulaire facilite la séparation du sélénium de l'effluent traité. L'utilisation du biofilm granulaire contenant du sélénium élémentaire comme bio-sorbant a également été étudiée. Cet adsorbant hybride s'est montré prometteur pour l'immobilisation du zinc présent dans les effluents semi-acides. La plupart des recherches effectuées se sont focalisées sur l'utilisation des biofilms granulaires. Toutefois, la croissance du champignon suite à l'exposition à des concentrations différentes de sélénites a également été étudiée. Des micro-électrodes à oxygène et un microscope confocal à balayage laser ont été utilisées pour évaluer l'effet du sélénium sur la structure des biofilms fongiques. Quel que soit le mode de croissance de P. chrysosporium, le mécanisme de réduction du sélénite semble être toujours le même tout en menant à la formation de sélénium élémentaire. Cependant, l'architecture des biofilms et l'activité en oxygène sont influencées par la présence de sélénium
Selenium (Se) and tellurium (Te) are particular elements, they are part of the chalcogens (VI-A group of the periodic table) and share common properties. These metalloids are of commercial interest due to their physicochemical properties, and they have been used in a broad range of applications in advanced technologies. The water soluble oxyanions of these elements (i.e., selenite, selenate, tellurite and tellurate) exhibit high toxicities, thus their release in the environment is of great concern. Different physicochemical methods have been developed for the removal of these metalloids, mainly for selenium. However, these methods require specialized equipment, high costs and they are not ecofriendly. The biological treatment is a green alternative to remove Se and Te from polluted effluents. This remediation technology consists on the microbial reduction of Se and Te oxyanions in wastewater to their elemental forms (Se0 and Te0), which are less toxic, and when synthesized in the nano-size range, they can be of commercial value due to their enhanced properties. The use of fungi as potential Se- and Te-reducing organisms was demonstrated in this study. Response of the model white-rot fungus, Phanerochaete chrysosporium, to the presence of selenite and tellurite was evaluated, as well as their potential application in wastewater treatment and production of nanoparticles. The presence of Se and Te had a clear influence on the growth and morphology of the fungus. P. chrysosporium was found to be more sensitive to selenite. Synthesis of Se0 and Te0 nanoparticles entrapped in the fungal biomass was observed, as well as the formation of unique Se-Te nanocomposites when the fungus was cultivated concurrently in the presence of Se and Te. Potential use of fungal pellets for the removal of Se and Te from semi-acidic effluents (pH 4.5) was suggested. Moreover, the continuous removal of selenite in a fungal pelleted reactor was evaluated. The reactor showed to efficiently remove selenium at steady-state conditions (~70%), and it demonstrated to be flexible and adaptable to different operational conditions. The reactor operated efficiently over a period of 35 days. Good settleability of the fungal pellets facilitated the separation of the selenium from the treated effluent. The use of elemental selenium immobilized fungal pellets as novel biosorbent material was also explored. This hybrid sorbent was promising for the removal of zinc from semi-acidic effluents. The presence of selenium in the fungal biomass enhanced the sorption efficiency of zinc, compared to Se-free fungal pellets. Most of the research conducted in this study was focused on the use of fungal pellets. However, the response of the fungus to selenite in a different kind of growth was also evaluated. Microsensors and confocal imaging were used to evaluate the effects of selenium on fungal biofilms. Regardless of the kind of fungal growth, P. chrysosporium seems to follow a similar selenite reduction mechanism, leading to the formation of Se0. Architecture of the biofilm and oxygen activity were influenced by the presence of selenium
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jain, Rohan. "Biogenic nanoparticles of elemental selenium : synthesis, characterization and relevance in wastewater treatment." Thesis, Paris Est, 2014. http://www.theses.fr/2014PEST1178/document.

Повний текст джерела
Анотація:
Les nanoparticules exposent beaucoup de propriétés uniques en comparaison de la possession de matériels (matières) en gros (vrac) à leur haute surface au ratio de volume. Des nanoparticules de sélénium élémentaires exposent aussi les nouvelles propriétés qui sont exploitées dans la formation de cellules solaires, des redresseurs de semi-conducteur et le déplacement (déménagement) de mercure et le cuivre. Cependant, la synthèse chimique de nanoparticules de sélénium élémentaires est coûteuse, exige des équipements spécialisés et utilise des produits chimiques toxiques. D'autre part, la production biologique de nanoparticules de sélénium élémentaires (BioSeNPs) peut être un remplacement(remplaçant) vert pour les chimiquement produits. BioSeNPs sont produit par la réduction microbienne de sélénite et selenate. La source du sélénium oxyanions peut être le wastewaters, où la réduction microbienne est employée comme une technologie de remédiation pour le déplacement (déménagement) de sélénium (...)
Nanoparticles exhibit many unique properties as compared to the bulk materials owning to their high surface to volume ratio. Elemental selenium nanoparticles also exhibit novel properties that are exploited in formation of solar cells, semiconductor rectifiers and removal of mercury and copper. However, the chemical synthesis of elemental selenium nanoparticles is costly, requires specialized equipments and uses toxic chemicals. On the other hand, biological production of elemental selenium nanoparticles (BioSeNPs) can be a green replacement for the chemically produced ones.BioSeNPs are produced by microbial reduction of selenite and selenate. The source of the selenium oxyanions can be the wastewaters, where microbial reduction is employed as a remediation technology for the removal of selenium. The formed BioSeNPs are colloidal poly-disperse particles with negative surface charge and are present in the effluent of the microbial reactor. However, the properties of these BioSeNPs are not very well understood. This knowledge would help us to produce better quality selenium nanomaterials, exploit produced BioSeNPs in the wastewater treatment and control the fate of these BioSeNPs in the microbial reactors. The characterization of BioSeNPs revealed the presence of the extracellular polymeric substances (EPS) on the surface of BioSeNPs. The EPS was identified to control the surface charge and to some extent the shape of the BioSeNPs. It was also found that the microbial reduction at 55 and 65 °C can lead to the formation of selenium nanowires as compared to nanospheres when the reduction takes place at 30 °C. These selenium nanowires are present in trigonal crystalline structure and are colloidal suspension, unlike the chemically formed trigonal selenium nanorods. This colloidal nature is due to negative ζ-potential values owning to the presence of EPS on the surface of biogenic selenium nanowires. Since proteins are a major component present in the EPS, the presence of various proteins on the surface of BioSeNPs was determined. The interaction of the various amino acids with the BioSeNPs was also evaluated.The interaction of heavy metals and BioSeNPs was studied with a view of developing a technology where BioSeNPs present in the effluent of an upflow anaerobic sludge blanket (UASB) reactor are mixed with heavy metals containing wastewater leading to removal of both BioSeNPs and heavy metals. It was found that Cu, Cd and Zn can be effectively adsorbed onto BioSeNPs. Cu was 4.7 times preferentially adsorbed onto BioSeNPs. The interaction of BioSeNPs with the heavy metals led to less negative ζ-potential of BioSeNPs loaded with heavy metals and thus better settling of BioSeNPs was achieved. The presence of BioSeNPs in the effluent of the microbial reactor treating selenium oxyanions containing wastewaters is undesirable due to higher total selenium concentrations. Thus, the attempts to capture of these BioSeNPs in the biomass/bioreactors were made. The activated sludge reactor system was investigated to aerobically reduce selenite to BioSeNPs and trap them in the activated sludge flocs. Around 80% of the fed selenium was trapped in the biomass. Sequential extraction revealed that the trapped selenium is BioSeNPs. The trapping of BioSeNPs in the sludge improved the settleability and hydrophilicity of the activated sludge flocs. When the UASB reactor were operated under mesophilic and thermophilic conditions, the total selenium concentration in the effluent under thermophilic conditions were lower than that of observed in mesophilic conditions suggesting better trapping of BioSeNPs.Keywords: Selenium, bioreduction, BioSeNPs, EPS, ζ-potential, heavy metals, activated sludge, UASB reactors, thermophilic
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Greta, Baggio. "Investigation on Bacterial Selenite Reduction to Elemental Selenium by Bacillus mycoides SeITE01 and Stenotrophomonas maltophilia SeITE02 through Spectroscopic and Metabolomics Analyses, with Characterization of Biogenic Selenium Nanoparticles (Bio-SeNPs)." Doctoral thesis, 2020. http://hdl.handle.net/11562/1015752.

Повний текст джерела
Анотація:
Bacillus mycoides SeITE01 and Stenotrophomonas maltophilia SeITE02 are environmental bacterial isolates that rely on detoxification processes to transform selenite (SeO32-), a highly toxic and bioavailable chemical species of selenium, into insoluble and virtually nontoxic elemental selenium (Se0) with the formation of biogenic selenium nanoparticles (Bio-SeNPs). In the last decade, Bio-SeNPs have attracted attention for their interesting applications in the nanotechnology, industrial and medical fields not only due to their special physico-chemical features, but also for their attractive antimicrobial activities and anticancer properties. These worthwhile biotechnological traits are related to the presence on Bio-SeNPs of an external organic coating, whose composition and role are mostly unknown and currently under investigation. In the first part of this thesis, FTIR (Fourier Transform Infrared) spectroscopy was applied to study the SeO32- bio-reduction process analysing the bio-molecular composition of both SeITE01 and SeITE02 cells. The analysis was conducted during the diverse cellular growth phases and in different conditions, namely untreated (growth without the presence in the medium of sodium selenite Na2SeO3) and Se-treated (exposure to the stress factor SeO32-). Moreover, along with FTIR spectroscopic analyses, the biogenic intracellular and extracellular SeNPs bio-produced by the bacterial strains and collected with two extraction methods (vacuum filtration and pelleting processing) were examined also using DLS (Dynamic Light Scattering) measurements and TEM (Transmission Electron Microscopy) imaging. In the second part of this research, metabolomics was used to investigate the biological reduction and effect of Na2SeO3 on SeITE01 and SeITE02 cells by a LC-MS (Liquid Chromatography Mass-Spectrometry) approach. Both intracellular and extracellular metabolites and their concentration fluxes during a defined time course and in response to the exposure of bacterial cells to SeO32- were studied. From the results obtained with all the investigation techniques it was possible to observe and underline two distinct behaviors and trends assumed by the bacterial strains. SeITE01 cells showed substantial changes when exposed to SeO32-, activating a series of macromolecular responses and biochemical pathways to defend the cells against the toxic action of both the oxyanion and the Se nanostructures. Moreover, different FTIR spectral trends were acquired with regard to the organic coatings present on the surfaces of the biogenic SeNPs synthesized by this bacterium, and the most marked differences were recorded according to their different localization (intracellular or extracellular). The Bio-SeNPs production in this Gram-positive microorganism was also described by the data collected with the DLS and the zeta-potential measurements. The analyzed Bio-SeNPs showed an average dimension between 637 and 393 nm for the intracellular Bio-SeNPs, and 147 nm for the extracellular ones. Low value of negative potentials suggest a lower stability of these nanostructures in solution. On the contrary, the Gram-negative bacterium SeITE02 did not present drastic changes in the macromolecular composition after SeO32- exposure, and the variations recorded were mainly due to the maintenance of vital cellular functions. DLS data revealed an average size of 315 nm for the intracellular Bio-SeNPs and 160 nm for the extracellular ones, whilst negative potential values at or below -30 mV were recorded, indicating a remarkable stability of these biogenic Se nanostructures and a lower tendency to form aggregates and thus to precipitate. Thus, the results obtained in the course of this investigation revealed two distinct attitudes and responses on the part of the two microorganisms SeITE01 and SeITE02 to the SeO32- exposure and Bio-SeNPs production.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Selenite bioreduction"

1

Espinosa-Ortiz, Erika Jimena. Bioreduction of Selenite and Tellurite by Phanerochaete Chrysosporium. Taylor & Francis Group, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bioreduction of Selenite and Tellurite by Phanerochaete Chrysosporium. Taylor & Francis Group, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Espinosa-Ortiz, Erika Jimena. Bioreduction of Selenite and Tellurite by Phanerochaete Chrysosporium. Taylor & Francis Group, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Espinosa-Ortiz, Erika Jimena. Bioreduction of Selenite and Tellurite by Phanerochaete Chrysosporium. Taylor & Francis Group, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Espinosa-Ortiz, Erika Jimena. Bioreduction of Selenite and Tellurite by Phanerochaete Chrysosporium. Taylor & Francis Group, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Espinosa-Ortiz, Erika Jimena. Bioreduction of Selenite and Tellurite by Phanerochaete Chrysosporium. Taylor & Francis Group, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Selenite bioreduction"

1

Espinosa-Ortiz, Erika Jimena. "Sorption of zinc onto elemental selenium nanoparticles immobilized in Phanerochaete chrysosporium pellets." In Bioreduction of selenite and tellurite by Phanerochaete chrysosporium, 86–103. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781315138381-11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Espinosa-Ortiz, Erika Jimena. "Mycotechnology for the treatment of Se and Te contaminated effluents and biomineralization of Se0 and Te 0 nanoparticles." In Bioreduction of selenite and tellurite by Phanerochaete chrysosporium, 140–52. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781315138381-14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Espinosa-Ortiz, Erika Jimena. "Biomineralization of tellurium and selenium-tellurium nanoparticles by the white-rot fungus Phanerochaete chrysosporium." In Bioreduction of selenite and tellurite by Phanerochaete chrysosporium, 123–39. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781315138381-13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Espinosa-Ortiz, Erika Jimena. "General Introduction." In Bioreduction of selenite and tellurite by Phanerochaete chrysosporium, 1–6. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781315138381-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Espinosa-Ortiz, Erika Jimena. "Effect of selenite on the morpholoy and respiratory activity of Phanerochaete chrysosporium biofilms." In Bioreduction of selenite and tellurite by Phanerochaete chrysosporium, 104–22. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781315138381-12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Espinosa-Ortiz, Erika Jimena. "Literature Review." In Bioreduction of selenite and tellurite by Phanerochaete chrysosporium, 7–44. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781315138381-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Espinosa-Ortiz, Erika Jimena. "Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium." In Bioreduction of selenite and tellurite by Phanerochaete chrysosporium, 45–65. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781315138381-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Espinosa-Ortiz, Erika Jimena. "Removal of selenite from wastewater in a Phanerochaete chrysosporium pellet based fungal bioreactor." In Bioreduction of selenite and tellurite by Phanerochaete chrysosporium, 66–85. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781315138381-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mal, Joyabrata. "Effect of Heavy Metal Co-Contaminants on Selenite Bioreduction by Anaerobic Granular Sludge." In Microbial Synthesis of Chalcogenide Nanoparticles, 85–105. CRC Press, 2018. http://dx.doi.org/10.1201/9780429470943-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wadgaonkar, Shrutika Laxmikant. "Formation of Se(0), Te(0) and Se(0)-Te(0) nanostructures during simultaneous bioreduction of selenite and tellurite in upflow anaerobic sludge blanket reactor." In Novel bioremediation processes for treatment of seleniferous soils and sediment, 171–96. CRC Press, 2018. http://dx.doi.org/10.1201/9780429427428-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії