Добірка наукової літератури з теми "Selective solar surfaces"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Selective solar surfaces".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Selective solar surfaces"
Konttinen, P., P. D. Lund, and R. J. Kilpi. "Mechanically manufactured selective solar absorber surfaces." Solar Energy Materials and Solar Cells 79, no. 3 (September 2003): 273–83. http://dx.doi.org/10.1016/s0927-0248(02)00411-7.
Повний текст джерелаMonteiro, F. J., and F. Oliveira. "Ageing of black solar selective surfaces." Solar Energy Materials 21, no. 4 (January 1991): 297–315. http://dx.doi.org/10.1016/0165-1633(91)90028-j.
Повний текст джерелаDavoine, F., P. A. Galione, J. R. Ramos-Barrado, D. Leinen, F. Martín, E. A. Dalchiele, and R. E. Marotti. "Modeling of gradient index solar selective surfaces for solar thermal applications." Solar Energy 91 (May 2013): 316–26. http://dx.doi.org/10.1016/j.solener.2012.09.019.
Повний текст джерелаYin Zhi-qiang. "SPUTTERED ALUMINIUM-CARBON-OXYGEN SOLAR SELECTIVE ABSORBING SURFACES." Acta Physica Sinica 35, no. 10 (1986): 1369. http://dx.doi.org/10.7498/aps.35.1369.
Повний текст джерелаYin, Y., D. R. McKenzie, and W. D. McFall. "Cathodic arc deposition of solar thermal selective surfaces." Solar Energy Materials and Solar Cells 44, no. 1 (October 1996): 69–78. http://dx.doi.org/10.1016/0927-0248(96)00026-8.
Повний текст джерелаKunç, S. "Rough metallic selective surfaces for solar energy applications." Solar & Wind Technology 3, no. 2 (January 1986): 147–51. http://dx.doi.org/10.1016/0741-983x(86)90027-5.
Повний текст джерелаKhodasevych, Iryna E., Liping Wang, Arnan Mitchell, and Gary Rosengarten. "Micro- and Nanostructured Surfaces for Selective Solar Absorption." Advanced Optical Materials 3, no. 7 (May 5, 2015): 852–81. http://dx.doi.org/10.1002/adom.201500063.
Повний текст джерелаMwamburi, Mghendi, and Ewa Wäckelgård. "Doped tin oxide coated aluminium solar selective reflector surfaces." Solar Energy 68, no. 4 (2000): 371–78. http://dx.doi.org/10.1016/s0038-092x(00)00030-x.
Повний текст джерелаSerra, M., and D. Sainz. "Development of CuO selective surfaces for solar energy utilization." Solar Energy Materials 13, no. 6 (July 1986): 463–68. http://dx.doi.org/10.1016/0165-1633(86)90079-1.
Повний текст джерелаCen, Hanyu, Sara Nunez-Sanchez, Andrei Sarua, Ian Bickerton, Neil A. Fox, and Martin J. Cryan. "Solar thermal characterization of micropatterned high temperature selective surfaces." Journal of Photonics for Energy 10, no. 02 (May 18, 2020): 1. http://dx.doi.org/10.1117/1.jpe.10.024503.
Повний текст джерелаДисертації з теми "Selective solar surfaces"
Zäll, Erik. "Electroplating of selective surfaces for concentrating solar collectors." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-136425.
Повний текст джерелаRubin, Julia G. (Julia Grace). "Selective solar absorber materials : nanostructured surfaces via scalable synthesis." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111347.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (page 32).
Current solar to thermal energy conversion technologies, including concentrated solar power (CSP) and solar water heaters (SWH) utilize absorber surfaces that collect incident solar radiation. However, these absorber surfaces emit thermal energy (at their temperature) in the infrared (IR) spectrum, resulting in decreased overall efficiency for solar-to-thermal conversion. Selective absorber surfaces are highly absorptive in the solar spectrum, yet highly reflective in the infrared spectrum and therefore have the potential to minimize thermal energy loss. Copper Oxide (CuO) nanostructures are a candidate selective absorber material due to high absorptivity in the solar spectrum (about 95%), relatively high reflectance in the IR spectrum, scalability, and ease of fabrication. The aim of this study was to analyze optical properties and thermal stability of CuO surfaces in order to assess its feasibility as a selective absorber material. CuO nanostructures were synthesized on copper via chemical wet processing. Samples were thermally cycled to simulate day/night cycles in a typical SWH application. A cycle consisted of 12 hours of heating at 200°C and 12 hours of cooling to ambient temperature. Samples were cycled 1, 2, 3, 8, and 10 times. Surface optical properties were characterized using Ultraviolet-Visible Spectroscopy (UV-Vis) and Fourier Transform Infrared Spectroscopy (FTIR) and compared to optical properties of Pyromark®, the industry standard. Reflectance in the IR spectrum of CuO samples was found to increase after initial heating, whereas the absorptivity decreased. This tradeoff in optical performance resulted in an overall efficiency that remained relatively stable between 0 and 10 cycles (69.5±1.6%, 70.2±1.6%, respectively). CuO samples were found to be roughly 10% more efficient (optical conversion) than Pyromark® (npyromark,3x = 59.5±0.7%), indicating that CuO samples have the potential to be an efficient selective absorber material.
by Julia G. Rubin.
S.B.
McEnaney, Kenneth. "Modeling of solar thermal selective surfaces and thermoelectric generators." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/65308.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 101-107).
A thermoelectric generator is a solid-state device that converts a heat flux into electrical power via the Seebeck effect. When a thermoelectric generator is inserted between a solar-absorbing surface and a heat sink, a solar thermoelectric generator is created which converts sunlight into electrical power. This thesis describes the design and optimization of solar thermoelectric generators, with a focus on systems with high optical concentration which utilize multiple material systems to maximize efficiency over a large temperature difference. Both single-stage and cascaded (multi-stage) generators are considered, over an optical concentration range of 0.1 to 1000X. It is shown that for high-concentration Bi₂Te₃/skutterudite solar thermoelectric generators, conversion efficiencies of 13% are possible with current thermoelectric materials and selective surfaces. Better selective surfaces are needed to improve the efficiency of solar thermoelectric generators. In this thesis, ideal selective surfaces for solar thermoelectric generators are characterized. Non-ideal selective surfaces are also characterized, with emphasis on how the non-idealities affect the solar thernoelectric gencrator performance. Finally. the efficiency limit for solar thermoclectric generators with non-directional absorbers is presented.
by Kenneth McEnaney.
S.M.
Morfeldt, Johannes. "Optically Selective Surfaces in low concentrating PV/T systems." Thesis, Örebro University, School of Science and Technology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-7396.
Повний текст джерелаOne of the traditional approaches to reduce costs of solar energy is to use inexpensive reflectors to focus the light onto highly efficient solar cells. Several research projects have resulted in designs, where the excess heat is used as solar thermal energy.
Unlike a solar thermal system, which has a selective surface to reduce the radiant heat loss, a CPV/T (Concentrating PhotoVoltaic/Thermal) system uses a receiver covered with solar cells with high thermal emittance.
This project analyzes whether the heat loss from the receiver can be reduced by covering parts of the receiver surface, not already covered with solar cells, with an optically selective coating. Comparing different methods of applying such a coating and the long-term stability of low cost alternatives are also part of the objectives of this project.
To calculate the heat loss reductions of the optically selective surface coating a mathematical model was developed, which takes the thermal emittances and the solar absorptances of the different surfaces into account. Furthermore, a full-size experiment was constructed to verify the theoretical predictions.
The coating results in a heat loss reduction of approximately 20 % in such a CPV/T system and one of the companies involved in the study is already changing their design to make use of the results.
Jain, Rahul. "Investigations on Multiscale Fractal-textured Superhydrophobic and Solar Selective Coatings." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78725.
Повний текст джерелаMaster of Science
Gallo, Nelson José Heraldo. "Preparação e caracterização de revestimentos seletivos para conversão fototérmica de energia solar." Universidade de São Paulo, 1985. http://www.teses.usp.br/teses/disponiveis/54/54132/tde-21112007-095300/.
Повний текст джерелаDidier, Florian. "Dépôt électrophorétique de nanotubes de carbone pour la conception de matériaux solaires sélectifs." Electronic Thesis or Diss., Montpellier, Ecole nationale supérieure de chimie, 2022. http://www.theses.fr/2022ENCM0023.
Повний текст джерелаThe main objective is to realize some photo-solar absorbers by electrophoretic deposition of nanoparticles, having some tuneable optical properties. This study takes place in the field of the development of a macroscopic object through a 'bottom-up' approach. The understanding of the mechanism of the deposition is crucial to design these new materials. The nanostructure of the coatings with density gradient will be elaborated by pulsed and variable electric field, and characterized by scanning microscopy and energy dispersive X-ray and alongside a modelling of the electrophoretic phenomenons (such as the electric field drop) will be investigated. The conversion efficiency of the tandem material, which has to display a high absoptance in the solar spectrum domain (0.5-2.5 µm) whereas a low emittance in the far infra-red (2.5-20 µm), will be calculated from the reflectance spectra of the UV-vis-NIR and the Fourier transform InfraRed spectroscopy in order to link the electrophoretic parameters to the spectral selectivity
Nordenström, Andreas. "Investigating an electroplating method of Co-Cr alloys : A design of experiment approach to determine the impact of key factors on the electroplating process." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-148512.
Повний текст джерелаZhao, Shuxi. "Spectrally Selective Solar Absorbing Coatings Prepared by dc Magnetron Sputtering." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7530.
Повний текст джерелаRodrigues, Felipe Pereira. "Manufacturing process and study of a selective surface for flat plate solar collectors by using granite residue." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12587.
Повний текст джерелаThe using of alternatives materials to replace selective surfaces is a natural trend, because it usually looks for improvements on efficiency of surfaces at the same time that it tries to reduce costs. Composites are already used on obtainment of some selective surfaces, however, if the possibility to use residue that would be discarded was associated to these characteristics, providing an added-value, it would brings some benefits like a possible reduction of manufacturing costs. Thus, this thesis proposes the obtainment and study of selective surfaces for flat plate solar collectors for low cost by using residue from granite industry. Three different surfaces was studied, two of them of obtained on the laboratory, one is granite powder made and the other is a surface composed by a mixture of granite powder and CRFO (Cr0,75Fe1,25O3); the third surface is a commercial one, known as TiNOX. To perform the tests of the surfaces it was built an experimental stand, it allows simulating a solar collector conditions. The tests was performed in a stagnation condition, in other words, there wasnât any water flow inside tubes. Through this experimental apparatus it was possible to test the three surfaces simultaneously. The field tests showed that the highest temperatures were reached by granite powder surface, which reached an average temperature of 119 ÂC, while the granite powder and CRFO mixture surface reached an average of 96 ÂC. The TiNOX achieve an average temperature of 101 ÂC. The three surfaces was compared each other through an equation that gives a global heat loss coefficient. The granite powder surface was the one which achieved the lowest global heat loss coefficient.
O uso de materiais alternativos com objetivo de substituir superfÃcies seletivas à uma tendÃncia natural, pois geralmente se busca melhorias na eficiÃncia das superfÃcies ao mesmo tempo em que se tenta diminuir os custos. SubstÃncias compÃsitas jà sÃo utilizadas na obtenÃÃo de algumas superfÃcies seletivas, no entanto, se for associado a estas caracterÃsticas a possibilidade de utilizar resÃduos que iriam ser descartados, conferindo aos mesmos um valor agregado, isso traria alguns benefÃcios, como uma possÃvel reduÃÃo de custos de fabricaÃÃo. Desta forma, o presente trabalho propÃe a obtenÃÃo e o estudo de superfÃcies seletivas para aplicaÃÃes em coletores solares de placa plana de baixo custo originÃrio do resÃduo da indÃstria de granito. Foram estudadas trÃs diferentes superfÃcies, duas delas foram obtidas no laboratÃrio, a superfÃcie a base de pà de granito e a superfÃcie composta pela mistura de pà de granito e CRFO (Cr0,75Fe1,25O3); e a terceira superfÃcie foi uma superfÃcie comercial, conhecida como TiNOX. Para a realizaÃÃo dos testes foi construÃda uma bancada experimental de madeira, de forma que fosse possÃvel simular as condiÃÃes de um coletor solar de placa plana. Os testes foram feitos em condiÃÃo de estagnaÃÃo, ou seja, nÃo havia fluxo de Ãgua atravÃs de tubos no coletor. AtravÃs desse aparato experimental foi possÃvel testar as trÃs superfÃcies seletivas simultaneamente. Os testes de campo mostraram que a superfÃcie composta por pà de granito foi a que atingiu as maiores temperaturas, com uma mÃdia de atà 119 ÂC, enquanto a superfÃcie obtida com uma mistura de pà de granito e CRFO chegou a temperatura mÃdia de 96 ÂC, jà a superfÃcie comercial atingiu uma mÃdia de 101 ÂC. As superfÃcies foram comparadas atravÃs de uma equaÃÃo que fornece o coeficiente global de perda de energia tÃrmica. Os menores coeficientes foram obtidos pela superfÃcie de pà de granito
Книги з теми "Selective solar surfaces"
Wright, Paul J. Black cobalt absorber surfaces for the selective conversion of solar radiation. Oxford: Oxford Polytechnic, 1987.
Знайти повний текст джерелаDolley, Philip Ralph. Accelerated ageing and durability assessment of spectrally selective solar absorber surfaces. Oxford: Oxford Polytechnic, 1989.
Знайти повний текст джерелаBannard, J. Development of a selective solar absorber by control of surface microtopography. Luxembourg: Commission of the European Communities, 1985.
Знайти повний текст джерелаGesheva, K. A. Thin Film Optical Coatings for Effective Solar Energy Utilization: Apcvd Spectrally Selective Surfaces and Energy Control Coatings. Nova Science Pub Inc, 2007.
Знайти повний текст джерелаNorouzi, Mohammad Hassan, and Freiburg/Brsg Fraunhofer ISE. Plasma-Based Multifunctional Surface Modification and Laser Doping Technologies for Bifacial PERL/PERC C-Si Solar Cells with Selective Emitter. Fraunhofer IRB Verlag, 2021.
Знайти повний текст джерелаЧастини книг з теми "Selective solar surfaces"
Buhrman, R. A. "Physics of Solar Selective Surfaces." In Advances in Solar Energy, 207–82. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2227-6_4.
Повний текст джерелаGranqvist, C. G. "Spectrally Selective Surfaces for Heating and Cooling Applications." In Physics and Technology of Solar Energy, 191–276. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3941-7_10.
Повний текст джерелаSoum-Glaude, Audrey, Laurie Di Giacomo, Sébastien Quoizola, Thomas Laurent, and Gilles Flamant. "Selective Surfaces for Solar Thermal Energy Conversion in CSP: From Multilayers to Nanocomposites." In Nanotechnology for Energy Sustainability, 231–48. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527696109.ch10.
Повний текст джерелаKatumba, G., A. Forbes, B. Mwakikunga, E. WäckelgÅrd, J. Lu, L. Olumekor, and G. Makiwa. "The Investigation of Carbon Nanoparticles Embedded in Zno and Nio as Selective Solar Absorber Surfaces." In Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 551–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75997-3_100.
Повний текст джерелаMwanza, Mabvuto, and Koray Ulgen. "GIS-Based Assessment of Solar Energy Harvesting Sites and Electricity Generation Potential in Zambia." In African Handbook of Climate Change Adaptation, 1–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-42091-8_60-1.
Повний текст джерелаMwanza, Mabvuto, and Koray Ulgen. "GIS-Based Assessment of Solar Energy Harvesting Sites and Electricity Generation Potential in Zambia." In African Handbook of Climate Change Adaptation, 899–946. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_60.
Повний текст джерелаBlickensderfer, Robert. "Solar Absorbers—Selective Surfaces." In Electric Refractory Materials. CRC Press, 2000. http://dx.doi.org/10.1201/9780203908181.ch13.
Повний текст джерелаMason, J. J. "SELECTIVE SOLAR ABSORBER SURFACES - PRESENT AND FUTURE." In Solar Optical Materials, 77–82. Elsevier, 1988. http://dx.doi.org/10.1016/b978-0-08-036613-5.50014-6.
Повний текст джерелаMwamburi, Mghendi, and Ewa Wäckelgrd. "Solar selective reflector surfaces of SnOx." In World Renewable Energy Congress VI, 300–304. Elsevier, 2000. http://dx.doi.org/10.1016/b978-008043865-8/50057-x.
Повний текст джерелаClarke, D. "PRACTICAL EXPERIENCE OF USING SELECTIVE SURFACES ON MASS WALL COLLECTORS." In Solar Optical Materials, 83–90. Elsevier, 1988. http://dx.doi.org/10.1016/b978-0-08-036613-5.50015-8.
Повний текст джерелаТези доповідей конференцій з теми "Selective solar surfaces"
Zäll, Erik, Andreas Nordenström, Jonatan Mossegård, and Thomas Wågberg. "Electroplating of Selective Surfaces for Concentrating Solar Collectors." In ISES EuroSun 2018 Conference – 12th International Conference on Solar Energy for Buildings and Industry. Freiburg, Germany: International Solar Energy Society, 2018. http://dx.doi.org/10.18086/eurosun2018.10.09.
Повний текст джерелаKoltun, Mark M., G. Gukhman, and A. Gavrilina. "Stable selective coating 'black nickel' for solar collector surfaces." In Optical Materials Technology for Energy Efficiency and Solar Energy, edited by Anne Hugot-Le Goff, Claes-Goeran Granqvist, and Carl M. Lampert. SPIE, 1992. http://dx.doi.org/10.1117/12.130487.
Повний текст джерелаHall, A., K. V. Every, M. Knight, J. Mccloskey, D. Urrea, A. Ambrosini, T. Lambert, N. Siegel, A. Mahoney, and C. Ho. "Solar Selective Coatings for Concentrating Solar Power Central Receivers." In ITSC2011, edited by B. R. Marple, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima, and A. McDonald. DVS Media GmbH, 2011. http://dx.doi.org/10.31399/asm.cp.itsc2011p0347.
Повний текст джерелаKhullar, Vikrant, Himanshu Tyagi, Todd P. Otanicar, Yasitha L. Hewakuruppu, and Robert A. Taylor. "Solar Selective Volumetric Receivers for Harnessing Solar Thermal Energy." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66599.
Повний текст джерелаCao, Feng, Qian Zhang, and Zhifeng Ren. "Tuning solar absortance and reflection of high-temperatue solar spectrally selective surfaces." In Nano-Micro Conference 2017. London: Nature Research Society, 2017. http://dx.doi.org/10.11605/cp.nmc2017.01058.
Повний текст джерелаBrunotte, A., Michel P. Lazarov, and R. Sizmann. "Calorimetric measurements of the total hemispherical emittance of selective surfaces at high temperatures." In Optical Materials Technology for Energy Efficiency and Solar Energy, edited by Anne Hugot-Le Goff, Claes-Goeran Granqvist, and Carl M. Lampert. SPIE, 1992. http://dx.doi.org/10.1117/12.130497.
Повний текст джерелаRaman, Aaswath P., and Jyotirmoy Mandal. "Radiative Cooling: From Super-White Paints to Selective Thermal Emitters for Cooling Vertical Surfaces." In Optical Devices and Materials for Solar Energy and Solid-state Lighting. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/pvled.2022.pvw5f.2.
Повний текст джерелаZhiqiang, Yin, G. L. Harding, and S. P. Chow. "Sputtered Aluminium-Nitrogen Solar Absorbing Selective Surfaces For All-Glass Evacuated Collectors." In 1986 International Symposium/Innsbruck, edited by Claes-Goeran Granqvist, Carl M. Lampert, John J. Mason, and Volker Wittwer. SPIE, 1986. http://dx.doi.org/10.1117/12.938337.
Повний текст джерелаHasumi, Manabu, and Hiroo Yugami. "Development of solar selective absorbers and sky radiators based on two-dimensional diffractive grating surfaces." In Photonics Europe, edited by Andreas Gombert. SPIE, 2006. http://dx.doi.org/10.1117/12.662672.
Повний текст джерелаGupta, Mool C., and Raj Bhatt. "Micro/nanostructure-based selective absorber and emitter surfaces for high-efficiency solar thermophotovoltaic (STPV) applications." In Energy Harvesting and Storage: Materials, Devices, and Applications XI, edited by Achyut K. Dutta, Palani Balaya, and Sheng Xu. SPIE, 2021. http://dx.doi.org/10.1117/12.2589750.
Повний текст джерела