Добірка наукової літератури з теми "Secretory compartments"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Secretory compartments".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Secretory compartments"

1

Schmidt, W. K., and H. P. Moore. "Ionic milieu controls the compartment-specific activation of pro-opiomelanocortin processing in AtT-20 cells." Molecular Biology of the Cell 6, no. 10 (October 1995): 1271–85. http://dx.doi.org/10.1091/mbc.6.10.1271.

Повний текст джерела
Анотація:
Newly synthesized prohormones and their processing enzymes transit through the same compartments before being packaged into regulated secretory granules. Despite this coordinated intracellular transport, prohormone processing does not occur until late in the secretory pathway. In the mouse pituitary AtT-20 cell line, conversion of pro-opiomelanocortin (POMC) to mature adrenocorticotropic hormone involves the prohormone convertase PC1. The mechanism by which this proteolytic processing is restricted to late secretory compartments is unknown; PC1 activity could be regulated by compartment-specific activators/inhibitors, or through changes in the ionic milieu that influence its activity. By arresting transport in a semi-intact cell system, we have addressed whether metabolically labeled POMC trapped in early secretory compartments can be induced to undergo conversion if the ionic milieu in these compartments is experimentally manipulated. Prolonged incubation of labeled POMC trapped in the endoplasmic reticulum or Golgi/trans-Golgi network did not result in processing, thereby supporting the theory that processing is normally a post-Golgi/trans-Golgi network event. However, acidification of these compartments allowed effective processing of POMC to the intermediate and mature forms. The observed processing increased sharply at a pH below 6.0 and required millimolar calcium, regardless of the compartment in which labeled POMC resided. These conditions also resulted in the coordinate conversion of PC1 from the 84/87 kDa into the 74-kDa and 66-kDa forms. We propose that POMC processing is predominantly restricted to acidifying secretory granules, and that a change in pH within these granules is both necessary and sufficient to activate POMC processing.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Derré, Isabelle, and Ralph R. Isberg. "LidA, a Translocated Substrate of the Legionella pneumophila Type IV Secretion System, Interferes with the Early Secretory Pathway." Infection and Immunity 73, no. 7 (July 2005): 4370–80. http://dx.doi.org/10.1128/iai.73.7.4370-4380.2005.

Повний текст джерела
Анотація:
ABSTRACT Legionella pneumophila uses a type IV secretion system to deliver effector molecules into the host cell and establish its replication vacuole. In this study, we investigated the role of LidA, a translocated substrate associated with the surface of the L. pneumophila-containing vacuole. LidA is secreted into the host cell throughout the replication cycle of the bacteria and associates with compartments of the early secretory pathway. When overexpressed in mammalian cells or yeast, LidA interferes with the early secretory pathway, probably via a domain predicted to be rich in coiled-coil structure. Finally, during intracellular replication, the replication vacuoles are in close contact with the endoplasmic reticulum-Golgi intermediate compartment and the Golgi apparatus, suggesting a positive correlation between intracellular growth and association of the vacuole with compartments of the early secretory pathway. We propose that LidA is involved in the recruitment of early secretory vesicles to the L. pneumophila-containing vacuole and that the vacuole associates with the secretory pathway to facilitate this process.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tobin, V. A., and M. Ludwig. "The actin filament and dendritic peptide release." Biochemical Society Transactions 35, no. 5 (October 25, 2007): 1243–46. http://dx.doi.org/10.1042/bst0351243.

Повний текст джерела
Анотація:
F-actin remodelling has been implicated in regulated secretion from many cell types, in particular secretion from neuron axon terminals and neuroendocrine cell types. Cortical F-actin has long been postulated to act as a barrier to vesicle movement and hence to inhibit secretion; however, more recent studies point to F-actin remodelling providing both supporting and restraining roles in secretion. Magnocellular neurons of the supraoptic nucleus secrete either oxytocin or vasopressin from their dendrites as well as their axon terminals; and peptide release from these two compartments can be differentially controlled to allow secretion from one compartment in isolation from the other. While oxytocin and vasopressin secretion can be provoked by F-actin depolymerization in both compartments, acutely stimulated secretion is dependent on F-actin remodelling in dendrites but not axon terminals, suggesting that F-actin plays a different role in regulating the readily releasable pool of secretory vesicles in the two compartments. In addition, activity-dependent secretion from the dendritic compartment can be primed by prior exposure to agents, including oxytocin, that stimulate release of Ca2+ from intracellular stores. While remodelling of F-actin is involved, it is not solely responsible for priming secretory responses.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bianco, P., M. Riminucci, E. Bonucci, J. D. Termine, and P. G. Robey. "Bone sialoprotein (BSP) secretion and osteoblast differentiation: relationship to bromodeoxyuridine incorporation, alkaline phosphatase, and matrix deposition." Journal of Histochemistry & Cytochemistry 41, no. 2 (February 1993): 183–91. http://dx.doi.org/10.1177/41.2.8419458.

Повний текст джерела
Анотація:
We defined two distinct maturational compartments (proliferative and secretory) of osteogenic cells in vivo on the basis of ALP activity, BrdU incorporation, cell shape, and BSP production. BSP immunoreactivity was found to mark cells in the secretory but not in the proliferative compartment. We established the phenotypic similarity of primitive marrow stromal cells with proliferating perichondral cells (fibroblast-like, ALP+, BrdU+, BSP-). This suggests the potential functional equivalence of the two cell types as committed non-secretory osteogenic cells and points to the duality of osteogenic cell compartments as a generalized feature of bone formation. We further showed that although BSP secretion is a hallmark of the onset of osteogenesis, BSP antigenicity is lost both in osteoid and in a large proportion of mature osteoblasts during subsequent phases of bone deposition. This suggests that bone formation may not be a uniform event, as bone cells actually deposit antigenically, and likely biochemically, distinct matrices at specific times.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Naik, Haley B., Melissa Beshire, Breda M. Walsh, Jingjing Liu, and David I. Soybel. "Secretory state regulates Zn2+ transport in gastric parietal cell of the rabbit." American Journal of Physiology-Cell Physiology 297, no. 4 (October 2009): C979—C989. http://dx.doi.org/10.1152/ajpcell.00577.2008.

Повний текст джерела
Анотація:
Secretory compartments of neurons, endocrine cells, and exocrine glands are acidic and contain high levels of labile Zn2+. Previously, we reported evidence that acidity is regulated, in part, by the content of Zn2+ in the secretory [i.e., tubulovesicle (TV)] compartment of the acid-secreting gastric parietal cell. Here we report studies focusing on the mechanisms of Zn2+ transport by the TV compartment in the mammalian (rabbit) gastric parietal cell. Uptake of Zn2+ by isolated TV structures was monitored with a novel application of the fluorescent Zn2+ reporter N-(6-methoxy-8-quinolyl)- para-toluenesulfonamide (TSQ). Uptake was suppressed by removal of external ATP or blockade of H+-K+-ATPase that mediates luminal acid secretion. Uptake was diminished with dissipation of the proton gradient across the TV membrane, suggesting Zn2+/H+ antiport as the connection between Zn2+ uptake and acidity in the TV lumen. In isolated gastric glands loaded with the reporter fluozin-3, inhibition of H+-K+-ATPase arrested the flow of Zn2+ from the cytoplasm to the TV compartment and secretory stimulation with forskolin enhanced vectorial movement of cytoplasmic Zn2+ into the tubulovesicle/lumen (TV/L) compartment. Our findings suggest that Zn2+ accumulation in the TV/L compartment is physiologically coupled to secretion of acid. These findings offer novel insight into mechanisms regulating Zn2+ homeostasis in the gastric parietal cell and potentially other cells in which acidic subcellular compartments serve signature functional roles.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Plutner, H., A. D. Cox, S. Pind, R. Khosravi-Far, J. R. Bourne, R. Schwaninger, C. J. Der, and W. E. Balch. "Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments." Journal of Cell Biology 115, no. 1 (October 1, 1991): 31–43. http://dx.doi.org/10.1083/jcb.115.1.31.

Повний текст джерела
Анотація:
We report an essential role for the ras-related small GTP-binding protein rab1b in vesicular transport in mammalian cells. mAbs detect rab1b in both the ER and Golgi compartments. Using an assay which reconstitutes transport between the ER and the cis-Golgi compartment, we find that rab1b is required during an initial step in export of protein from the ER. In addition, it is also required for transport of protein between successive cis- and medial-Golgi compartments. We suggest that rab1b may provide a common link between upstream and downstream components of the vesicular fission and fusion machinery functioning in early compartments of the secretory pathway.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Raote, Ishier, and Vivek Malhotra. "Protein transport by vesicles and tunnels." Journal of Cell Biology 218, no. 3 (February 4, 2019): 737–39. http://dx.doi.org/10.1083/jcb.201811073.

Повний текст джерела
Анотація:
Palade’s corpus placed small vesicles as the sole means to transport proteins across stable distinct compartments of the secretory pathway. We suggest that cargo, spatial organization of secretory compartments, and the timing of fission of cargo-filled containers dictate the design of transport intermediates that can be vesicles and transient direct tunnels.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Diekwisch, Thomas G. H. "Subunit Compartments of Secretory Stage Enamel Matrix." Connective Tissue Research 38, no. 1-4 (January 1998): 101–11. http://dx.doi.org/10.3109/03008209809017026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Saraste, Jaakko. "Introduction: Enigmatic compartments of the secretory pathway." Seminars in Cell Biology 3, no. 5 (October 1992): 299. http://dx.doi.org/10.1016/1043-4682(92)90016-o.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Oyarce, A. M., and B. A. Eipper. "Identification of subcellular compartments containing peptidylglycine alpha-amidating monooxygenase in rat anterior pituitary." Journal of Cell Science 108, no. 1 (January 1, 1995): 287–97. http://dx.doi.org/10.1242/jcs.108.1.287.

Повний текст джерела
Анотація:
Both soluble and integral membrane forms of peptidylglycine alpha-amidating monooxygenase (PAM) are expressed in the rat anterior pituitary, making it an ideal model system for studying the routing of proteins into secretory granules. To identify the subcellular compartments involved in the routing of integral membrane PAM, we used subcellular fractionation, metabolic labeling and immunoblot analysis. Mature secretory granules were found to contain full-length integral membrane PAM along with a significant amount of soluble PAM generated by endoproteolytic cleavage. PAM proteins were not co-distributed with tyrosylprotein sulfotransferase activity during sucrose gradient centrifugation, indicating that the trans-Golgi/TGN is not a major PAM-containing compartment at steady state. Fractionation of the 4,000 g and 10,000 g pellets obtained by differential centrifugation identified a significant amount of integral membrane PAM in a light fraction lacking soluble secretory granule proteins. Metabolic labeling experiments with primary anterior pituitary cells demonstrated that integral membrane PAM enters a light compartment with similar properties only after exit from the trans-Golgi/TGN. Comparison of the metabolic labeling and immunoblot analyses suggests that PAM in this post-trans-Golgi/TGN compartment is in organelles involved in the intracellular recycling of integral membrane PAM. Small amounts of full-length integral membrane PAM were also recovered in fractions containing internalized transferrin and may be in an endosomal compartment following retrieval from the cell surface.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Secretory compartments"

1

Chehayeb, James. "Proteomic analysis of «Ascaris suum» fluid compartments and secretory products." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123155.

Повний текст джерела
Анотація:
Ascaris lumbricoides infects at least 10% of the world's population and is a public health issue in most low-to-middle income countries. Survival of this parasite in its host is mediated at least in part by materials exported to the host in secretions. Although very little is known about the composition of these secretions, defining their contents and functions could shed light on the host-parasite interactions that lead to parasite establishment and persistence in the host. Ascaris suum, a parasite of pigs, was used as a model organism because its genome has been sequenced and it is closely related to the human parasite, A. lumbricoides. Excretory/secretory products (ESP), uterine fluid (UF) and perienteric fluid (PE) were collected from adult A. suum. Proteins isolated from these compartments were subjected to LC-MS/MS and analyzed using bioinformatic tools. The ESP fraction included many proteins also present in UF. Proteins found in ESP but not in UF had a considerably different categorical composition than PE or UF, which are similar to each other. We conclude from these data that proteins exported through the secretory apparatus have distinct patterns of biological function and that UF proteins are likely derived from PE. In addition, ESP from A. suum was compared to ESP from Brugia malayi and ESP from Heligmosomoides polygyrus in terms of protein composition. We concluded that A. suum secretome is conserved through both phylogeny and predilection site.
Ascaris lumbricoides infecte au moins 10% de la population mondiale et est une problématique de santé publique dans les pays en voie de développement. La survie de ce parasite dans son hôte est médiée d'une part par des substances exportées à son hôte par voies de secrétions. Bien que peu d'informations soient connues sur la composition de ces substances, définir leur contenu ainsi que leurs fonctions pourraient aider à clarifier la relation entre le parasite et son hôte. Ascaris suum est un parasite du porc utilisé comme organisme-modèle en raison de son génome séquencé et de sa similarité morphologique avec le parasite de l'homme, A. lumbricoides. Les produits de secrétions/excrétions (PSE), le fluide perientérique (FPE) et le fluide utérin (FU) ont été obtenus des femelles adultes d'A. suum. Les protéines contenues dans ces fluides ont été isolées et soumises à LC-MS/MS et ont ensuite été soumises à des analyses bioinformatiques. Une fraction de PSE inclut plusieurs protéines qui se trouvent aussi dans FU. Les protéines trouvées dans les PSE, mais absentes du FU, avaient une composition catégorique différente comparée aux FPE et au FU, lesquels montraient une composition similaire. Nous concluons par ces résultats que les protéines exportées par l'appareil de sécrétion ont des motifs distincts en termes de fonctions biologiques et que les protéines du FU sont dérivées du FPE. De plus, le PSE d' A. suum a été comparé au PSE de Brugia malayi et au PSE de Heligmosomoides polygyrus. Nous avons conclu que le secretome d' A. suum est conservé à la fois par phylogénie et l'emplacement de l'infection dans l'hôte.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Al-Qatabi, Noha. "Caractérisation de protéines atypiques à domaine BAR codées par Toxoplasma gondii." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ6006.

Повний текст джерела
Анотація:
Toxoplasma gondii, l'agent pathogène causant la toxoplasmose, infecte et se réplique à l'intérieur de cellules hôtes grâce à sa capacité à sécréter des facteurs stockés dans des organites sécrétoires uniques (rhoptries, micronèmes, granules denses). Ces facteurs permettent au parasite de moduler le système immunitaire de l'hôte et d'en capturer certains éléments. La formation de ces organites uniques et les processus de sécrétion et de capture dépendent d'événements de trafic vésiculaire dont les bases moléculaires restent peu connues. Notamment, il n'existe pratiquement aucune caractérisation des protéines à domaine BAR, exprimées chez T. gondii et d'autres apicomplexes, malgré leur rôle connu dans le trafic vésiculaire chez d'autres eucaryotes. Ici, en combinant des analyses structurales avec des tests in vitro et des observations cellulaires, j'ai caractérisé TgREMIND (REgulators of Membrane INteracting Domains), protéine impliquée dans la génération des rhoptries et granules denses, ainsi que TgBAR2, localisée à la périphérie du parasite. J'ai établi que TgREMIND possède un domaine F-BAR pour cibler préférentiellement des membranes neutres et potentiellement les perturber. De plus, je montre que la protéine possède un nouveau type de domaine structural appelé REMIND, qui semble capable d'inhiber l'activité de TgREMIND. En parallèle, je montre que TgBAR2 contient un domaine BAR avec l'interface de liaison à la membrane la plus basique décrite pour ce type de domaine, capable de déformer puissamment des membranes anioniques pour former notamment des tubules micellaires. Ceci suggère que ce domaine représente un nouveau type de domaine BAR. Mes données suggèrent que T. gondii code pour des protéines atypiques à domaine BAR avec des propriétés de liaison membranaire très contrastées pour cibler des régions distinctes de son système de trafic vésiculaire
Toxoplasma gondii, the causative agent of toxoplasmosis, infects and replicates within host cells through its ability to secrete factors stored in unique secretory organelles (rhoptries, micronemes, dense granules). These factors allow the parasite to modulate the host's immune system and capture certain elements. The formation of these unique organelles and the secretion and capture processes depend on trafficking events whose molecular bases remain poorly understood. Notably, there is virtually no characterization of BAR domain proteins, expressed in T. gondii and other apicomplexans, despite their known role in vesicular trafficking in other eukaryotes. Here, by combining structural analyses with in vitro tests and cellular observations, I characterized TgREMIND (REgulators of Membrane INter-acting Do-mains), a protein involved in the generation of rhoptries and dense granules, as well as TgBAR2, located at the periphery of the parasite. I established that TgREMIND has an F-BAR domain to preferentially target neutral membranes and potentially disrupt them. Additionally, I show that the protein has a new type of structural domain called REMIND, which appears capable of inhibiting TgREMIND activity. In parallel, I show that TgBAR2 contains a BAR domain with the most basic membrane-binding interface described for this type of domain, capable of powerfully deforming anionic membranes to form micellar tubules. This suggests that this domain represents a new type of BAR domain. My data indicate that T. gondii encodes two atypical BAR domain proteins with highly contrasting membrane binding properties to target distinct regions of its vesicular trafficking system
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jonikas, Martin Casimir. "The anatomy of a cellular folding compartment: Genetic dissection of protein folding in the secretory pathway." Diss., Search in ProQuest Dissertations & Theses. UC Only, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3390051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Moutaux, Eve. "Régulation du transport axonal par l'activité neuronale : Implication pour le développement des réseaux neuronaux Neuronal activity recruits an axon-resident pool of secretory vesicles to regulate axon branching Reconstituting Corticostriatal Network on-a-Chip Reveals the Contribution of the Presynaptic Compartment to Huntington’s Disease Neuronal network maturation differently affects secretory vesicles and mitochondria transport in axons ALG-2 interacting protein-X (Alix) is required for activity-dependent bulk endocytosis at brain synapses An integrated microfluidic/microelectrode array for the study of activity-dependent intracellular dynamics in neuronal networks." Thesis, Université Grenoble Alpes, 2020. https://thares.univ-grenoble-alpes.fr/2020GRALV024.pdf.

Повний текст джерела
Анотація:
Pendant le développement, les projections axonales à longue distance se ramifient pour se connecter à leurs cibles. L’établissement et le remodelage de ces connexions est notamment régulé par l’activité neuronale. L’adaptation de la morphologie de l’axone nécessite alors des quantités importantes de matériel sécrétoire et de facteur trophiques comme le BDNF (brain derived neurotrophic factor). Ce matériel est transporté dans des vésicules le long de l’axone depuis le corps cellulaire où il est synthétisé, vers les sites actifs à l’extrémité de l’axone. Si le relargage de vésicules sécrétoires à la synapse est bien étudié, les mécanismes régulant le transport axonal par l’activité sont encore méconnus.Dans ce travail de thèse, nous avons dans un premier temps développé des outils permettant d’étudier les dynamiques intracellulaires dans des réseaux neuronaux. Nous avons ainsi développé une chambre microfluidique permettant de reconstruire in vitro des réseaux neuronaux physiologiques et compatibles avec de la vidéomicroscopie à haute résolution. Nous avons caractérisé l’établissement et la maturation du réseau et validé l’intérêt de ce dispositif microfluidique dans le contexte de la maladie de Huntington. Nous avons ensuite étudié l’évolution des dynamiques intracellulaires avec la maturation du réseau. Nous avons notamment observé une augmentation du transport axonal de vésicules sécrétoires en fonction de l'état de maturation du réseau neuronal. Ces premières observations ont renforcé l’hypothèse d’une régulation directe du transport axonal de vésicules sécrétoires par l’activité neuronale au cours du développement du réseau.Nous avons ainsi fait évoluer la plateforme microfluidique par l’ajout d’un réseau d’électrodes (MEA) qui permet d'étudier les dynamiques intracellulaires tout en contrôlant l’activité neuronale. A l’aide de ce système, nous avons identifié un groupe de vésicules sécrétoires ancré le long de l’axone et recruté en réponse à une haute activité neuronale en direction des sites présynaptiques actifs. Nous avons alors identifié les acteurs impliqués dans ce mécanisme dépendant de l’activité. Nous avons montré que la myosine Va permettait l’attachement des vésicules le long de l’axone dans des structures d’actine dynamique. L’activité neuronale induit une augmentation de calcium le long de l’axone, via l’activation des canaux calciques dépendant du voltage, qui régule la myosine Va et entraine le recrutement des vésicules stockées dans l’axone sur les microtubules. Une fois les acteurs identifiés, nous avons pu mettre en évidence le rôle de ce mécanisme dépendant de l’activité dans la formation de branches axonales pendant le développement. Enfin, nous avons confirmé l’existence de ce groupe de vésicules dépendant de l’activité et résidant dans l’axone in vivo grâce à la mise au point d'un système d’étude du transport axonal sur tranches aigües de cerveau en microscopie biphotonique.L’ensemble de ce travail propose de nouveaux outils in vitro et in vivo pour comprendre les régulations des dynamiques intracellulaires dans des réseaux neuronaux physiologiques. Grâce à ces outils, nous avons identifié un mécanisme de régulation local qui permet l'adressage rapide de facteurs trophiques vers les branches en développement en réponse à l’activité neuronale
During postnatal development, long-distance axonal projections form branches to connect with their targets. Establishment and remodeling of these projections are tightly regulated by neuronal activity and require a large amount of secretory material and trophic factors, such as brain derived neurotrophic factor (BDNF). Axonal transport is responsible for addressing trophic factors packed into vesicles to high demand sites where mechanisms of secretion are well-known. However, mechanisms controlling the preferential targeting of axonal vesicles to active sites in response to neuronal activity are unknown.In this work, we first developed tools to study intracellular dynamics in neuronal networks. We thus developed a microfluidic chamber to reconstruct physiologically-relevant networks in vitro which is compatible with high resolution videomicroscopy. We characterized the formation and maturation of reconstructed networks and we validated the relevance of the microfluidic platform in the context of Huntington’s disease. We then studied the evolution of intracellular dynamics with the maturation of reconstructed neuronal networks in microfluidic chambers. We observed an increase of anterograde axonal transport of secretory vesicles during maturation. These first results lead us to think that neuronal activity could regulate axonal transport of secretory vesicles over maturation of the network.Therefore, we improved the in vitro microfluidic system with a designed microelectrode array (MEA) substrate allowing us to record intracellular dynamics while controlling neuronal activity. Using this system, we identified an axon-resident reserve pool of secretory vesicles recruited upon neuronal activity to rapidly distribute secretory materials to presynaptic sites. We identified the activity-dependent mechanism of recruitment of this axonal pool of vesicles along the axon shaft. We showed that Myosin Va ensures the tethering of vesicles in the axon shaft in axonal actin structures. Specifically, neuronal activity induces a calcium increase after activation of Voltage Gated Calcium Channels along the axon, which regulates Myosin Va and triggers the recruitment of tethered vesicles on microtubules. We then showed the involvement of this activity-dependent pool for axon branches formation during axon development. By developing 2-photon live microscopy of axonal transport in acute slices, we finally confirmed that a pool of axon-resident static vesicles is recruited by neuronal activity in vivo with a similar kinetic.Altogether, this work provides new in vitro and in vivo tools to study intracellular dynamics in physiological networks. Using these tools, we identified the existence of a local mechanism of axonal transport regulation along the axon shaft, allowing rapid supply of trophic factors to developing branches
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Titus, Brian John. "p22 associates with compartments of the early secretory pathway and with the microtubule cytoskeleton : evidence for a role in membrane trafficking /." 2003. http://wwwlib.umi.com/dissertations/fullcit/3073575.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Waldron, Elaine [Verfasser]. "LRP1 modulates APP trafficking and APP metabolism within compartments of the secretory pathway : increased AICD generation is ineffective in nuclear translocation and transcriptional activation / Elaine Waldron." 2008. http://d-nb.info/987171437/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Secretory compartments"

1

Hendriks, Rob J. M., and Stephen D. Fuller. "Compartments of the Early Secretory Pathway." In Subcellular Biochemistry, 101–49. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2401-4_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gooris, Peter J. J., and Carl-Peter Cornelius. "Anatomy of the Orbit: Overall Aspects of the Peri- and Intra Orbital Soft Tissues." In Surgery in and around the Orbit, 59–119. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-40697-3_3.

Повний текст джерела
Анотація:
AbstractSoft tissue systems in and around the orbit are presented in detail. The complexity of the soft tissue structures and its topographical location provides optimal environment for the delicate globe and supportive elements.Anatomic aspects and the protective and physiological function of the eyelids are described. The secretory lacrimal system and the spread of aqueous fluid along the globe and final drainage will be discussed. Anatomical features of the globe and the accompanying extraocular musculature are highlighted. The involved musculature allows for a most efficient guarantee of function and protection. Participating fat compartments provide a cushion and play a gliding role. The control via the neuro-ophthalmologic pathways, motor-, sensory-, and autonomic innervation is the essential base for the function of the eye.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hamilton, R. L., R. J. Havel, C. A. Hornick, E. Jost-Vu, J. Belcher, E. Spaziani, and G. H. Enders. "Subcellular Dissection and Characterization of Plasma Lipoprotein Secretory (Golgi) and Endocytic (Multivesicular Bodies) Compartments of Rat Hepatocytes." In Receptor-Mediated Uptake in the Liver, 125–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70956-2_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ghanem, Esther, and Sebastian Springer. "Determining the Activity of the Transporter Associated with Antigen Processing in the Compartments of the Secretory Pathway." In Antigen Processing, 137–44. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-218-6_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Graham, T., and S. Emr. "SEC18." In Secretory Pathway, 132. Oxford University PressOxford, 1994. http://dx.doi.org/10.1093/oso/9780198599425.003.0082.

Повний текст джерела
Анотація:
Abstract sec18 mutant cells were originally described to exhibit a temperature-sensitive block in protein transport from the ER to the Golgi complex and to accumulate ER and small vesicles12. The phenotype of double sec mutants (e.g. sec18 sec23) suggests that Sec18p is not required to form transport vesicles from the ER, but is required for the targeting and/or fusion of these transport vesicles with an early Golgi compartment3. Further studies indicate that the sec18 mutant exhibits a temperature-sensitive block at most, if not all, intercompartmental transport steps along the secretory pathway4. Sec18p is required in vivo for protein transport between at least three Golgi compartments (containing an a-1,3-mannosyltransferase and the Kex2 endopeptidase) from the Golgi to the cell surface but not for protein transport from a late Golgi compartment to the yeast vacuole.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rothblatt, Jonathan, Peter Novick, and Tom H. Stevens. "Entering the secretory pathway." In Secretory Pathway, 1–2. Oxford University PressOxford, 1994. http://dx.doi.org/10.1093/oso/9780198599425.003.0001.

Повний текст джерела
Анотація:
Abstract In prokaryotic and eukaryotic cells, specialized processes such as secretion and signal transduction, as well as the enzymatic reactions of intermediary metabolism, are organized into membranes and membrane-enclosed compartments. The unique biochemical make-up of each compartment and the specificity and directionality of the secretory process can be maintained only if mechanisms exist for selective targeting of newly-made proteins to their correct subcellular location, for their active transport across impermeant membrane barriers and for their covalent and conformational modification.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mellman, I. "Rab4." In Secretory Pathway, 295. Oxford University PressOxford, 1994. http://dx.doi.org/10.1093/oso/9780198599425.003.0183.

Повний текст джерела
Анотація:
Abstract Rab4 was first localized to early endosomes by screening subcellular fractions prepared from CHO cells using the original panel of polyclonal anti-rab antibodies prepared by Bruno Goud3 Free-flow electrophoresis fractions were analyzed by immunoblotting, and only antibody to rab4 was found to yield a clear signal in the anodally-shifted fractions that co-migrated with transferrin receptor. This localization was confirmed by immunofluorescence performed on cells (Hela, CHO) stably or transiently transfected with wild type rab4a cDNAs. lmmunoelectron microscopy (immuno-EM) on frozen thin sections is also consistent with an early endosome/recycling vesicle localization4; very little rab4 is detectable on the plasma membrane. Since rab5 has also been localized by immunofluorescence, cell fractionation, and immune-EM to early endocytic compartments (see rab5 entry, p. 295), it has been presumed that rab4 and rab5 are themselves co-localized.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schwaninger, Ruth. "In vitro reconstitution of vesicular transport from the endoplasmic reticulum to the cis Golgi in semi-intact cells." In Protein Targeting, 217–31. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780199632060.003.0009.

Повний текст джерела
Анотація:
Abstract Proteins destined for the plasma membrane, lysosomes, and endosomes, or the extracellular fluid are transported between organelles of the exocytic or secretory pathway of eukaryotic cells by vesicles that bud from one compartment and fuse with another. A high degree of specificity for this sequential budding, targeting, and fusion of transport vesicles must be maintained, or the cell would rapidly destroy its highly compartmental organization. Progression of newly synthesized proteins along this pathway can be followed by observing the maturation of N-linked oligosaccharide chains of glycoproteins during their passage through the different organelles. This is possible as individual oligosaccharide-processing enzymes reside in particular subcellular compartments.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cramer, Louise P., and Daniel F. Cutler. "Sorting between exocytic pathways in PC12 cells." In Protein Targeting, 59–85. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780199632060.003.0003.

Повний текст джерела
Анотація:
Abstract Exocytic protein traffic in neuronal and endocrine cells is complicated by the presence of more than one route to the cell surface. In addition to the constitutive secretory pathway, regulated secretory routes are also present in these cells. Regulated secretion is characterized by the intracellular storage of secretory material which is only released from the cell following the application of an external stimulus. This is in contrast to constitutive secretion in which proteins are not stored inside the cell but are constantly released. The organelles acting as storage compartments in neuronal and endocrine cells are both striking and characteristic of the cell type. In endocrine cells, dense core granules (DCGs) store secretory proteins, peptides, and small molecules such as classical neurotransmitters. In neurons, synaptic vesicles store neurotransmitters but not proteins. The coexistence of both regulated and constitutive secretory pathways in one cell was demonstrated by Kelly and co-workers in a DCG-containing cell line (AtT20) derived from the anterior pituitary (1, 2). This demonstration implied that regulated secretory cells must be able to sort regulated secretory proteins and constitutive secretory proteins so that only regulated secretory proteins are targeted to DCGs during granule formation. Later the coexistence of both pathways was also demonstrated in other regulated secretory cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Benarroch, Eduardo E. "Vesicular Trafficking." In Neuroscience for Clinicians, edited by Eduardo E. Benarroch, 106–25. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780190948894.003.0007.

Повний текст джерела
Анотація:
Normal cell function depends on the appropriate synthesis, maturation, sorting, and delivery of fully processed proteins and other macromolecules to specific intracellular compartments; uptake of material from the cell exterior; and regulated intracellular processing and degradation of proteins, lipids, complex carbohydrates, abnormal aggregates, and senescent organelles. These fundamental functions involve secretory, endocytic, and autophagic pathways. The secretory pathway is responsible for protein maturation, sorting, and delivery of transmembrane and secreted proteins from their site of synthesis to their final destinations. Synaptic vesicle exocytosis is a special form of secretion that allows rapid communication between neurons. The endocytic pathway starts with the internalization of material via endosomes. Endosomal content can be transported back to the cell body, recycled to cell compartments, or delivered for degradation by the lysosome. Abnormal protein aggregates or damaged organelles undergo autophagy, which involves formation of an autophagosome and degradation by the lysosome. Impaired vesicular trafficking is a fundamental mechanism in a large number of neurodegenerative disorders, including hereditary spastic paraplegia, lower motor neuron syndromes, and Parkinson disease.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Secretory compartments"

1

Beznoussenko, Galina. "Re-examination of the secretory compartments in the study of transport organelles in mitotic cells with correlative light, immune and three-dimensional electron microscopy." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.960.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Liu, Yen-Cheng, Saeid Ansaryan, Xiaokang Li, Eduardo R. Arvelo, and Hatice Altug. "High-throughput optofluidic nanoplasmonic biosensor array for monitoring single-cell secretion in real-time." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.am2i.6.

Повний текст джерела
Анотація:
We report a high-throughput biosensing microarray platform integrating ultrasensitive nanoplasmonic substrate and microwell compartments for label-free and real-time secretome monitoring. Interleukin-2 from hundreds of single EL4 cells were measured and a statistical analysis was done.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Patscheke, H., and G. Mathieu. "MONITORING OF THE PLATELET ALPHA-GRANULE SECRETION IN THE AGGREGOMETER." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643492.

Повний текст джерела
Анотація:
If platelets are stimulated to secrete and the aggregation is prevented by EDTA and no stirring, the optical density (OD) decreases as a consequence of secretion (Patscheke et al. Thromb. Res. 33: 314, 1984). The purpose of this study was to determine which secretory compartment causes the change in OD and to analyze the quantitative relationship between decrease in OD and granule discharge. Human washed platelets were stimulated with thrombin and A 23187 in a Lumi-Aggregometer (Chrono-Log) which permitted simultaneous recording of the change in OD and of the ATP release from dense granules. At various time intervals, platelet factor 4 (PF-4), [3H)serotonin (5-HT), 8-N-ace-tylglucosaminidase (NAG) and lactate dehydrogenase (LDH) were determined in the supernatant as parameters of the release from the alpha granules, dense granules, lysosomes and the cytoplasm, respectively. In order to prevent the platelet shape change (increase in OD) from interfering with secretion (decrease in OD), the platelets were pretreated with 0.1 nM PAF 2 min prior to the secretagogue. PAF induced the shape change but no release of platelet constituents. The results show that the decrease in OD closely correlates with the release of PF-4. The fractional effects were identical in concentration-effect and time-effect studies. However, neither the decrease in OD nor the release of PF-4 were correlated with the release of ATP and 5-HT from the dense granules or the lysosomal release of NAG. The release of ATP and 5-HT required significantly higher agonist concentrations than the decrease in OD and the release of PF-4 and even higher concentrations were required for the release of NAG. LDH liberation did not exceed 1 % with 1 U/ml thrombin, indicating the absence of lysis. Thrombin 1 U/ml caused a maximum decrease in OD of 11 % and 40 % release of PF-4. In a patient with gray platelet syndrome, the decrease in OD was absent while the release of 5-HT was normal. These results show that the decrease in OD is due to alpha-granule secretion. The turbidimetric method offers a valuable tool for kinetic measurements of alpha-granule secretion. By using a Lumi-Aggregometer, secretion from alpha and dense granules can be monitored simultaneously. (Supported by the Deutsche Forschungsgemeinschaft, Grant Pa-263).
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії