Добірка наукової літератури з теми "Seawater electrolysis"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Seawater electrolysis".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Seawater electrolysis"

1

Zhang, Fan, Junjie Zhou, Xiaofeng Chen, Shengxiao Zhao, Yayun Zhao, Yulong Tang, Ziqi Tian, et al. "The Recent Progresses of Electrodes and Electrolysers for Seawater Electrolysis." Nanomaterials 14, no. 3 (January 23, 2024): 239. http://dx.doi.org/10.3390/nano14030239.

Повний текст джерела
Анотація:
The utilization of renewable energy for hydrogen production presents a promising pathway towards achieving carbon neutrality in energy consumption. Water electrolysis, utilizing pure water, has proven to be a robust technology for clean hydrogen production. Recently, seawater electrolysis has emerged as an attractive alternative due to the limitations of deep-sea regions imposed by the transmission capacity of long-distance undersea cables. However, seawater electrolysis faces several challenges, including the slow kinetics of the oxygen evolution reaction (OER), the competing chlorine evolution reaction (CER) processes, electrode degradation caused by chloride ions, and the formation of precipitates on the cathode. The electrode and catalyst materials are corroded by the Cl− under long-term operations. Numerous efforts have been made to address these issues arising from impurities in the seawater. This review focuses on recent progress in developing high-performance electrodes and electrolyser designs for efficient seawater electrolysis. Its aim is to provide a systematic and insightful introduction and discussion on seawater electrolysers and electrodes with the hope of promoting the utilization of offshore renewable energy sources through seawater electrolysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

González-Cobos, Jesús, Bárbara Rodríguez-García, Mabel Torréns, Òscar Alonso-Almirall, Martí Aliaguilla, David Galí, David Gutiérrez-Tauste, Magí Galindo-Anguera, Felipe A. Garcés-Pineda, and José Ramón Galán-Mascarós. "An Autonomous Device for Solar Hydrogen Production from Sea Water." Water 14, no. 3 (February 2, 2022): 453. http://dx.doi.org/10.3390/w14030453.

Повний текст джерела
Анотація:
Hydrogen production from water electrolysis is one of the most promising approaches for the production of green H2, a fundamental asset for the decarbonization of the energy cycle and industrial processes. Seawater is the most abundant water source on Earth, and it should be the feedstock for these new technologies. However, commercial electrolyzers still need ultrapure water. The debate over the advantages and disadvantages of direct sea water electrolysis when compared with the implementation of a distillation/purification process before the electrolysis stage is building in the relevant research. However, this debate will remain open for some time, essentially because there are no seawater electrolyser technologies with which to compare the modular approach. In this study, we attempted to build and validate an autonomous sea water electrolyzer able to produce high-purity green hydrogen (>90%) from seawater. We were able to solve most of the problems that natural seawater electrolyses imposes (high corrosion, impurities, etc.), with decisions based on simplicity and sustainability, and those issues that are yet to be overcome were rationally discussed in view of future electrolyzer designs. Even though the performance we achieved may still be far from industrial standards, our results demonstrate that direct seawater electrolysis with a solar-to-hydrogen efficiency of ≈7% can be achieved with common, low-cost materials and affordable fabrication methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Pengsong, Shiyuan Wang, Imran Ahmed Samo, Xingheng Zhang, Zhaolei Wang, Cheng Wang, Yang Li, et al. "Common-Ion Effect Triggered Highly Sustained Seawater Electrolysis with Additional NaCl Production." Research 2020 (September 24, 2020): 1–9. http://dx.doi.org/10.34133/2020/2872141.

Повний текст джерела
Анотація:
Developing efficient seawater-electrolysis system for mass production of hydrogen is highly desirable due to the abundance of seawater. However, continuous electrolysis with seawater feeding boosts the concentration of sodium chloride in the electrolyzer, leading to severe electrode corrosion and chlorine evolution. Herein, the common-ion effect was utilized into the electrolyzer to depress the solubility of NaCl. Specifically, utilization of 6 M NaOH halved the solubility of NaCl in the electrolyte, affording efficient, durable, and sustained seawater electrolysis in NaCl-saturated electrolytes with triple production of H2, O2, and crystalline NaCl. Ternary NiCoFe phosphide was employed as a bifunctional anode and cathode in simulative and Ca/Mg-free seawater-electrolysis systems, which could stably work under 500 mA/cm2 for over 100 h. We attribute the high stability to the increased Na+ concentration, which reduces the concentration of dissolved Cl- in the electrolyte according to the common-ion effect, resulting in crystallization of NaCl, eliminated anode corrosion, and chlorine oxidation during continuous supplementation of Ca/Mg-free seawater to the electrolysis system.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhao, Li, Xiao Li, Jiayuan Yu, and Weijia Zhou. "Design Strategy of Corrosion-Resistant Electrodes for Seawater Electrolysis." Materials 16, no. 7 (March 28, 2023): 2709. http://dx.doi.org/10.3390/ma16072709.

Повний текст джерела
Анотація:
Electrocatalytic water splitting for hydrogen (H2) production has attracted more and more attention in the context of energy shortages. The use of scarce pure water resources, such as electrolyte, not only increases the cost but also makes application difficult on a large scale. Compared to pure water electrolysis, seawater electrolysis is more competitive in terms of both resource acquisition and economic benefits; however, the complex ionic environment in seawater also brings great challenges to seawater electrolysis technology. Specifically, chloride oxidation-related corrosion and the deposition of insoluble solids on the surface of electrodes during seawater electrolysis make a significant difference to electrocatalytic performance. In response to this issue, design strategies have been proposed to improve the stability of electrodes. Herein, basic principles of seawater electrolysis are first discussed. Then, the design strategy for corrosion-resistant electrodes for seawater electrolysis is recommended. Finally, a development direction for seawater electrolysis in the industrialization process is proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vitale-Sullivan, Molly E., Quinn Quinn Carvalho, and Kelsey A. Stoerzinger. "Facet-Dependent Selectivity of Rutile IrO2 for Oxygen and Chlorine Evolution Reactions." ECS Meeting Abstracts MA2023-01, no. 50 (August 28, 2023): 2577. http://dx.doi.org/10.1149/ma2023-01502577mtgabs.

Повний текст джерела
Анотація:
Water electrolysis is a promising route for sustainable production of hydrogen as an energy storage medium and valuable precursor for industrial chemical syntheses such as ammonia and methanol. Direct electrolysis of seawater circumvents costly desalination and purification steps to reduce the price of renewable hydrogen to achieve cost parity with carbon-intensive steam reforming. However, the significant concentration of chloride salts in seawater poses a challenge to selectivity of seawater electrolysis. In aqueous chloride electrolytes, the chlorine evolution reaction (CER) is kinetically favored over the oxygen evolution reaction (OER). Rutile-type iridium dioxide (IrO2) is a state-of-the-art electrocatalyst for water electrolysis but is also a benchmark chlorine evolution electrocatalyst in the industrial chlor-alkali process. Understanding OER/CER selectivity is needed to make seawater electrolysis a viable energy conversion technology in the future. In this work, we seek to understand the relationship between crystallographic facet and competitive reaction pathway between OER and CER on epitaxial, rutile IrO2 thin films. We investigate facet-dependent OER and CER activity on a series of single-crystalline IrO2 thin films using a rotating disk electrode geometry. The OER/CER selectivity, reaction rate order, and reaction intermediate electroadsorption affinities are explored to add fundamental insight into the reactivity of rutile IrO2 surface. To gain further insight into OER intermediate adsorption affinities, we paired electrochemical measurements with surface-sensitive ambient pressure x-ray photoelectron spectroscopy (AP-XPS). Moving forward, our facet-dependent study of OER/CER selectivity of rutile IrO2 can be used to design selective seawater electrocatalysts for cost-effective and sustainable hydrogen production.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nie, Jing, Shou Zhi Yi, and Di Miao. "Study on Advanced Pretreatment of Seawater by Electrolysis." Advanced Materials Research 881-883 (January 2014): 598–603. http://dx.doi.org/10.4028/www.scientific.net/amr.881-883.598.

Повний текст джерела
Анотація:
The advanced pretreatment by electrolysis of Bohai seawater in Tianjin used a diaphragm electrolyzer in the experiment. Removal efficiency and influence factors of the method were analyzed. Results show that turbidity, organic compounds, SDI and chroma of seawater were effectively decreased by electrolysis. Removal efficiency was significantly increased by current density, operation time and inter-electrode distance, and the optimum electrolytic conditions was determined as inter-electrode distance of 2 cm, current density of 15.87 mA·cm-2, operation time of 10 minutes. It was investigated that when the water quality after electrolysis was of pH 8.6, the chroma and turbidity decreasing trend slowed down, with chroma of 0.052 A, removal rate reached 88.4%; the residual turbidity reduced to 2.52 NTU, removal rate reached 90.71%. A PH of about 8.5, CODCr decreasing trend slowed down, and when CODCr < 750 mg/L, it conformed to the requirements of the reverse osmosis water.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Park, Yoo Sei, Jooyoung Lee, Myeong Je Jang, Juchan Yang, Jaehoon Jeong, Jaeho Park, Yangdo Kim, Min Ho Seo, Zhongwei Chen, and Sung Mook Choi. "High-performance anion exchange membrane alkaline seawater electrolysis." Journal of Materials Chemistry A 9, no. 15 (2021): 9586–92. http://dx.doi.org/10.1039/d0ta12336f.

Повний текст джерела
Анотація:
Seawater electrolysis is a promising technology for the production of hydrogen energy and seawater desalination. To produce hydrogen energy through seawater electrolysis, highly active electrocatalysts for the oxygen evolution reaction are required.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jiang, Siqi, Hongli Suo, Teng Zhang, Caizhi Liao, Yunxiao Wang, Qinglan Zhao, and Weihong Lai. "Recent Advances in Seawater Electrolysis." Catalysts 12, no. 2 (January 20, 2022): 123. http://dx.doi.org/10.3390/catal12020123.

Повний текст джерела
Анотація:
Hydrogen energy, as a clean and renewable energy, has attracted much attention in recent years. Water electrolysis via the hydrogen evolution reaction at the cathode coupled with the oxygen evolution reaction at the anode is a promising method to produce hydrogen. Given the shortage of freshwater resources on the planet, the direct use of seawater as an electrolyte for hydrogen production has become a hot research topic. Direct use of seawater as the electrolyte for water electrolysis can reduce the cost of hydrogen production due to the great abundance and wide availability. In recent years, various high-efficiency electrocatalysts have made great progress in seawater splitting and have shown great potential. This review introduces the mechanisms and challenges of seawater splitting and summarizes the recent progress of various electrocatalysts used for hydrogen and oxygen evolution reaction in seawater electrolysis in recent years. Finally, the challenges and future opportunities of seawater electrolysis for hydrogen and oxygen production are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sunaryo, S. "Hydrogen Production as Alternative Energy Through the Electrolysis Process of Sea Water Originating from Mangrove Plant Areas." Journal of Physics: Conference Series 2377, no. 1 (November 1, 2022): 012056. http://dx.doi.org/10.1088/1742-6596/2377/1/012056.

Повний текст джерела
Анотація:
This research was conducted by utilizing seawater around mangrove forests, namely multi-functional areas in education. One of the objects of research by electrolysis seawater to determine the content of hydrogen gas is one of the renewable energy that has many advantages compared to other renewable energy. One simple method to produce hydrogen gas is by electrolysis of seawater whose source is unlimited. The electrolysis method in this study uses direct electric current or DC (Power Supply) and seawater with an electrolyte volume of 1000 ml, electrolysis time of 2, 4, 6, 8 minute using Copper electrodes (anode) and Aluminum (cathode) selection of cylindrical reactor types volume 1500 ml, operating conditions 36°C and 1 atm. As for the free variables, namely voltages of 5, 10, 15, 20, and 25 volt. With time variations, the results of the study showed that voltage greatly affects the decomposition of seawater into hydrogen gas. The highest hydrogen gas flow rate results can be at a voltage of 20 volts with 8 minutes of 1.8172 cc/sec (6545.51 ml/hour). The electrolysis time study on the decomposition of seawater into hydrogen gas had no significant effect. The electrolysis time of 6 and 8 minutes at a voltage of 20 and 15 volt showed high hydrogen gas results.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tahri, Walid, Xu Zhou, Rashid Khan, and Muhammad Sajid. "Recent Trends in Transition Metal Phosphide (TMP)-Based Seawater Electrolysis for Hydrogen Evolution." Sustainability 15, no. 19 (September 29, 2023): 14389. http://dx.doi.org/10.3390/su151914389.

Повний текст джерела
Анотація:
Large-scale hydrogen (H2) production is an essential gear in the future bioeconomy. Hydrogen production through electrocatalytic seawater splitting is a crucial technique and has gained considerable attention. The direct seawater electrolysis technique has been designed to use seawater in place of highly purified water, which is essential for electrolysis, since seawater is widely available. This paper offers a structured approach by briefly describing the chemical processes, such as competitive chloride evolution, anodic oxygen evolution, and cathodic hydrogen evolution, that govern seawater electrocatalytic reactions. In this review, advanced technologies in transition metal phosphide-based seawater electrolysis catalysts are briefly discussed, including transition metal doping with phosphorus, the nanosheet structure of phosphides, and structural engineering approaches. Application progress, catalytic process efficiency, opportunities, and problems related to transition metal phosphides are also highlighted in detail. Collectively, this review is a comprehensive summary of the topic, focusing on the challenges and opportunities.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Seawater electrolysis"

1

Convert, Damien. "Propulsion magnétohydrodynamique en eau de mer." Université Joseph Fourier (Grenoble), 1995. http://www.theses.fr/1995GRE10002.

Повний текст джерела
Анотація:
L'idee simple d'utiliser les forces de laplace pour propulser en eau de mer un navire est apparue des les annees 1960. Les performances etaient alors trop limitees par les inductions des aimants a bobinage classique. Le developpement d'aimants supraconducteurs de grand volume et a forte induction, jusqu'a 10 tesla, relance l'interet de cette propulsion magnetohydrodynamique qui, en supprimant toute piece mecanique mobile, presente une grande furtivite. Cette etude concerne les propulseurs a conduction, c'est a dire que le champ electrique et le courant qui interagissent avec le champ magnetique sont appliques dans le fluide par des electrodes. Une approche globale du systeme propulsif montre que les couplages entre les aspects hydrodynamiques, electromagnetiques et electrochimiques sont faibles. L'etablissement detaille du bilan de quantite de mouvement, conjugue avec diverses expressions de l'equation de bernoulli et de la loi d'ohm, permet de construire un modele unidimensionnel simple. Une demarche d'optimisation des performances amene a considerer une geometrie annulaire s'integrant bien au navire. Dans une seconde partie, les limitations de la modelisation unidimensionnelle sont mises en evidence en plusieurs points. Tout d'abord, l'ecoulement amont est aborde par un calcul en fluide parfait qui montre la non uniformite des vitesses en entree du propulseur, et ces consequences possibles. D'autre part, le couplage entre un modele mecanique et un modele electromagnetique dans deux plans distincts est applique a la propulsion en mode externe. Ce systeme apparait moins performant que ceux envisages precedemment mais il presente de grands avantages par la simplicite du bobinage supraconducteur. Le couplage entre electrochimie et mecanique des fluides est aborde grace a un pilote experimental d'electrolyse en ecoulement realise lors de ce travail. L'etude des reactions aux electrodes montre la difficulte a privilegier un type de degagement. La validation de methodes video sous microscope permet l'analyse des microbulles d'electrolyse
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Boissonneau, Patrick. "Propulsion MHD en eau de mer : étude des couplages hydrodynamique-électrochimie-électromagnétisme." Université Joseph Fourier (Grenoble), 1997. http://www.theses.fr/1997GRE10079.

Повний текст джерела
Анотація:
La magnetohydrodynamique (mhd) permet de realiser des propulseurs a reaction fournissant des flux d'eau de mer a grande vitesse sans helice ni piece mecanique en mouvement. En appliquant a un ecoulement d'eau de mer des champs magnetique et electrique, on produit directement au sein de l'ecoulement des forces electromagnetiques (laplace) qui propulsent le navire. Malheureusement l'eau de mer est un electrolyte : le passage des courants amenes par des electrodes entraine une electrolyse non desiree. Le travail presente se consacre a l'etude des couplages suivants : - influence de l'hydrodynamique parietale sur l'electrochimie de l'eau de mer - influence du degagement de micro-bulles sur la couche limite turbulente - determination des courants et des forces au sein de l'ecoulement les parties experimentales reposent sur la confrontation des mesures sur electrodes de platine en cellule d'electrolyse avec des mesures sur electrodes de titane platine en ecoulement reel. Nous avons associe aux mesures traditionnelles electriques et electrochimiques, l'analyse de la production de bulles (electrolyse) et de ses consequences sur l'ecoulement (velocimetrie granulometrie laser doppler & visualisation). Les parties theoriques, touchant l'electrochimie, font une synthese des connaissances et permettent d'identifier les mecanismes dominants et d'expliquer les resultats experimentaux. La partie calcul numerique, concernant le couplage : ecoulement/champs electromagnetiques, repose sur la confrontation de resultats de modeles globaux dedies avec des simulations faites a l'aide de fluent, logiciel commercial (volumes finis 2d).
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Marais, Caroline. "Formation de concrétions calcomagnésiennes par polarisation cathodique associée à la biocalcification et à l’utilisation de matériaux recyclés pour la protection côtière." Electronic Thesis or Diss., La Rochelle, 2023. http://www.theses.fr/2023LAROS020.

Повний текст джерела
Анотація:
L’objectif de cette étude vise à développer une solution à faible impact environnemental pour la consolidation des zones côtières partiellement immergées. Cette solution, la formation d’un agglomérat calcomagnésien par électrolyse de l’eau de mer, s’appuie d’une part sur l’économie des ressources locales par valorisation des déchets inertes du BTP (granulats recyclés (GR)) ; et d’autre part sur le processus de biominéralisation impliquant l’hydratation du CO2 par l’enzyme anhydrase carbonique (AC) présente chez les bactéries marines prélevées dans le Port de La Rochelle. Trois axes majeurs ont été étudiés pour optimiser la précipitation d’un liant composé de CaCO3 et de Mg(OH)2 (le dépôt calcomagnésien) au sein de l’agglomérat : l’effet de la dissolution des GR dans l’eau de mer, l’application d’une polarisation cathodique via à un écoulement d’eau de mer et l’étude de la bio-précipitation de CaCO3 par piégeage du CO2 (rôle de l’AC) par les souches marines L’écoulement d’eau de mer a permis de former un agglomérat de 200 cm3 en 60 jours, à -500µA/cm², soit une cinétique de croissance de 3 cm3/jr. Une augmentation de 10% de la compacité a été constatée dans le cas d’une grille enfouie (dans les GR) en immersion et en émersion. L’écoulement et la présence des granulats recyclés favorisent la précipitation du CaCO3 sous forme de calcite pour tendre vers un rapport Mg(OH)2/CaCO3 inférieur ou égale à 1, en polarisation continu ou cyclique. La libération excessive des ions calcium et sulfate en solution liée à la dissolution de la matrice cimentaire contenue au sein des GR, peut expliquer l’augmentation de CaCO3. Toutes les souches ont bio-précipité du CaCO3 dans leur milieu optimal et en présence d’eau de mer naturelle. Leur production a drastiquement chuté avec une teneur à 3% en CO2 (CO2 atmosphérique =0,4%) ainsi qu’en présence de lixiviat de granulats recyclés. À 3% en CO2, le pH du milieu augmente en présence des souches, pouvant témoigner d’une activité de l’AC
The objective of this study is to develop a low environmental impact solution for the consolidation of partially submerged coastal areas. This solution, the formation of a limestone concretion based on seawater electolysis, relies on two main aspects: firstly, the efficient use of local resources through the valorization of inert construction waste (recycled aggregates (RA)); and secondly, the biomineralization process involving the hydration of CO2 by the enzyme carbonic anhydrase (CA) found in marine bacteria sampled from the Port of La Rochelle. Three major axes were studied to optimize the precipitation of a binder within the limeston concretion composed of CaCO3 and Mg(OH)2 (the calcareous deposit): the effect of RA dissolution in seawater, the application of cathodic polarization via seawater flow, and the study of CaCO3 bio-precipitation by CO2 capture (the role of CA) by marine strains. Seawater flow allowed the formation of a 200 cm3 agglomerate in 60 days at -500µA/cm², resulting in a growth rate of 3 cm3/day. A 10% increase in compactness was observed when the grid was buried (within the RA) either submerged or emerged. Seawater flow and the presence of RA favored the precipitation of CaCO3, particularly in the form of calcite, leading to an Mg(OH)2/CaCO3 ratio less than or equal to 1, whether under continuous or cyclic polarization. The excessive release of calcium and sulfate ions into solution due to the dissolution of the cementitious matrix within the RA could explain the increase in CaCO3. All strains bio-precipitated CaCO3 in their optimal medium and in the presence of natural seawater. Their production drastically decreased at 3% CO2 (atmospheric CO2 = 0.4%) and in the presence of leachate from recycled aggregates. At 3% CO2, the pH of the medium increased in the presence of the strains, which could indicate the activity of CA
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dupuis, Jennifer. "Investigation d’alliages à base de titane de types béta-métastables pour applications marines : cas particulier d’un winch innovant." Thesis, Rennes, INSA, 2014. http://www.theses.fr/2014ISAR0028/document.

Повний текст джерела
Анотація:
Les alliages de titane sont utilisés dans de nombreux domaines tels que l’aéronautique et l’aérospatial, l’industrie automobile, les plateformes offshore et d’autres applications telles que le biomédical et l’environnement marin. Le choix d’utiliser des alliages de titane repose sur le fait que ces alliages disposent d’un excellent ratio entre la résistance mécanique et la densité ainsi qu’une excellente résistance à la corrosion. Afin d’être employés pour une application marine telle que celle d’un winch innovant, nous avons choisi de travailler sur trois nuances d’alliages de titane β-métastables que sont les alliages Ti-6.8Mo-4.5Fe- 1.5Al, Ti-15Mo-2.7Nb-3Al-0.2Si et Ti-5Al-5Mo-5V-3Cr. Le milieu marin est une atmosphère qui expose les matériaux à des conditions telles qu’elles peuvent générer leur destruction. Divers moyens de dégradation existent. Il était donc intéressant d’évaluer la résistance à la corrosion de ces alliages et de chercher à les protéger contre la corrosion. Le coeur de cette étude repose sur la sélection des alliages de titane susceptibles de répondre au cahier des charges du winch innovant. Des traitements thermomécaniques ont d’abord été définis, puis les alliages ont été caractérisés métallurgiquement et mécaniquement. Ces caractérisations ont permis de connaître les propriétés mécaniques des alliages et de sélectionner les alliages potentiellement employables au sein du winch. Puis des essais de corrosion galvaniques ont été menés via la mesure de différences de potentiel entre les alliages de titane traités et d’autres matériaux susceptibles d’être employé au sein du winch tels que des aciers inoxydables, des alliages d’aluminium et des laitons au plomb. Puis, afin d’évaluer le comportement en corrosion marine du film passif des alliages de titane, des essais de corrosion électrochimiques ont été faits à l’aide d’un dispositif à trois électrodes dans des électrolytes de type chlorure de sodium et eau de mer naturelle. Ainsi des mesures de potentiel libre et de voltammétrie cyclique ont été menées. Le point faible des alliages de titane est le comportement en frottement. Dans ce cas, afin de réduire le coefficient de frottement de ces alliages, il est souvent nécessaire d’effectuer un traitement de surface. Dans cette étude, un traitement thermochimique de nitruration gazeuse a donc été fait sur l’alliage de titane le plus récemment développé parmi les nuances étudiées à savoir le Ti-5Al-5Mo-5V-3Cr. Cet alliage ainsi traité a été caractérisé de façon identique aux alliages traités thermomécaniquement. L’ensemble des essais menés au cours de cette thèse ont permis de déterminer quels alliages de titane parmi ceux étudiés seraient les plus susceptibles d’être employés au sein du winch innovant
Titanium alloys are used in numerous fields as aerospace industry, automotive industry, off-shore industry, and, in several applications such as medical and marine applications. This is due to their good properties like high mechanical strength, low density and excellent corrosion resistance. In order to be used for an innovating winch and so in a marine environment, we have chosen to study three β-metastable titanium alloys which are Ti-6.8Mo-4.5Fe-1.5Al, Ti-15Mo-2.7Nb-3Al-0.2Si and Ti-5Al-5Mo-5V-3Cr. In marine environment, materials are exposed to tough conditions which can generate their destruction. Several modes of degradation exist. It is so interesting to evaluate the corrosion resistance of these alloys and to search their best corrosion protection. So, the heart of the study is to select titanium alloys to meet the specifications of the innovating winch. At first, we defined thermomechanical treatments for those titanium alloys and then these materials were characterized to know their mechanical and metallurgical properties. These tests allowed us to have a well knowledge of mechanical properties of these alloys and to choose which alloys can be employed in a winch. Then, galvanic corrosion tests were made in nitric acid, sodium chloride and sodium hydroxide. We measured potential differences between our treated titanium alloys and other materials which may be used in a winch such as stainless steels, aluminum alloys and leaded brass. Then, in order to evaluate the behavior of the passive film in marine environment of titanium alloys, electrochemical corrosion tests were conducted using a three-electrode method in sodium chloride and natural seawater electrolytes. So, free potential and cyclic voltammetry measurements were conducted. The flaw of titanium alloys is their low friction coefficient. So in order to improve the coefficient of friction of titanium alloys it is useful to do a surface treatment. In this study, a gaseous nitriding thermochemical treatment was done for the most recent developed alloy among the three studied nuances, which is Ti-5Al-5Mo-5V-3Cr. Then this treated alloy was characterized too similarly to the three thermomechanical treated titanium alloys. All of tests we led allowed us to know which titanium alloys with which thermomechanical and surface treatments may be used for the innovating winch
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Borell, Esther M. [Verfasser]. "Coral photophysiology in response to thermal stress, nutritional status and seawater electrolysis / submitted by Esther M. Borell." 2008. http://d-nb.info/990732118/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Guan-LunLee and 李貫綸. "Hydrogen generation and CO2 reduction to formic acid using GaN-based films as photoelectrodes in electrolytes of NaCl solution and seawater." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/amxr2j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Seawater electrolysis"

1

Asghari, Elnaz, and Bruno G. Pollet. Sustainable Hydrogen Generation: Electrolysis of seawater and other low-grade surface waters. Iop Publishing Ltd, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

The Great Gold Swindle of Lubec, Maine. The History Press, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Seawater electrolysis"

1

Peng, Shengjie. "Hydrogen Production by Seawater Electrolysis." In Electrochemical Hydrogen Production from Water Splitting, 167–202. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4468-2_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gendel, Youri, Gidon Amikam, and Paz Nativ. "Seawater electrolysis." In Electrochemical Power Sources: Fundamentals, Systems, and Applications, 305–26. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-819424-9.00003-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sankhula, Lokesh, Devendra Kumar Verma, and Rohit Srivastava. "Hydrogen production driven by seawater electrolysis." In Solar-Driven Green Hydrogen Generation and Storage, 363–80. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-99580-1.00013-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hilbertz, Wolf. "Reef Restoration Using Seawater Electrolysis in Jamaica." In Innovative Methods of Marine Ecosystem Restoration, 35–45. CRC Press, 2012. http://dx.doi.org/10.1201/b14314-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Seawater electrolysis"

1

Kitazawa, D., M. Fujino, and S. Aoba. "Treatment of waste seawater by electrolysis using charcoal electrodes." In OCEANS 2010 IEEE - Sydney. IEEE, 2010. http://dx.doi.org/10.1109/oceanssyd.2010.5603845.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

"Analysis of Seawater Electrolysis Technologies for Green Hydrogen Production." In June 21-22, 2023 Lisbon (Portugal). Excellence in Research & Innovation in Education, 2023. http://dx.doi.org/10.17758/eirai19.f0623119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hashimoto, Koji, Zenta Kato, Naokazu Kumagai, and Koichi Izumiya. "Key Materials and Systems for the Use of Renewable Energy in the Form of Methane." In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79776.

Повний текст джерела
Анотація:
Extrapolation of primary energy consumption of the world between 1990 and 2005 to the future revealed the complete exhaustion of oil, uranium, natural gas and coal reserves on the Earth in 2034, 2040, 2040 and 2054, respectively. We have been proposing global carbon dioxide recycling to use renewable energy for all people in the whole world. The electricity converted from renewable energy will be used for production of hydrogen by seawater electrolysis. Hydrogen, for which no infrastructures of transportation and combustion exist, will be converted to methane by the reaction with carbon dioxide captured by energy consumers. Among systems in global carbon dioxide recycling, seawater electrolysis and carbon dioxide methanation have not been performed industrially. We created energy-saving cathodes for hydrogen production and anodes for oxygen evolution without chlorine formation in seawater electrolysis, and ideal catalysts for methane formation by the reaction of carbon dioxide with hydrogen. This paper reviews the characteristics and performance of these materials in the systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schenewerk, William Ernest. "Fuel-Cell and Electrolysis By-Product D2O Improves Third Way to Mitigate CO2." In ASME 2015 Nuclear Forum collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/nuclrf2015-49061.

Повний текст джерела
Анотація:
Rapid atomic power deployment may be possible without using fast breeder reactors or making undue demands on uranium resource. Using by-product D2O and thorium-U233 in CANDU and RBMK piles may circumvent need for either fast breeder reactors or seawater uranium. Atmospheric CO2 is presently increasing 2.25%/a (2.25 percent per year) in proportion to 2.25%/a exponential fossil fuel consumption increase. Roughly 1/3 anthropologic CO2 is removed by various CO2 sinks. CO2 removal is modeled as being proportional to 50-year-earlier CO2 amount above 280 ppm-C. Water electrolysis produces roughly 0.1 kg-D20/kWa. Material balance assumes each electrolysis stage increases D2O bottoms concentration times 3. Except for first electrolysis stage, all water from hydrogen consumption is returned to electrolysis. D2O enrichment from water electrolysis is augmented by using the resulting Hydrogen and Oxygen in fuel cells. Condensate from hydrogen consumption returns to the appropriate electrolysis stage. Fuel cell condensate originally from reformed natural gas may augment second-stage feed. Previously, recycling only hydrogen from combustion back to upper electrolysis stages allowed a 5%/a atomic power expansion. Using fuel-cells to augment upper-stage electrolysis enrichment increases atomic power expansion from 5%/a to 6%/a. Implementation of this process should start by 2020 to minimize peak atmospheric CO2 concentration to 850 ppm-C. Atomic power expansion is 6%/a, giving 45000 GW by 2100. World primary energy increases at the historic rate of 2.25%/a, exceeding 4000 EJ-thermal/a by 2100. J-electric ∼ 3J-thermal. CO2 maximum is roughly 850 ppm-C around year 2100. CO2 declines back below 350 ppm-C by 2250 if the 50-year-delay seawater sink remains effective. The 15-year global temperature rise hiatus is apparently caused by convective heat transfer into seawater. Presumably convective CO2 transfer into seawater also occurs by the same mechanism. Each decade rapid atomic power expansion is delayed results in a 100 ppm increase in maximum atmospheric CO2 concentration. 50 TW dispatchable CSP (concentrated solar power), including 2 TWa storage, costs 1600 trillion USD and covers two Australias.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Susowake, Yuta, Abudul Matin Ibrahimi, Mir Sayed Shah Danish, Tomonobu Senjyu, Abdul Motin Howlader, and Paras Mandal. "Multi-Objective Design of Power System Introducing Seawater Electrolysis Plant for Remote Island." In 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). IEEE, 2018. http://dx.doi.org/10.1109/isgt-asia.2018.8467912.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Maior, Ioana, Gabriela Elena Badea, Anca Cojocaru, Alexandrina Fodor, Claudia Morgovan, and Alina Groze. "AC Impedance Measurements On Electrocatalytic Electrodes Interface For Hydrogen Evolution Kinetics In Seawater Electrolysis." In 2023 17th International Conference on Engineering of Modern Electric Systems (EMES). IEEE, 2023. http://dx.doi.org/10.1109/emes58375.2023.10171718.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Goreau, T. J., W. Hilbertz, A. Azeez, A. Hakeem, and J. Allen. "Shore protection, beach formation, and production of building materials and energy using seawater electrolysis technology." In Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492). IEEE, 2003. http://dx.doi.org/10.1109/oceans.2003.178283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Goreau, T. J., W. Hilbertz, A. Azeez, A. Hakeem, R. Dodge, G. Despaigne, and C. Shwaiko. "Restoring coral reefs, oyster banks, and fisheries by seawater electrolysis: coastal zone management and tourism applications." In Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492). IEEE, 2003. http://dx.doi.org/10.1109/oceans.2003.178407.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Murahara, Masataka, and Kazuichi Seki. "On-Site Sodium Production with Seawater Electrolysis as Alternative Energy for Oil by Offshore Wind Power Generation." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4780994.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ndoye, Babacar, Noufou Ouedraogo, Wondwosen Demisse, Andrew Grizzle, Eva Mutunga, and Pawan Tyagi. "3D Printed and Nickel-Coated Electrodes for Photocatalytic Electrolysis for Hydrogen Generation." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-70318.

Повний текст джерела
Анотація:
Abstract The hydrogen-based economy is gaining momentum with the advent of fuel cell electric cars and other systems. Hence hydrogen production becomes critically important to meet a supply demand in the near future. One of the cheapest hydrogen generation sources can be solar energy and seawater or water in the lakes and rivers. One can utilize solar energy to provide electricity or energy for the photocatalytic process to split water into hydrogen and oxygen. Under electrolysis, electricity is supplied to provide the energy required for water splitting converting hydrogen ions into hydrogen gas from the aqueous medium. There is a strong need to create innovative electrodes for hydrogen generation that are economical in production and highly efficient. To address this issue, we focused on designing electrodes for photocatalytic electrolysis for hydrogen generation. We used 3D printing to produce different electrodes with various surface features to provide optimum surface area and used electroless nickel to coat the surface of the 3D printed metal components. It is noteworthy that nickel is a promising metal to produce hydrogen economically. We used the Taguchi Design of Experiment approach to optimize the nickel coating on the 3D printed metal electrodes. We used cyclic voltammetry to quantify the volume of H2 produced by the nickel-coated 3D printed electrodes.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії