Добірка наукової літератури з теми "Schéma Dissipatif"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Schéma Dissipatif".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Schéma Dissipatif"
Després, Bruno, and Frédéric Lagoutière. "Un schéma non linéaire anti-dissipatif pour l'équation d'advection linéaire." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 328, no. 10 (May 1999): 939–43. http://dx.doi.org/10.1016/s0764-4442(99)80301-2.
Повний текст джерелаMamouri, Saïd, and Adnan Ibrahimbegovic. "Schéma dissipatif HHT d'intégration temporelle pour un modèle de poutre en grandes rotations." Revue Européenne des Éléments Finis 10, no. 5 (January 2001): 607–23. http://dx.doi.org/10.1080/12506559.2001.9737562.
Повний текст джерелаHuang, Shiyi, and Zhixue Li. "Optimization and Application of Coal Pillar in Fully Mechanized Mining Face based on Energy Analysis." International Journal of Energy 3, no. 3 (December 1, 2023): 47–51. http://dx.doi.org/10.54097/ije.v3i3.011.
Повний текст джерелаChen, Xiaowei, Mingzhan Song, and Songhe Song. "A Fourth Order Energy Dissipative Scheme for a Traffic Flow Model." Mathematics 8, no. 8 (July 28, 2020): 1238. http://dx.doi.org/10.3390/math8081238.
Повний текст джерелаBurkhardt, Ulrike, and Erich Becker. "A Consistent Diffusion–Dissipation Parameterization in the ECHAM Climate Model." Monthly Weather Review 134, no. 4 (April 1, 2006): 1194–204. http://dx.doi.org/10.1175/mwr3112.1.
Повний текст джерелаHANSEN, JAKOB, ALEXEI KHOKHLOV, and IGOR NOVIKOV. "PROPERTIES OF FOUR NUMERICAL SCHEMES APPLIED TO A NONLINEAR SCALAR WAVE EQUATION WITH A GR-TYPE NONLINEARITY." International Journal of Modern Physics D 13, no. 05 (May 2004): 961–82. http://dx.doi.org/10.1142/s021827180400502x.
Повний текст джерелаLi, Guodong, Haifeng Zhang, Xingnan Li, Lihao Guo, Yanyan Gao, and Dandan Cai. "Numerical Simulation of Stepped Spillways with Front Step Deformation." Mathematical Problems in Engineering 2021 (March 29, 2021): 1–15. http://dx.doi.org/10.1155/2021/7079606.
Повний текст джерелаLin, F. B., and F. Sotiropoulos. "Assessment of Artificial Dissipation Models for Three-Dimensional Incompressible Flow Solutions." Journal of Fluids Engineering 119, no. 2 (June 1, 1997): 331–40. http://dx.doi.org/10.1115/1.2819138.
Повний текст джерелаZhang, Yang, Laiping Zhang, Xin He, and Xiaogang Deng. "An Improved Second-Order Finite-Volume Algorithm for Detached-Eddy Simulation Based on Hybrid Grids." Communications in Computational Physics 20, no. 2 (July 21, 2016): 459–85. http://dx.doi.org/10.4208/cicp.190915.240216a.
Повний текст джерелаZhao, Peng, and Yu Chuan Bai. "Study on Hydraulic Characteristics and Optimization of Siphon Channel with Two Inlets in Drydock." Applied Mechanics and Materials 638-640 (September 2014): 1285–92. http://dx.doi.org/10.4028/www.scientific.net/amm.638-640.1285.
Повний текст джерелаДисертації з теми "Schéma Dissipatif"
Megdich, Nadia. "Méthodes anti-dissipatives pour les équations Hamilton Jacobi Bellman." Paris 6, 2008. http://www.theses.fr/2008PA066073.
Повний текст джерелаBensaid, Bilel. "Analyse et développement de nouveaux optimiseurs en Machine Learning." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0218.
Повний текст джерелаOver the last few years, developping an explainable and frugal artificial intelligence (AI) became a fundamental challenge, especially when AI is used in safety-critical systems and demands ever more energy. This issue is even more serious regarding the huge number of hyperparameters to tune to make the models work. Among these parameters, the optimizer as well as its associated tunings appear as the most important leverages to improve these models [196]. This thesis focuses on the analysis of learning process/optimizer for neural networks, by identifying mathematical properties closely related to these two challenges. First, undesirable behaviors preventing the design of explainable and frugal networks are identified. Then, these behaviors are explained using two tools: Lyapunov stability and geometrical integrators. Through numerical experiments, the learning process stabilization improves the overall performances and allows the design of shallow networks. Theoretically, the suggested point of view enables to derive convergence guarantees for classical Deep Learning optimizers. The same approach is valuable for mini-batch optimization where unwelcome phenomenons proliferate: the concept of balanced splitting scheme becomes essential to enhance the learning process understanding and improve its robustness. This study paves the way to the design of new adaptive optimizers, by exploiting the deep relation between robust optimization and invariant preserving scheme for dynamical systems
Mahéo, Laurent. "Etude des effets dissipatifs de différents schémas d'intégration temporelle en calcul dynamique par éléments finis." Phd thesis, Université de Bretagne Sud, 2006. http://tel.archives-ouvertes.fr/tel-00139112.
Повний текст джерелаMahéo, Laurent. "Étude des effets dissipatifs de différents schémas d'intégration temporelle en calcul dynamique par éléments finis." Lorient, 2006. http://www.theses.fr/2006LORIS082.
Повний текст джерелаThis phd-thesis deals with several time integration algorithms which are used in dynamic computation. The study focuses on their vibration damping properties in order to dissipate spurious oscillations generated by the use of space and time discretizations. The recents Tchamwa-Wielgosz’s explicite scheme and the Bonelli’s one are compared to the classical Bulk-viscosity method and the Runge-Kutta scheme (with a 4-5 order accuracy) for one-dimensional and three-dimensional problems. We notice the effects of the mass matrix (diagonal or consistent) and the time step size on the damping efficiency for each numerical scheme in a one-dimensional problem. We also note that the use of a high-order accuracy scheme can’t prevent the apparition of spurious oscillations. The study goes on with an axisymmetric three-dimensional problem for which we use a Love’s rods numerical solution. We note that the damping of spurious oscillations is less important in three-dimensional problems than in one-dimpensional problems. We also remark the influence of Poisson’s ratio on numerical damping when the bulk-viscosity method is used. Finally, numerical damping can be observed more easily on radial and shear stresses than on axial stresses because they are composed of the highest frequencies and consequently are more damped. The use of damping methods for three-dimensional problems, which come from experiments (Split Hopkinson Pressure Bar test and transverse impact of a steel plate), is finally studied. Therefore, damping is estimated for experimental and complex examples. Finally, we note the damping efficiency on very highfrequencies. A damping control algorithm is developed for the Tchamwa-Wielgosz’s scheme in order to obtain a damping efficiency during the whole simulation process with an energy control. Damping is realised for each degree-of-freedom of the problem and two nodal variables control the algorithm : acceleration and velocity mean. The algorithm is implemented in the HEREZH++ finite element code which is developed in C++. The results for one-dimensional problems with regular or irregular meshes show a damping efficiency at the beginning of the calculation and an energy drop less important than when a continuous damping is used. This study showed the efficiency of the damping methods to filter spurious oscillations. However, numerical damping excessively attains low-frequency modes. Thus, a new method which controls numerical damping has been developed. The second innovation deals with the study of an explicite time integration algorithm, which belongs to the Finite Element Method. This third order accuracy algorithm can approximate the theoretical solution of a discrete space for a low computational cost
Lee, Dongwook. "An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics a staggered dissipation-control differencing algorithm /." College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3842.
Повний текст джерелаThesis research directed by: Applied Mathematics and Scientific Computation Program. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Fiebach, André [Verfasser]. "A dissipative finite volume scheme for reaction-diffusion systems in heterogeneous materials / André Fiebach." Berlin : Freie Universität Berlin, 2014. http://d-nb.info/1057869732/34.
Повний текст джерелаHuart, Robin. "Simulation numérique d'écoulements magnétohydrodynamiques par des schémas distribuant le résidu." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14480/document.
Повний текст джерелаDuring this thesis, we worked on the numerical resolution of the Magnetohydrodynamic (MHD) equations, to which we added a hyperbolic transport equation for the divergence errors of the magnetic field.The first step consisted in symmetrizing the new ideal MHD system in order to study its eigensystem, which was the opportunity to remind the role of the entropy in this calculation as well as in the Clausius-Duhem inequality. Next, we aimed at solving these ideal equations by the mean of Residual Distribution (RD) schemes.The four main schemes were tested, and we showed among other things that the N scheme (although it has been proven very efficient with Euler equations in Fluid Mechanics) could not give satisfying results with the MHD equations. Classical strategies for the limitation and the stabilization were revisited then. Moreover,since we dealt with unsteady equations, we had to formulate atime discretization and a spatial distribution of the unsteady terms (as well as possible sources). We first choosed an implicit approach allowing us to be powerful on the long simulations needed for tokamak experiments, and to treat the divergence cleaning part in an original and efficient way. The convergence problems of our Newton-Raphson algorithm having not been fully resolved, we turned to an explicit alternative (Runge-Kutta type).Finally, we discussed about the principles of higher order schemes (theoretically, up to arbitrary orders, taking into account the Gibbs phenomenon) thanks to any type of 2D or 3D finite element (properly defined), without having been able to to validate all these aspects. We also implemented the dissipative part of the full MHD equations (in the classical sense, i.e. omitting the Hall effect) by the use of a RD/Galerkin coupling
Broussely, Marc. "Réduction de modèles thermiques par la théorie des réseaux, application à la surveillance d'une machine asynchrone par couplage d'un modèle thermique réduit avec un schéma équivalent électrique." Poitiers, 2000. http://www.theses.fr/2000POIT2320.
Повний текст джерелаMarié, Simon. "Etude de la méthode Boltzmann sur Réseau pour les simulations en aéroacoustique." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2008. http://tel.archives-ouvertes.fr/tel-00311293.
Повний текст джерелаDans un premier temps, les élements historiques et théoriques de la LBM sont présentés ainsi que le développement permettant de passer de l'équation de Boltzmann aux équations de Navier-Stokes. La construction des modèles à vitesses discrètes est également décrite. Deux modèles basés sur des opérateurs de collision différents sont présentés : le modèle LBM-BGK et le modèle LBM-MRT. Pour l'étude des capacités aéroacoustiques de la LBM, une analyse de von Neumann est réalisée pour les modèles LBM-BGK et LBM-MRT ainsi que pour l'équation de Boltzmann à vitesse discrète (DVBE). Une comparaison avec les schémas Navier-Stokes d'ordre élevé est alors menée. Pour remédier aux instabilités numériques de la méthode Boltzmann sur Réseau intervenant lors de la propagation dans des directions particulières à M>0.1, des filtres sélectifs sont utilisés et leur effet sur la dissipation est étudié.
Dans un second temps, le code de calcul L-BEAM est présenté. La structure générale et les différentes techniques de calculs sont décrites. Un algorithme de transition de résolution est développé. La modélisation de la turbulence est abordée et le modèle de Meyers-Sagaut est implémenté dans le code. Enfin, des cas tests numériques sont utilisés pour valider le code et la simulation d'un écoulement turbulent complexe est réalisée.
Azim, Riasat. "Low-Storage Hybrid MacCormack-type Schemes with High Order Temporal Accuracy for Computational Aeroacoustics." University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1515720270119389.
Повний текст джерелаКниги з теми "Schéma Dissipatif"
Brodersen, Olaf. Untersuchung einer Matrix-Dissipation in einem Zelleneckpunkt-Finite-Volumen-Schema zur Lösung der Navier-Stokes-Gleichungen. Köln: Deutsche Forschungsanstalt für Luft- und Raumfahrt, 1992.
Знайти повний текст джерелаYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Знайти повний текст джерелаYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Знайти повний текст джерелаYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Знайти повний текст джерелаYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Знайти повний текст джерелаYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Знайти повний текст джерелаЧастини книг з теми "Schéma Dissipatif"
Yang, Yan. "Hybrid Scheme for Compressible MHD Turbulence." In Energy Transfer and Dissipation in Plasma Turbulence, 35–67. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8149-2_3.
Повний текст джерелаWen, Chih-Yung, Yazhong Jiang, and Lisong Shi. "Non-dissipative Core Scheme of CESE Method." In Engineering Applications of Computational Methods, 7–19. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0876-9_2.
Повний текст джерелаWen, Chih-Yung, Yazhong Jiang, and Lisong Shi. "CESE Schemes with Numerical Dissipation." In Engineering Applications of Computational Methods, 21–36. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0876-9_3.
Повний текст джерелаPoluru, Venkata Reddy. "A Low Dissipative Scheme for Hyperbolic Conservation Laws." In Lecture Notes in Mechanical Engineering, 583–89. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9956-9_57.
Повний текст джерелаFang, Yuheng, Jianyi Shi, Zhuo Sun, Song Kong, and Sese Wang. "Energy Dissipation Balance Scheme in Dynamic Ad Hoc Networks." In Proceedings of the 2015 International Conference on Communications, Signal Processing, and Systems, 77–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49831-6_8.
Повний текст джерелаPelanti, M., L. Quartapelle, and L. Vigevano. "Low Dissipation Entropy Fix for Positivity Preserving Roe’s Scheme." In Godunov Methods, 685–90. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0663-8_69.
Повний текст джерелаBabik, F., R. Herbin, W. Kheriji, and J. C. Latché. "Discretization of the viscous dissipation term with the MAC scheme." In Finite Volumes for Complex Applications VI Problems & Perspectives, 571–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20671-9_60.
Повний текст джерелаConde Martín, S., and J. C. García Orden. "Energy-Consistent Integration Scheme for Multi-body Systems with Dissipation." In New Trends in Mechanism and Machine Science, 413–21. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09411-3_44.
Повний текст джерелаGuo-yan, Zhao, and Sun Ming-bo. "Robust and Low-Dissipation Explicit Formulation of Improved Adaptive WCNS Scheme." In 31st International Symposium on Shock Waves 1, 1191–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-91020-8_144.
Повний текст джерелаPorubov, A. V., D. Bouche, and G. Bonnaud. "Compensation of the Scheme Dispersion and Dissipation by Artificial Non-linear Additions." In Transactions on Computational Science VII, 122–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11389-5_7.
Повний текст джерелаТези доповідей конференцій з теми "Schéma Dissipatif"
Hou, Daizheng, Yanfei Zhang, and Yafu Zhou. "A Novel Heat Dissipation Optimization Design Scheme of Printed Circuit Board." In 2024 3rd International Conference on Energy, Power and Electrical Technology (ICEPET), 1635–41. IEEE, 2024. http://dx.doi.org/10.1109/icepet61938.2024.10627435.
Повний текст джерелаTian, Cheng, Song Fu, and Siya Jiang. "Numerical Dissipation Effects on Detached Eddy Simulation of Turbomachinery Flows." In GPPS Xi'an21. GPPS, 2022. http://dx.doi.org/10.33737/gpps21-tc-74.
Повний текст джерелаKim, Dehee, and Jang Hyuk Kwon. "A Low Dissipative and Dispersive Scheme with a High Order WENO Dissipation for Unsteady Flow Analyses." In 34th AIAA Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-2705.
Повний текст джерелаSu, Xinrong, Satoru Yamamoto, and Xin Yuan. "On the Accurate Prediction of Tip Vortex: Effect of Numerical Schemes." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-94660.
Повний текст джерелаChristensen, Adam, and Samuel Graham. "Heat Dissipation in GaN Power Semiconductor Devices." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61525.
Повний текст джерелаBahrainian, Seyed Saied. "Effect of Dissipative Terms on the Quality of Two and Three-Dimensional Euler Flow Solutions." In ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55221.
Повний текст джерелаJordan, Stephen A. "The Effects of the Boundary Stencils on the Field Spatial Resolution When Using Compact Finite Differences." In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98049.
Повний текст джерелаPinho, Pedro V., André G. Primo, Natália C. Carvalho, Rodrigo Benevides, Cauê M. Kersul, Simon Groeblacher, Gustavo S. Wiedehecker, and Thiago P. Mayer Alegre. "Quadrature-Resolved Dissipative Optomechanical Measurement." In CLEO: Fundamental Science. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_fs.2023.fth1b.2.
Повний текст джерелаParida, Pritish R., Srinath V. Ekkad, and Khai Ngo. "Novel PCM and Jet Impingement Based Cooling Scheme for High Density Transient Heat Loads." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22841.
Повний текст джерелаPrimo, André G., Pedro V. Pinho, Natália C. Carvalho, Rodrigo Benevides, Cauê M. Kersul, Simon Groeblacher, Gustavo S. Wiedehecker, and Thiago P. Mayer Alegre. "Homodyne Detection of Dissipative Optomechanical Interactions." In Latin America Optics and Photonics Conference. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/laop.2022.m4d.6.
Повний текст джерела