Добірка наукової літератури з теми "Scanner spectral à comptage photonique"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Scanner spectral à comptage photonique".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Scanner spectral à comptage photonique":

1

Garcelon, C., J. Abascal, C. Olivier, S. Si-Mohamed, S. Uk, H. K. Ea, L. Boussel, P. Douek, F. Peyrin, and C. Chappard. "Analyse quantitative morphologique du cartilage à partir du scanner spectral à comptage de photons." Revue du Rhumatisme 87 (December 2020): A261. http://dx.doi.org/10.1016/j.rhum.2020.10.470.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Garcelon, C., J. Abascal, C. Olivier, S. Si-Mohamed, P. Douek, F. Peyrin, and C. Chappard. "Quantification de l’épaisseur du cartilage sur des images de scanner spectral à comptage de photons." Revue du Rhumatisme 89 (December 2022): A199. http://dx.doi.org/10.1016/j.rhum.2022.10.300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Abascal, J., C. Olivier, S. Uk, S. Si-Mohamed, H. K. Ea, L. Boussel, P. Douek, F. Peyrin, and C. Chappard. "Analyse quantitative morphologique des géodes sous-chondrales à partir du scanner spectral à comptage de photons." Revue du Rhumatisme 87 (December 2020): A93. http://dx.doi.org/10.1016/j.rhum.2020.10.159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Scanner spectral à comptage photonique":

1

Raviol, Jolan. "Vers l'évaluation du risque de rupture des anévrismes intracrâniens : caractérisation mécanique in vivo de la paroi artérielle." Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2024. http://www.theses.fr/2024ECDL0011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les anévrismes intracrâniens constituent une pathologie critique de santé publique liée à la dégradation de la paroi d’artères cérébrales. Il n’existe actuellement aucune méthode permettant d'estimer le risque de rupture d’un anévrisme qui prenne en compte les propriétés mécaniques in vivo de la paroi anévrismale, pourtant reconnues comme essentielles dans le phénomène de rupture. Ce travail de doctorat s'inscrit dans un projet de grande envergure visant à améliorer les critères d’intervention, actuellement disponibles pour les praticiens, en développant un outil d'aide à la décision non invasif se basant sur l’état mécanique du tissu pour en évaluer la probabilité de rupture. Cet outil reposera sur la définition d'une relation entre la forme de l'anévrisme observé par imagerie clinique et une base de données contenant un ensemble d’images cliniques issues d’études préalables, associées aux propriétés mécaniques in vivo de la paroi et à une caractérisation de sa rupture. Pour produire cette base de données, un dispositif de déformation de la paroi anévrismale est développé dans le cadre du projet global. Ce travail doctoral se focalise sur (1) la calibration, l'optimisation et les tests in vitro de ce dispositif sur artères fantômes et (2) l’application in vivo du dispositif sur un modèle animal d'anévrisme intracrânien. Pour ce faire, un modèle numérique de l'expérimentation in vitro a été implémenté et validé au regard des résultats expérimentaux, grâce au développement d’une méthode de validation originale. Ce modèle éléments finis d’interaction fluide-structure a permis d'appréhender les incertitudes d'utilisation du dispositif au sein de l'anévrisme et d’aider au dimensionnement des artères fantômes. Le meilleur compromis en termes d'épaisseur et de souplesse de la paroi des artères fantômes a ainsi été identifié compte tenu des limites des techniques de fabrication. De plus, une procédure d'analyse inverse a été développée de sorte à estimer les caractéristiques mécaniques de la paroi anévrismale in vivo. Son utilisation repose sur la quantification de la déformation engendrée par le dispositif et visualisée par scanner spectral à comptage photonique, technique d’imagerie médicale émergente dont les résolutions spatio-temporelles permettent une sollicitation contrôlée du tissu sans risque accru de rupture. Les propriétés mécaniques identifiées sont cohérentes avec celles issues des caractérisations ex vivo d'anévrismes similaires disponibles dans la littérature. Enfin, un premier critère de rupture patient-spécifique de la paroi anévrismale, prenant en compte l’état de contrainte in vivo dans le tissu, a été proposé
Intracranial aneurysms are a critical public health condition linked to the degradation of the cerebral artery wall. There is currently no method for estimating the risk of aneurysm rupture that takes into account the in vivo mechanical properties of the aneurysm wall, which are believed to be essential in the rupture phenomenon. This doctoral work is part of a large-scale project aimed at improving the intervention criteria currently available to practitioners by developing a non-invasive decision-support tool based on the mechanical state of the tissue to assess the probability of rupture. This tool will be based on the definition of a relationship between the shape of the aneurysm observed by clinical imaging and a database containing a set of clinical images from previous studies, associated with the in vivo mechanical properties of the wall and a characterisation of the rupture. To produce this database, an aneurysm wall deformation device was developed as part of the overall project. This doctoral work focuses on (1) the calibration, the optimisation and in vitro testing of this device on phantom arteries and (2) the in vivo application of the device on an animal model of intracranial aneurysm. To do this, a numerical model of the in vitro experiment was implemented and validated against the experimental results by developing an original validation method. This finite element model of fluid-structure interaction was used to understand the uncertainties involved in using the device within the aneurysm and to help for dimensioning the phantom arteries. The best compromise in terms of phantom artery wall thickness and flexibility was identified, taking into account the limitations of the fabrication techniques. In addition, an inverse analysis procedure was developed to estimate the mechanical characteristics of the aneurysm wall in vivo. Its use is based on quantifying the deformation generated by the device and visualised by spectral photon-counting computed tomography, an emerging medical imaging technique whose spatio-temporal resolutions allow controlled stressing of the tissue without increasing the risk of rupture. The mechanical properties identified were consistent with those derived from ex vivo characterisations of similar aneurysms available in the literature. Finally, a first patient-specific criterion for rupture of the aneurysm wall, taking into account the state of stress in vivo in the tissue, was proposed
2

Niu, Pei. "Multi-energy image reconstruction in spectral photon-counting CT." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le scanner CT spectral à comptage de photons (sCT) est apparu récemment comme une nouvelle technique d'imagerie présentant des avantages fondamentaux par rapport au scanner CT classique et au scanner CT à double énergie. Cependant, en raison du nombre réduit de photons dans chaque bande d'énergie du scanner sCT et des artéfacts divers, la reconstruction des images devient particulièrement difficile. Cette thèse se concentre sur la reconstruction d'images multi-énergie en sCT. Tout d'abord, nous proposons d'étudier la capacité du scanner sCT à réaliser simultanément une imagerie anatomique (aCT) et fonctionnelle (fCT) en une seule acquisition par reconstruction et décomposition des matériaux. La fonction aCT du scanner sCT est étudiée dans la même configuration que celle du scanner CT classique, et la fonction fCT du scanner sCT est étudiée en appliquant des algorithmes de décomposition de matériaux aux mêmes données multi-énergie. Ensuite, comme le bruit est un problème particulièrement aigu en raison du nombre largement réduit de photons dans chaque bande d'énergie du scanner sCT, nous introduisons un mécanisme de débruitage dans la reconstruction de l'image pour effectuer simultanément un débruitage et une reconstruction. Enfin, pour améliorer la reconstruction de l'image, nous proposons de reconstruire l'image à une bande d'énergie donnée en exploitant les informations dans toutes les autres bandes d'énergie. La stratégie clé de cette approche consiste à regrouper les pixels similaires issus de la reconstruction de toutes les bandes d'énergie en une seule classe, à les ajuster dans la même classe, à projeter les résultats de l'ajustement dans chaque bande d'énergie, et à débruiter les informations projetées. Elle est utilisée à la fois comme une opération post-débruitage pour démontrer son efficacité et comme un terme de régularisation ou un terme de régularisations combinées pour la réalisation simultanée du débruitage et de la reconstruction. Toutes les méthodes ci-dessus sont évaluées sur des données de simulation et des données réelles provenant d'un scanner sCT préclinique
Spectral photon-counting CT (sCT) appeared recently as a new imaging technique presenting fundamental advantages with respect to conventional CT and duel-energy CT. However, due to the reduced number of photons in each energy bin of sCT and various artifacts, image reconstruction becomes particularly difficult. This thesis focuses on the reconstruction of multi-energy images in sCT. First, we propose to consider the ability of sCT to achieve simultaneously both anatomical (aCT) and functional imaging (fCT) in one single acquisition through reconstruction and material decomposition. aCT function of sCT is studied under the same configuration as that of conventional CT, and fCT function of sCT is investigated by applying material decomposition algorithms to the same acquired multi-energy data. Then, since noise is a particularly acute problem due to the largely reduced number of photons in each energy bin of sCT, we introduce denoising mechanism in the image reconstruction to perform simultaneous reconstruction and denoising. Finally, to improve image reconstruction, we propose to reconstruct the image at a given energy bin by exploiting information in all other energy bins. The key strategy in such approach consists of grouping the similar pixels from the reconstruction of all the energy bins into the same class, fitting within each class, mapping the fitting results into each energy bin, and denoising with the mapped information. It is used both as a post-denoising operation to demonstrate its effectiveness and as a regularization term or a combined regularization term for simultaneous reconstruction and denoising. All the above methods are evaluated on both simulation and real data from a pre-clinical sCT system

До бібліографії