Добірка наукової літератури з теми "SATURATED-ABSORPTION CAVITY RING-DOWN SPECTROSCOPY"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "SATURATED-ABSORPTION CAVITY RING-DOWN SPECTROSCOPY".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "SATURATED-ABSORPTION CAVITY RING-DOWN SPECTROSCOPY"
Lehmann, Kevin K. "Theoretical detection limit of saturated absorption cavity ring-down spectroscopy (SCAR) and two-photon absorption cavity ring-down spectroscopy." Applied Physics B 116, no. 1 (October 10, 2013): 147–55. http://dx.doi.org/10.1007/s00340-013-5663-3.
Повний текст джерелаEngeln, Richard, Gert von Helden, Giel Berden, and Gerard Meijer. "Phase shift cavity ring down absorption spectroscopy." Chemical Physics Letters 262, no. 1-2 (November 1996): 105–9. http://dx.doi.org/10.1016/0009-2614(96)01048-2.
Повний текст джерелаMa, Tong-mei, Ling Li, Joanne Wing Har Leung, and Allan Shi Chung Cheung. "Cavity Ring Down Laser Absorption Spectroscopy of NiI." Chinese Journal of Chemical Physics 22, no. 6 (December 2009): 611–14. http://dx.doi.org/10.1088/1674-0068/22/06/611-614.
Повний текст джерелаMa, Tongmei, J. W. H. Leung, and A. S. C. Cheung. "Cavity ring-down laser absorption spectroscopy of IrC." Chemical Physics Letters 385, no. 3-4 (February 2004): 259–62. http://dx.doi.org/10.1016/j.cplett.2003.12.096.
Повний текст джерелаZalicki, Piotr, and Richard N. Zare. "Cavity ring‐down spectroscopy for quantitative absorption measurements." Journal of Chemical Physics 102, no. 7 (February 15, 1995): 2708–17. http://dx.doi.org/10.1063/1.468647.
Повний текст джерелаFasci, E., S. Gravina, G. Porzio, A. Castrillo та L. Gianfrani. "Lamb-dip cavity ring-down spectroscopy of acetylene at 1.4 μm". New Journal of Physics 23, № 12 (1 грудня 2021): 123023. http://dx.doi.org/10.1088/1367-2630/ac3b6e.
Повний текст джерелаLoock, Hans-Peter, Jack A. Barnes, Gianluca Gagliardi, Runkai Li, Richard D. Oleschuk, and Helen Wächter. "Absorption detection using optical waveguide cavities." Canadian Journal of Chemistry 88, no. 5 (May 2010): 401–10. http://dx.doi.org/10.1139/v10-006.
Повний текст джерелаAiello, Roberto, Maria Giulia Delli Santi, Valentina Di Sarno, Maurizio De Rosa, Iolanda Ricciardi, Paolo De Natale, Luigi Santamaria, Giovanni Giusfredi, and Pasquale Maddaloni. "Lamb-dip ro-vibrational spectroscopy of buffer-gas-cooled acetylene." Journal of Physics: Conference Series 2439, no. 1 (January 1, 2023): 012002. http://dx.doi.org/10.1088/1742-6596/2439/1/012002.
Повний текст джерелаLi Zhe, 李哲, 张志荣 Zhang Zhirong, 夏滑 Xia Hua, 孙鹏帅 Sun Pengshuai, 余润罄 Yu Runqing, 王华东 Wang Huadong та 吴边 Wu Bian. "连续波腔衰荡吸收光谱技术中的模式匹配研究". Chinese Journal of Lasers 49, № 4 (2022): 0411001. http://dx.doi.org/10.3788/cjl202249.0411001.
Повний текст джерелаTan, Zhongqi, and Xingwu Long. "A Developed Optical-Feedback Cavity Ring-Down Spectrometer and its Application." Applied Spectroscopy 66, no. 5 (May 2012): 492–95. http://dx.doi.org/10.1366/11-06291.
Повний текст джерелаДисертації з теми "SATURATED-ABSORPTION CAVITY RING-DOWN SPECTROSCOPY"
Burkart, Johannes. "Optical feedback frequency-stabilized cavity ring-down spectroscopy - Highly coherent near-infrared laser sources and metrological applications in molecular absorption spectroscopy." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAY045/document.
Повний текст джерелаHigh-precision molecular absorption spectroscopy is a powerful tool for fundamental physics and metrology, as well as for a broad range of applications in fields such as environmental sciences, planetology and astrophysics. In recent years, spectroscopic techniques based on the enhanced interaction of laser light with molecular samples in high-finesse optical cavities have provided outstanding detection sensitivities on the absorption axis, while the spectrometer frequency axis rarely met as high precision standards.In this thesis, we addressed this challenge by the development of Optical Feedback Frequency-Stabilized Cavity Ring-Down Spectroscopy (OFFS-CRDS). This novel technique features a unique combination of sub-kHz frequency resolution and stability, kW/cm^2-level intracavity light intensity, a shot-noise limited absorption detectivity down to 2 x 10^(−13) cm^(−1)Hz^(-1/2), as well as a detection limit of 8.4 x 10^(−14) cm^(−1) on a narrow spectral interval. This unprecedented performance is based on the tight Pound-Drever-Hall lock of the ring-down cavity to a single-sideband-tuned distributed-feedback diode laser which is optical-feedback-stabilized to a highly stable V-shaped reference cavity. To transfer the coherence of this sub-kHz laser source to noisier lasers in other spectral regions through an optical frequency comb, we have explored a novel high-bandwidth feed-forward phase cloning scheme and demonstrated a residual phase error as low as 113 mrad. Applying OFFS-CRDS to the spectroscopy of CO_2 near 1.6 μm, we obtained a broadband spectrum with a dynamic range of 8 x 10^5 and retrieved twelve absolute transition frequencies with kHz-accuracy by measuring sub-Doppler saturated absorption Lamb dips with a comb-assisted setup. Furthermore, we have performed a comprehensive analysis of systematic error sources in CRDS and derived an analytic formula for the non-exponential ring-down signal in a weakly saturated regime, which may contribute towards future concentration-independent transition dipole moment measurements. Our results open up promising perspectives for metrological applications of OFFS-CRDS, such as advanced absorption lineshape studies, isotopic ratio measurements and extensive saturated absorption spectroscopy in the near infrared
NAKAEMA, WALTER M. "Espectroscopia de cavidade ressonante tipo ring-down supercontinuum resolvida no tempo para deteccao de multicomponentes gasosos." reponame:Repositório Institucional do IPEN, 2010. http://repositorio.ipen.br:8080/xmlui/handle/123456789/9590.
Повний текст джерелаMade available in DSpace on 2014-10-09T13:56:28Z (GMT). No. of bitstreams: 0
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
CAVALCANTI, FABIO. "Desenvolvimento de um laser pulsado com emissão em 1053 nm para utilização na técnica de "Cavity Ring-Down Spectroscopy." reponame:Repositório Institucional do IPEN, 2014. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11790.
Повний текст джерелаMade available in DSpace on 2014-11-10T10:46:11Z (GMT). No. of bitstreams: 0
Dissertação (Mestrado em Tecnologia Nuclear)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Mercier, Xavier. "Mesure de concentrations absolues d'espèces réactives minoritaires dans les flammes par la technique d'absorption Cavity Ring Down Spectroscopy (CRDS)." Lille 1, 2000. http://www.theses.fr/2000LIL10154.
Повний текст джерелаDans ce memoire, nous montrons l'interet et les potentialites du crds pour l'etude de flammes homogenes. Pour ce faire, nous explicitons dans le detail le principe du crds et les precautions a prendre pour la mesure de concentrations absolues. Par ailleurs, une comparaison des profils de concentration absolue obtenus par crds (de cn et ch notamment) dans une flamme de ch 4/o 2 dopee en no, avec ceux issus de la modelisation au moyen du logiciel premix est egalement presentee. Le tres bon accord de cette comparaison montre que le crds, de part sa haute sensibilite et son caractere quantitatif direct, se revele etre une methode des plus efficaces pour la mesure de concentrations absolues d'especes dans des flammes homogenes
Vasilchenko, Semen. "Development of an ultrasensitive cavity ring down spectrometer in the 2.10-2.35 µm region : application to water vapor and carbon dioxide." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY037/document.
Повний текст джерелаA cavity ring down spectrometer has been developed in the 2.00-2.35 µm spectral range to achieve highly sensitive absorption spectroscopy of molecules of atmospheric and planetologic interest and at high spectral resolution. This spectral region corresponds to a transparency window for water vapor and carbon dioxide. Atmospheric windows, where absorption is weak, are used to sound the Earth’s and Venus’ atmospheres where water vapor and carbon dioxide represent the main gaseous absorbers in the infrared, respectively.The CRDS technique consists of injecting photons inside a high finesse optical cavity and measuring the photon’s life time of this cavity. This life-time depends on the mirror reflectivity and on the intra-cavity losses due to the absorbing gas in the cavity. Measuring these losses versus the wavelength allow obtaining the absorption spectrum of the gas. The extreme reflectivity of the mirrors allows reaching, for a 1-meter long cavity, a sensitivity equivalent to the one obtained classically with absorption cells of several thousands of kilometers.Three DFB laser diodes emitting around 2.35, 2.26, 2.21 µm were used with this spectrometer giving access to the 4249-4257, 4422-4442 and 4516-4534 cm-1 interval, respectively. Thanks to optical feedback from an external cavity, two of these diodes were spectrally narrowed leading to a better injection of the high finesse cavity thus reducing the noise level of the spectrometer. In parallel, we tested a VECSEL (Vertical-external-Cavity, Surface Emitting laser) through a collaboration with the Institu d’Electronique (IES, UMR 5214) in Montpellier and the Innoptics firm. This laser source is able to cover a 80 cm-1 spectral range centered at 4340 cm-1, equivalent to four DFB laser diodes. In routine the achieved sensitivity with this spectrometer, corresponding to the minimum detectable coefficient is typically of 1×10-10 cm-1. The introductive chapter (Chapter 1) makes the point on the different techniques allowing absorption spectra recordings in the studied spectral region and on their sensitivity. The experimental set-up, the characteristics and performances by the CRD spectrometer developed in this work are detailed in Chapter 2. To our knowledge this instrument is the most sensitive in the considered spectral region.In Chapter 3, detection of quadrupolar electric transitions of HD and N2 illustrate the level of sensitivity reached: (i) the S(3) transition in the 1-0 band of HD has been recorded for the first time and its intensity measured (S=2.5×10-27 cm/molecule), (ii) the position and intensity of the highly forbidden O(14) quadrupolar electric transition of the 2-0 band of N2 have also been newly determined.The two last chapters are devoted to the characterization of the CO2 absorption, in the centre of the transparency window, and of the water vapor absorption. In both cases, we not only studied the allowed transitions of the monomer, but also the continuum absorption. This latter correspond to a weak background absorption varying slowly with the wave length. The self-continuum cross-sections of the water vapor continuum were measured in many spectral points through the transparency window with a much better accuracy compared to existing measurements. These CRDS data constitute a valuable data set to validate the reference model (MT_CKD) for the continuum which is implemented in most of the atmospheric radiative transfer codes
Kiwanuka, Ssegawa-Ssekintu. "Supercontinuum radiation for ultra-high sensitivity liquid-phase sensing." Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/245137.
Повний текст джерелаChase, Tanya. "Greenhouse gas detection using cavity enhanced absorption spectroscopy and cavity ring-down spectroscopy : trace detection of CH₄, CO₂ and N₂0 in ambient air, standard gas samples and in the headspace of soils." Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.686246.
Повний текст джерелаLu, Jessica Weidgin. "Dynamics of Atmospherically Important Triatomics in Collisions with Model Organic Surfaces." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/77045.
Повний текст джерелаPh. D.
Li, Jing. "Applications of optical-cavity-based spectroscopic techniques in the condensed phase." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:d6a0c476-e67f-4390-a63a-e3cb9e60bf2c.
Повний текст джерелаDavies, Nicholas William. "The climate impacts of atmospheric aerosols using in-situ measurements, satellite retrievals and global climate model simulations." Thesis, University of Exeter, 2018. http://hdl.handle.net/10871/34544.
Повний текст джерелаЧастини книг з теми "SATURATED-ABSORPTION CAVITY RING-DOWN SPECTROSCOPY"
Sneep, M., and W. Ubachs. "Cavity Ring-Down Spectroscopy of O2–O2 Collisional Induced Absorption." In Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere, 203–11. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0025-3_17.
Повний текст джерелаCancio, P., I. Galli, S. Bartalini, G. Giusfredi, D. Mazzotti, and P. De Natale. "Saturated-Absorption Cavity Ring-Down (SCAR) for High-Sensitivity and High-Resolution Molecular Spectroscopy in the Mid IR." In Springer Series in Optical Sciences, 143–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40003-2_4.
Повний текст джерелаHamilton, D. J., M. G. D. Nix, S. G. Baran, G. Hancock, and A. J. Orr-Ewing. "Optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS) in a ring cavity." In TDLS 2009, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-02292-0_1.
Повний текст джерелаТези доповідей конференцій з теми "SATURATED-ABSORPTION CAVITY RING-DOWN SPECTROSCOPY"
Pastor, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale. "Saturated-Absorption Cavity Ring-Down Spectroscopy." In Frontiers in Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/fio.2010.ftul4.
Повний текст джерелаMazzotti, Davide, Saverio Bartalini, Pablo Cancio, Iacopo Galli, Giovanni Giusfredi, and Paolo De Natale. "Saturated-Absorption Cavity Ring-Down Spectroscopy for Radiocarbon Measurements." In Optics and Photonics for Energy and the Environment. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/ee.2017.em2b.1.
Повний текст джерелаAndrews, Nicholas L. P., Jessica Litman, Klaus Bescherer, Jack A. Barnes, and Hans-Peter Loock. "Fiber-Loop Cavity Ring-Down Absorption Spectroscopy." In Applied Industrial Optics: Spectroscopy, Imaging and Metrology. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/aio.2014.am4a.4.
Повний текст джерелаEngeln, Richard, and Gerard Meijer. "A Fourier Transform Cavity Ring Down Spectrometer." In Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/fts.1997.ftua.1.
Повний текст джерелаMemovich, Madeline, and Kevin Lehmann. "SATURATED ABSORPTION SPECTROSCOPY AND TWO-PHOTON CAVITY RING-DOWN ABSORPTION SPECTROSCOPY FOR TRACE GAS DETECTION OF NITROUS OXIDE." In 2022 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2022. http://dx.doi.org/10.15278/isms.2022.ff09.
Повний текст джерелаCone, Michael, Edward S. Fry, and Joseph A. Musser. "Ring-Down Absorption Spectroscopy in an Integrating Cavity." In Frontiers in Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/fio.2009.fwr5.
Повний текст джерелаKassi, Samir, Alain Campargue, Amaelle Landais, Mathieu Casado, Mathieu Daëron, and Tim Stoltmann. "OPTICAL FEEDBACK STABILIZED LASER CAVITY RING DOWN SPECTROSCOPY: FROM SATURATED SPECTROSCOPY TO ISOTOPIC RATIO." In 73rd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2018. http://dx.doi.org/10.15278/isms.2018.tg06.
Повний текст джерелаManzanares, Carlos, and Parashu Nyaupane. "CAVITY RING DOWN ABSORPTION OF OXYGEN IN AIR AS A TEMPERATURE SENSOR." In 71st International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2016. http://dx.doi.org/10.15278/isms.2016.wk08.
Повний текст джерелаGianfrani, L., R. W. Fox, and L. Hollberg. "High sensitivity detection of molecular oxygen using cavity-enhanced frequency modulation spectroscopy." In Laser Applications to Chemical and Environmental Analysis. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/lacea.1998.lmc.23.
Повний текст джерелаHodges, Joseph, Kevin Lehmann, D. Bailey, Adam Fleisher, and Gang Zhao. "CAVITY RING-DOWN SPECTROSCOPY MEASUREMENTS OF RESONANCE-ENHANCED TWO-PHOTON ABSORPTION BY N2O." In 2020 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2020. http://dx.doi.org/10.15278/isms.2020.wd05.
Повний текст джерела