Добірка наукової літератури з теми "Sarcomere mechanics"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Sarcomere mechanics".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Sarcomere mechanics"
Crocini, Claudia, and Michael Gotthardt. "Cardiac sarcomere mechanics in health and disease." Biophysical Reviews 13, no. 5 (October 2021): 637–52. http://dx.doi.org/10.1007/s12551-021-00840-7.
Повний текст джерелаRassier, Dilson E. "Sarcomere mechanics in striated muscles: from molecules to sarcomeres to cells." American Journal of Physiology-Cell Physiology 313, no. 2 (August 1, 2017): C134—C145. http://dx.doi.org/10.1152/ajpcell.00050.2017.
Повний текст джерелаLieber, R. L. "659 SARCOMERE MECHANICS." Medicine & Science in Sports & Exercise 26, Supplement (May 1994): S118. http://dx.doi.org/10.1249/00005768-199405001-00661.
Повний текст джерелаMüller, Dominik, Thorben Klamt, Lara Gentemann, Alexander Heisterkamp, and Stefan Michael Klaus Kalies. "Evaluation of laser induced sarcomere micro-damage: Role of damage extent and location in cardiomyocytes." PLOS ONE 16, no. 6 (June 4, 2021): e0252346. http://dx.doi.org/10.1371/journal.pone.0252346.
Повний текст джерелаde Tombe, Pieter P., and Henk E. D. J. ter Keurs. "Cardiac muscle mechanics: Sarcomere length matters." Journal of Molecular and Cellular Cardiology 91 (February 2016): 148–50. http://dx.doi.org/10.1016/j.yjmcc.2015.12.006.
Повний текст джерелаRussell, Robert J., Shen-Ling Xia, Richard B. Dickinson, and Tanmay P. Lele. "Sarcomere Mechanics in Capillary Endothelial Cells." Biophysical Journal 97, no. 6 (September 2009): 1578–85. http://dx.doi.org/10.1016/j.bpj.2009.07.017.
Повний текст джерелаRussell, Robert J., Richard B. Dickinson, and Tanmay P. Lele. "Sarcomere Mechanics in the Stress Fiber." Biophysical Journal 96, no. 3 (February 2009): 626a. http://dx.doi.org/10.1016/j.bpj.2008.12.3310.
Повний текст джерелаNAGORNYAK, EKATERINA, and GERALD H. POLLACK. "Connecting filament mechanics in the relaxed sarcomere." Journal of Muscle Research and Cell Motility 26, no. 6-8 (February 2, 2006): 303–6. http://dx.doi.org/10.1007/s10974-005-9036-3.
Повний текст джерелаKollár, Veronika, Dávid Szatmári, László Grama, and Miklós S. Z. Kellermayer. "Dynamic Strength of Titin's Z-Disk End." Journal of Biomedicine and Biotechnology 2010 (2010): 1–8. http://dx.doi.org/10.1155/2010/838530.
Повний текст джерелаTer Keurs, Henk E. D. J., Tsuyoshi Shinozaki, Ying Ming Zhang, Yuji Wakayama, Yoshinao Sugai, Yutaka Kagaya, Masahito Miura, Penelope A. Boyden, Bruno D. M. Stuyvers, and Amir Landesberg. "Sarcomere Mechanics in Uniform and Nonuniform Cardiac Muscle." Annals of the New York Academy of Sciences 1123, no. 1 (March 19, 2008): 79–95. http://dx.doi.org/10.1196/annals.1420.010.
Повний текст джерелаДисертації з теми "Sarcomere mechanics"
Caruel, Matthieu. "Mechanics of Fast Force Recovery in striated muscles." Phd thesis, Ecole Polytechnique X, 2011. http://pastel.archives-ouvertes.fr/pastel-00668301.
Повний текст джерелаPontén, Eva. "Tendon transfer mechanics and donor muscle properties : implications in surgical correction of upper limb muscle imbalance." Doctoral thesis, Umeå universitet, Institutionen för integrativ medicinsk biologi (IMB), 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-167.
Повний текст джерелаAuld, Alexander. "The Mechanisms and Function of Myonuclear Movement." Thesis, Boston College, 2018. http://hdl.handle.net/2345/bc-ir:108147.
Повний текст джерелаThesis advisor: David R. Burgess
During muscle development, myonuclei undergo a complex set of movements that result in evenly spaced nuclei throughout the muscle cell. In many muscle diseases mispositioned myonuclei have been used as a hallmark phenotype of disease. A number of studies over the last decade have started to piece together the cytoskeletal elements that govern these movements. In Drosophila, two separate pools of Kinesin and Dynein work in synchrony to drive nuclear movement. However, it is still not clear how these two pools of microtubule motors become specified. In addition, it is not clear how nuclear position impacts the other defining feature of the muscle cell, which is the highly organized contractile network of sarcomeres. Previously, mispositioned myonuclei have been correlated with improper muscle function, yet no direct link between nuclear position and sarcomere development or function has been demonstrated. In this thesis, we show a role for Aplip1 (the Drosophila homolog of JIP1), a known regulator of both Kinesin and Dynein, in myonuclear positioning. Aplip1 localizes to the myotendinous junction and has genetically separable roles in myonuclear positioning and muscle stability. Furthermore, we show that a number of sarcomeric proteins, including ZASP, Actin and β-integrin localize to the nucleus prior to being incorporated into the sarcomere, regardless of nuclear position. Finally, we show that the LINC complex is required for nuclear dependent sarcomere assembly and that disruption of nuclear dependent sarcomere assembly or nuclear position resulted in a compromised sarcomeric network. Together, this thesis adds to the mechanisms that are important in positioning nuclei and shows the first direct link between the nucleus and sarcomere assembly
Thesis (PhD) — Boston College, 2018
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Biology
Pappas, Christopher Theodore. "Elucidating the Mechanisms by Which Nebulin Regulates Thin Filament Assembly in Skeletal Muscle." Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/145422.
Повний текст джерелаBohman, Lova. "Pathological Mechanisms of Sarcomere Mutations in the Disease Hypertrophic Cardiomyopathy : A Review." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176045.
Повний текст джерелаPontén, Eva. "Tendon transfer mechanics and donor muscle properties : implications in surgical correction of upper limb muscle imbalance /." Umeå : Integrativ medicinsk biologi, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-167.
Повний текст джерелаMcCain, Megan Laura. "From Womb to Doom: Mechanical Regulation of Cardiac Tissue Assembly in Morphogenesis and Pathogenesis." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10260.
Повний текст джерелаEngineering and Applied Sciences
Kronbauer, Gláucia Andreza. "Características mecânicas e histológicas do músculo sóleo de ratos submetidos a treinamento de esteira em aclive e declive." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2009. http://hdl.handle.net/10183/18773.
Повний текст джерелаThe literature states that the stimulus produced by different types of contraction in skeletal muscle generates specific adaptations. Downhill and uphill locomotion have been used as a model of concentric and eccentric training in studies that verify the different adaptations in animals. Therefore this study intended to evaluate mechanical and histological properties of rats’ soleus muscle submitted to uphill or downhill running. We evaluated 36 male Wistar rats (90 days old at the start of training). They were divided equally into three groups: uphill (A), downhill (D) and control (C). Training was performed on a treadmill adapted to individual lanes and +16º (uphill) or -16º (downhill) incline. The animals went through a one week adjustment period on the treadmill with the specific inclines, and then there were evaluated the maximal speeds they reached. The training took place with progressive speed (relative to the maximum tested) and time over 8 weeks (29 sessions). Two days after the last training the animals were anesthetized with sodium thiopental (± 5 ml), the right and left soleus muscles were removed and the animals were decapitated. The right soleus muscles (n = 7C, 8A, 9D) were subjected to tensile tests on one machine EMIC DL2000, with a load cell of 50 N, speed of 1,66 m.s-1. During the test, the samples were sprayed with saline solution every one minute. The left soleus muscles were removed for counting of sarcomeres (n = 4A, 4C, 5D) and the titin Western blot analysis (n = 4 per group). Data normality and homogeneity were verified and reliability of the measures was assessed by Cronbach's Alpha coefficient. Individual behaviors were analyzed by Intraclass Correlation Coefficient (ICC); one-way ANOVA and post hoc Bonferroni test and nonparametric Kruskal-Wallis were applied to identify the differences between the groups. Three out of the 36 animals died before the end of the experiment. The Cronbach's Alpha coefficients indicated reliability of the measures with values close to one for all the analyzed variables. The mechanical data of downhill trained animals had significantly lower ICC, even though significant. Comparisons between groups showed increased rigidity of the muscles of trained animals and greater deformation of the muscles of control animals. It has been found greater passive tension mean for both training groups (57 ± 5 and 56 ± 11 for A and D; 51.6 ± 7.7 for C), but it was not statistically significant probably due to the high mechanical data variability. Regarding the number of sarcomeres in series the downhill trained animals showed smaller sarcomere lengths (2.806 ± 0.059 μm) and greater serial sarcomere number (8170 ± 510) when compared to control (3.06 ± 0.054 μm and 7510 ± 240) and uphill (2.990 ± 0.023 μm e 7390 ± 270) groups. The remaining variables did not differ between groups. It can be concluded from this study that structural adaptations do not happen in parallel with functional adaptations, downhill running appear to produce more variable results and that different stimuli generate different adaptations in rats’ soleus muscle.
Mouton, Jacoba Martina. "The role of novel protein-protein interactions in the function and mechanism of the sarcomeric protein, myosin binding protein H (MyBPH)." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86751.
Повний текст джерелаENGLISH ABSTRACT: Left ventricular hypertrophy (LVH) is a major risk factor for cardiovascular morbidity and mortality, and is a feature of common diseases, such as hypertension and diabetes. It is therefore vital to understand the underlying mechanisms influencing its development. However, investigating the mechanisms underlying LVH in such complex disorders can be challenging. For this reason, many researchers have focused their attention on the autosomal dominant cardiac muscle disorder, hypertrophic cardiomyopathy (HCM), since it is considered a model disease in which to study the causal molecular factors underlying isolated cardiac hypertrophy. HCM is a heterogeneous disease that manifests with various phenotypes and clinical symptoms, even in families with the same genetic defects, suggesting that additional factors contribute to the disease phenotype. Despite the identification of several HCM-causing genes, the genetic factors that modify the extent of hypertrophy in HCM patients remain relatively unknown. The gene encoding the sarcomeric protein, cardiac myosin binding protein C, cMyBPC (MyBPC3) is one of the most frequently implicated genes in HCM. Identification of proteins that interact with cMyBPC has led to improved insights into the function of this protein and its role in cardiac hypertrophy. However, very little is known about another member of the myosin binding protein family, myosin binding protein H (MyBPH). Given the sequence homology and similarity in structure between cMyBPC and MyBPH, we propose that MyBPH, like cMyBPC, may play a critical role in the structure and functionality of the cardiac sarcomere and could therefore be involved in HCM pathogenesis. The present study aimed to identify MyBPH-interacting proteins by using yeast two-hybrid (Y2H) analysis and to verify these interactions using three-dimensional (3D) co-localisation and co-immunoprecipitation (Co-IP) analyses. We further hypothesized that both MyBPH and cMyBPC may be involved in autophagy. To test this hypothesis, both MyBPH and cMyBPC were analysed for co-localisation with a marker for autophagy, LC3b-II. The role of MyBPH and cMyBPC in cardiac cell contractility were analysed by measuring the planar cell surface area of differentiated H9c2 rat cardiomyocytes in response to β-adrenergic stress after individual and concurrent siRNA-mediated knockdown of MyBPH and cMyBPC. In the present study we employed a family-based genetic association analysis approach to investigate the contribution of genes encoding the novel MyBPH-interacting proteins in modifying the hypertrophy phenotype. This study investigated the hypertrophy modifying effects of 38 SNPs and haplotypes in four candidate HCM modifier genes, in 388 individuals from 27 HCM families, in which three unique South African HCM-causing founder mutations segregate. Yeast two-hybrid analysis identified three putative MyBPH-interacting proteins namely, cardiac β-myosin heavy chain (MYH7), cardiac α-actin (ACTC1) and the SUMO-conjugating enzyme UBC9 (UBC9). These interactions were verified using both 3D co-localisation and Co-IP analyses. Furthermore, MyBPH and cMyBPC were implicated in autophagy, since both these proteins were being recruited to the membrane of autophagosomes. In addition, a cardiac contractility assay demonstrated that the concurrent siRNA-mediated knockdown of MyBPH and cMyBPC resulted in a significant reduction in cardiomyocyte contractility, compared to individual protein and control knockdowns under conditions of β-adrenergic stress. These results indicated that MyBPH could compensate for cMyBPC, and vice versa, further confirming that both these proteins are required for efficient sarcomere contraction. Results from genetic association analyses found a number of SNPs and haplotypes that had a significant effect on HCM hypertrophy. Single SNP and haplotype analyses identified SNPs and haplotypes within genes encoding MyBPH, MYH7, ACTC1 and UBC9, which contribute to the extent of hypertrophy in HCM. In addition, we found that several variants and haplotypes had markedly different statistical significant effects in the presence of each of the three HCM founder mutations. The results of this study ascribe novel functions to MyBPH. Cardiac MyBPC and MyBPH play a critical role in sarcomere contraction and have been implicated in autophagy. This has further implications for understanding the patho-etiology of HCM-causing mutations in the gene encoding MyBPH and its interacting proteins. This is to our knowledge the first genetic association analysis to investigate the modifying effect of interactors of MyBPH, as indication of the risk for developing LVH in the context of HCM. Our findings suggest that the hypertrophic phenotype of HCM is modulated by the compound effect of a number of variants and haplotypes in MyBPH, and genes encoding protein interactors of MyBPH. These results provide a basis for future studies to investigate the risk profile of hypertrophy development in the context of HCM, which could consequently lead to improved risk stratification and patient management.
AFRIKAANSE OPSOMMING: Linker ventrikulêre hipertrofie (LVH) is 'n primêre risikofaktor vir kardiovaskulêre morbiditeit en mortaliteit asook 'n kenmerk van algemene siektes soos hipertensie en diabetes. Daarom is dit van kardinale belang om te verstaan wat die onderliggende meganismes is wat die ontwikkeling van LVH beïnvloed. Die ondersoek na die onderliggende meganismes wat lei tot LVH in sulke komplekse siektes is ‟n uitdaging. Om hierdie rede fokus baie navorsers hul aandag op die autosomaal dominante hartspier siekte, hipertrofiese kardiomiopatie (HKM), wat beskou word as 'n model siekte om die molekulêre oorsake onderliggend tot geïsoleerde kardiovaskulêre hipertrofie te ondersoek. HKM is 'n heterogene siekte wat manifesteer met verskeie fenotipes en kliniese simptome, selfs in families met dieselfde genetiese defekte, wat impliseer dat addisionele faktore bydra tot die modifisering van die siekte fenotipe. Ten spyte van die identifisering van verskeie HKM-versoorsakende gene, bly die genetiese faktore wat die mate van hipertrofie in HKM pasiente modifiseer relatief onbekend. Die geen wat kodeer vir die sarkomeriese proteïen, kardiale miosien-bindingsproteïen C (kMyBPC) is die algemeenste betrokke in HKM. Die identifisering van proteïene wat bind met kMyBPC het gelei tot verbeterde insigte tot die funksie van hierdie proteïen en die rol wat hierdie proteïen in hipertrofie speel. Ten spyte hiervan, is daar baie min inligting beskikbaar oor 'n ander lid van die miosien-bindingsproteïen families, miosien-bindingsproteïen H (MyBPH). Gegewe die ooreenstemming tussen die DNA basispaar-volgorde en struktuur tussen hierdie twee proteïene, stel ons voor dat MyBPH, net soos kMyBPC, 'n kritiese rol in die struktuur en funksie van die kardiale sarkomeer speel en kan daarom betrokke wees in die patogenese van HKM. Die huidige studie het beoog om proteïene wat met MyBPH bind te identifiseer deur die gebruik van gis-twee-hibried (G2H) kardiale biblioteek sifting en om hierdie interaksies te verifieer met behulp van drie-dimensionele (3D) ko-lokalisering en ko-immunopresipitasie eksperimente. Ons het verder gehipotiseer dat beide MyBPH and kMyBPC betrokke kan wees in outofagie. Om hierdie hipotese te toets is beide MyBPH en kMyBPC geanaliseer vir ko-lokalisering met 'n merker vir outofagie, LC3b-II. Verder het ons beplan om die rol van MyBPH en kMyBPC in kardiale spiersel-sametrekking te ondersoek deur die oppervlak van gedifferensieerde H9c2 rot kardiomiosiete in reaksie op β-adrenergiese stres te meet, na individuele en gesamentlike siRNA-bemiddelde uitklopping van MyBPH en kMyBPC. In hierdie studie het ons 'n familie-gebaseerde genetiese assosiasie analise benadering gevolg om vas te stel of MyBPH en gene wat kodeer vir die geverifieerde bindingsgenote van MyBPH bydra tot die modifisering van die hipertrofiese fenotipe. Die doel van hierdie studie was om die hipertrofiese effek van 38 enkel nukleotied polimorfismes (SNPs) en haplotipes in vier kandidaat HKM modifiserende gene in 388 individue van 27 HCM families te toets, waarin drie unieke Suid-Afrikaanse HKM-stigters mutasies segregeer. G2H analise het drie verneemde MyBPH bindingsgenote geidentifiseer, naamlik miosien (MYH7), alfa kardiale aktien (ACTC1) en die SUMO-konjugerende ensiem UBC9 (UBC9). Hierdie interaksies is geverifieer deur middel van 3D ko-lokalisering en ko-immunopresipitasie analises. Verder is bewys dat MyBPH en kMyBPC betrokke is in outofagie, siende dat beide proteïene gewerf is tot die membraan van die outofagosoom. 'n Kardiale sametrekkings eksperiment het gevind dat die gesamentlike siRNA-bemiddelde uitklopping van MyBPH en kMyBPC 'n merkwaardige vermindering in die kardiomiosiet sametrekking veroorsaak het in reaksie op β-adrenergiese stres kondisies, in vergelyking met die individuele proteïen en kontrole uitkloppings eksperimente. Hierdie resultate bevestig dat MyBPH vir kMyBPC kan instaan en ook andersom, wat verder bevestig dat beide proteïene benodig word vir effektiewe sarkomeer sametrekking. Resultate van die genetiese assosiasie studie het gevind dat 'n aantal SNPs en haplotipes 'n beduidende effek of HKM hipertrofie het. Enkel SNP en haplotipe analises in gene wat kodeer vir MyBPH, MYH7, ACTC1 en UBC9 het SNPs en haplotipes geidentifiseer wat bydra tot die omvang van hipertrofie in HKM. Verder het ons gevind dat sekere SNPs en haplotipes kenmerkend verskillende statisties beduidende effekte in die teenwoordigheid van elk van die drie HKM-stigter mutasies gehad het. Die resultate van hierdie studie skryf twee nuwe funksies aan MyBPH toe. Kardiale MyBPC en MyBPH speel 'n kritiese rol in sarkomeer sametrekking en is betrokke in outofagie. Hierdie resultate het verdere implikasies vir die verstaan van die pato-etiologie van die HKM-veroorsakende mutasies in die MyBPH, MYH7, ACTC1 en UBC9 gene. So vêr dit ons kennis strek is dit die eerste genetiese assosiasie studie wat die modifiserende effek van bindingsgenote van MyBPH ondersoek as risiko aanduiding vir die ontwikkeling van LVH in die konteks van HKM. Ons bevindinge bewys dat die hipertrofiese fenotipe van HKM gemoduleer word deur die komplekse effekte van SNPs en haplotipes in die MyBPH geen en gene wat MyBPH proteïen-bindingsgenote enkodeer. Hierdie resultate verskaf dus 'n basis vir toekomstige studies om die risiko profiel van hipertrofie ontwikkeling met betrekking tot HKM te ondersoek, wat gevolglik kan bydra tot die verbeterde risiko stratifikasie en pasiënte bestuur.
Squarci, Caterina. "The structural dynamics of titin in situ and its role in contraction and relaxation of the striated muscle." Doctoral thesis, 2021. http://hdl.handle.net/2158/1238953.
Повний текст джерелаЧастини книг з теми "Sarcomere mechanics"
Iwazumi, Tatsuo. "Mechanics of the Sarcomere." In Cardiac Mechanics and Function in the Normal and Diseased Heart, 13–22. Tokyo: Springer Japan, 1989. http://dx.doi.org/10.1007/978-4-431-67957-8_2.
Повний текст джерелаNapiwocki, Brett N., Max R. Salick, Randolph S. Ashton, and Wendy C. Crone. "Polydimethylsiloxane Lanes Enhance Sarcomere Organization in Human ESC-Derived Cardiomyocytes." In Mechanics of Biological Systems and Materials, Volume 6, 105–11. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21455-9_12.
Повний текст джерелаThompson, Brian R., Michelle L. Asp, and Joseph M. Metzger. "Molecular Mechanism of Sarcomeric Cardiomyopathies." In Congestive Heart Failure and Cardiac Transplantation, 151–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44577-9_10.
Повний текст джерелаSquire, John M., Pradeep K. Luther, and Edward P. Morris. "Organisation and Properties of the Striated Muscle Sarcomere." In Molecular Mechanisms in Muscular Contraction, 1–48. London: Macmillan Education UK, 1990. http://dx.doi.org/10.1007/978-1-349-09814-9_1.
Повний текст джерелаTrombitás, Károly, and Gerald H. Pollack. "Elastic Properties of Connecting Filaments Along the Sarcomere." In Mechanism of Myofilament Sliding in Muscle Contraction, 71–79. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2872-2_7.
Повний текст джерелаter Keurs, Henk EDJ, and Pieter P. de Tombe. "Determinants of Velocity of Sarcomere Shortening in Mammalian Myocardium." In Mechanism of Myofilament Sliding in Muscle Contraction, 649–65. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2872-2_58.
Повний текст джерелаEhler, Elisabeth, and Jean-Claude Perriard. "Emergence of the First Myofibrils and Targeting Mechanisms Directing Sarcomere Assembly in Developing Cardiomyocytes." In Myofibrillogenesis, 41–58. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0199-1_3.
Повний текст джерела"Sarcomeric Proteins in LGM D." In Molecular Mechanisms of Muscular Dystrophies, 153–59. CRC Press, 2006. http://dx.doi.org/10.1201/9781498713962-16.
Повний текст джерелаArnar, David O., and Hilma Holm. "Mechanisms of atrial fibrillation: genetics." In ESC CardioMed, 2120–25. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0497.
Повний текст джерелаLazzeroni, Davide, and Claudio Stefano Centorbi. "Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Diagnosis, Clinical Course and Therapy." In Cardiomyopathy - Disease of the Heart Muscle [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97033.
Повний текст джерелаТези доповідей конференцій з теми "Sarcomere mechanics"
LUMENS, JOOST, TAMMO DELHAAS, BORUT KIRN, and THEO ARTS. "MODELING VENTRICULAR INTERACTION: A MULTISCALE APPROACH FROM SARCOMERE MECHANICS TO CARDIOVASCULAR SYSTEM HEMODYNAMICS." In Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812776136_0037.
Повний текст джерелаLin, D., and W. C. Hunter. "Method to orient cardiac tissue specimens for uniaxial mechanical testing with long axis parallel to sarcomeres." In 2011 37th Annual Northeast Bioengineering Conference (NEBEC). IEEE, 2011. http://dx.doi.org/10.1109/nebc.2011.5778647.
Повний текст джерелаHsu, Hui-Ju, Andrea Locke, Susan Q. Vanderzyl, and Roland Kaunas. "Stretch-Induced Stress Fiber Remodeling and MAPK Activations Depend on Mechanical Strain Rate." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53464.
Повний текст джерелаBryan, Andrea, Amy Sung, Ian Lian, and Jeffrey Omens. "The Role of Tropomodulin in Cardiac Function and Remodeling." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61363.
Повний текст джерелаWei, Ailin, Zhonghai Wang, Zongming Yang, Shenghao Tan, Tong Ye, Yonghong Shao, Thomas K. Borg, and Bruce Z. Gao. "Study of the sarcomeric addition process in a tissue-like cell construct under mechanical overload via TPEF-SHG imaging system." In Multiphoton Microscopy in the Biomedical Sciences XX, edited by Ammasi Periasamy, Peter T. So, and Karsten König. SPIE, 2020. http://dx.doi.org/10.1117/12.2546280.
Повний текст джерелаKidambi, Narayanan, R. L. Harne, and K. W. Wang. "Strain Energy Trapping due to Energetic Asymmetry in Modular Structures Inspired by Muscle Cross-Bridges." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59556.
Повний текст джерела