Добірка наукової літератури з теми "Sandre – Reproduction (biologie)"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Sandre – Reproduction (biologie)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Sandre – Reproduction (biologie)":

1

Richard, C., S. Degrelle, V. Gelin, A. Neveux, P. Chavatte-Palmer, Y. Heyman, and I. Hue. "85 Elongation of trophoblastic vesicles between Days 15 and 18 in cattle." Reproduction, Fertility and Development 31, no. 1 (2019): 168. http://dx.doi.org/10.1071/rdv31n1ab85.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Once formed, bovine blastocysts differentiate while growing exponentially from 150-200μm (Days 7 or 8) to 200-250mm (Days 17 to 18; Sandra et al. 2017 Annu. Rev. Anim. Biosci. 5, 205-228). Thus, the length of the conceptus doubles every day between Days 9 and 16 (Berg et al. 2010 Theriogenology 73, 250-260); however, this was observed on whole conceptuses. The objective of the current study was to test whether this elongation rate is similar when the embryonic disc has been excised. Six heifers were used to produce Day-15 conceptuses, either fully developed in vivo or developed in vivo for a week after embryo transfer of Day 8in vitro-produced blastocysts. Day 15 conceptuses were recovered, measured, and cut into pieces to produce trophoblastic vesicles (TV; Heyman et al. 1984 J. Reprod. Fertil. 70, 533-540) of 4±0.07 or 4.4±0.65mm long (mean±standard error of the means) for in vivo- or in vitro-produced TV, respectively. All TV were transferred into oestrus-synchronized recipients (5 heifers and 1 cow). Each female received 8-9 TV so that a total of 24in vivo-derived and 26in vitro-produced TV were transferred in utero for a period of 3 days. The TV originating from different Day-15 conceptuses were mixed at the time of transfer, so that each recipient received the TV from different origins (conceptus and donor cow). Transcervical collection was used at Day 15 and 18 for conceptus and TV recovery (Richard et al. 2015 Theriogenology 83, 1101-1109). At Day 18, TV elongation size was analysed (mean±standard error of the means) by unpaired t-test using GraphPad Prism software (GraphPad Inc., San Diego, CA, USA). At Day 15, conceptuses from the in vivo and in vitro groups displayed different sizes and length variabilities (24-32v. 2-24mm, respectively). At Day 18, TV recovery rate was 79% for the in vivo- v. 62% for the in vitro-derived group and mean elongation rate (over 3 days) was ×5.4 (minimum=2.5, maximum=10) v. ×7.6 (minimum=0.7, maximum=20.5), respectively. There was no significant difference for TV size between groups at Day 18 (21.75±2.24 mm v. 33.38±11.63mm, respectively). Altogether, the variability in length at Day 15 was previously reported, the difference in TV recovery between in vivo and in vitro groups reached 17% and was similar to the loss of 11% that occurs in the first week after classical embryo transfer. In opposition to studies where in vitro-produced conceptuses were shorter than in vivo-developed ones, in vivo and in vitro groups of TV likely followed similar growth. Whether this reflects a normal growth awaits further studies.

Дисертації з теми "Sandre – Reproduction (biologie)":

1

Roche, Jennifer. "Implication des récepteurs de la dopamine dans la régulation de l’axe gonadotrope lors de la période pré-ovulatoire chez le sandre, Sander lucioperca." Electronic Thesis or Diss., Université de Lorraine, 2018. http://www.theses.fr/2018LORR0234.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans le cadre de la production de nouvelles espèces aquacoles, le sandre, Sander lucioperca, est devenu, depuis plusieurs années, une espèce d’intérêt piscicole en raison de sa valeur économique potentielle. Pour développer et pérenniser sa production aquacole, il est nécessaire de comprendre et maîtriser son cycle de reproduction ainsi que les mécanismes physiologiques mis en jeu afin d’obtenir des œufs et des juvéniles viables tout au long de l’année. Dans cet optique d’optimisation du contrôle du cycle, la dopamine apparaît, chez de nombreux téléostéens dont certains perciformes, comme un inhibiteur de l’axe gonadotrope, via les récepteurs de la famille D2, en bloquant le pulse ovulatoire de LH et l’ovulation. Chez le sandre, le rôle de la dopamine et de ses récepteurs, notamment les récepteurs de la famille D1, est inconnu. L’objet de cette thèse est de déterminer le rôle du système dopaminergique lors des phases finales de l’ovogénèse chez le sandre à travers trois axes principaux : (1) déterminer l’effet du blocage des récepteurs de la dopamine, D1 ou D2, sur la régulation de l’axe gonadotrope et l’induction de l’ovulation en absence et en présence d’une molécule de sGnRHa, (2) définir le répertoire et le profil d’expression des récepteurs dopaminergiques par l’étude du transcriptome cérébral du sandre en période pré-ovulatoire et (3) établir le rôle de la dopamine et de ses différents récepteurs (familles D1 et D2) dans la régulation directe et locale de l’axe gonadotrope aux niveaux cérébral et ovarien. La première partie de ce travail a permis pour la première fois, par l’utilisation d’antagonistes spécifiques des familles de récepteurs D1 et D2, de mettre en évidence un rôle potentiel de la dopamine sur la sécrétion de certains stéroïdes sexuels en période pré-ovulatoire chez le sandre par l’intermédiaire des récepteurs de la famille D1. L’identification de l’ensemble des récepteurs de la dopamine existant chez le sandre nous a permis de confirmer leur expression à tous les niveaux de l’axe gonadotrope (cerveau, hypophyse et ovaires) étayant l’hypothèse d’un rôle de la dopamine dans la reproduction du sandre. Enfin, la dernière partie de ce projet a permis de montrer un rôle régulateur du système dopaminergique, directement au niveau ovarien, sur la production de testostérone par l’intermédiaire des deux familles de récepteurs de la dopamine. L’implication des deux familles de récepteurs a également été mise en évidence dans la production ovarienne de la 17β-estradiol. Au niveau cérébral, seule la famille des récepteurs D2 a été montrée impliquée dans la régulation de l’expression du gène de la GnRH-3. De façon générale, cette étude a permis de mettre en évidence l’implication des récepteurs de la dopamine dans la régulation de l’axe gonadotrope lors des phases finales de l’ovogenèse. Toutefois, des travaux ultérieurs devront être menés pour approfondir les mécanismes physiologiques mis en jeu. D’un point de vue aquacole, les traitements hormonaux à base d’antagonistes des récepteurs de la dopamine ont été inefficaces pour améliorer les performances de reproduction du sandre ce qui n’est pas en faveur de leur utilisation future pour induire l’ovulation chez cette espèce. Ainsi, la mise au point d’autres méthodes d’optimisation sera nécessaire pour continuer à développer la production aquacole du sandre
Pikeperch, Sander lucioperca, is a potential valuable economic fish, making it a species of interest for aquaculture diversification. In the domestication process, controlling and understanding the reproductive cycle is a crucial step in order to produce viable offspring in a synchronous and predictable way. In many teleosts including some perciforms, dopamine inhibits the ovulatory pulse of LH and the ovulation step through D2 dopamine receptors family. In pikeperch, the roles of dopamine and its receptors, especially those belonging to the D1 receptors family, are unknown. For the purpose of the optimization of pikeperch reproduction, we investigated the role of the dopaminergic system during the final stages of oogenesis in this species: (1) by determining the effects of D1 or D2 receptor antagonists alone or in association with sGnRHa on the regulation of the reproductive axis and on the induction of ovulation, (2) by determining the repertoire and the expression profile of the dopamine receptors using a brain transcriptome analysis during the pre-ovulatory period and (3) by evaluating the role of dopamine and its receptors (D1 and D2 families) in the direct and local regulation of the gonadotropic axis at the brain and ovarian levels. For the first time, we showed that the dopamine/D1 receptors complex regulates the sex-steroids release during the pre-ovulatory period, suggesting that dopamine is involved in pikeperch reproduction. Also, we support its involvement thanks to the identification of the dopamine receptors gene expression at the brain, pituitary and ovarian levels. Finally, we showed that the dopaminergic system directly regulates the ovarian testosterone production, through both D1 and D2 receptor families. The involvement of both dopamine receptor families was also highlighted on ovarian 17β-estradiol production. Only the D2 receptor family was shown to be involved on the brain GnRH-3 gene expression. In conclusion, we point out a dopamine receptors implication on the gonadotropic axis regulation during the final stages of oogenesis in pikeperch. However, further studies should be performed to pinpoint the physiological mechanisms behind this phenomenon. From an aquaculture point of view, hormonal treatments with dopamine receptor antagonists appear to be ineffective to improve pikeperch reproductive performances. Therefore, their use to induce pikeperch ovulation should be put into question and the development of alternative methods is necessary to further promote pikeperch production
2

Blawut, Bryan Joseph. "Assisted Reproduction Techniques’ Effects on Sperm Physiology of the Freshwater Fish, Sauger (Sander canadensis)." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1607012858031537.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kumm, Sandra [Verfasser]. "Reproduction, progenesis, and embryogenesis of thrips (Thysanoptera: Insecta) / von Sandra Kumm." 2002. http://d-nb.info/965449874/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Sandre – Reproduction (biologie)":

1

Pullaiah, T. "Reproductive Biology." In Red Sanders: Silviculture and Conservation, 77–84. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7627-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Maun, M. Anwar. "Seed dispersal." In The Biology of Coastal Sand Dunes. Oxford University Press, 2009. http://dx.doi.org/10.1093/oso/9780198570356.003.0008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dispersal is a term used for the dissemination of detached reproductive structures from parent plants to a new site. Disseminules include spores, seeds, fruits, whole inflorescences, whole plants, fragments of the parent plant, bulbs and bulbils. Fruit attributes related to a particular dispersal agent or dispersal syndromes are complex and have resulted from millions of years of evolution. In practice, dispersal is mainly local, although some species of sea coasts are well adapted for long-distance dispersal. Knowledge of the modes of plant dispersal is vital to the study of coastal dune ecology because of the clear correlation between diversity and dispersal mechanisms. From the evolutionary point of view, dispersal improves fitness of species: the progeny is able to colonize a new site and extend the range of the species. The fitness here will be defined as getting to a coastal site by using any vector for dispersal, colonization of the new site (germination, establishment and reproduction) and dispersal of the propagules of the immigrant from the new site. Dispersal confers many benefits to the populations of plant species. It reduces competition for limited space and resources in the parental location and the more widely dispersed the propagules, the greater are the chances for the offspring to colonize elsewhere. Dispersal increases the chances of survival and evolution of more fit strains of a species by occupying more diverse habitats than the parents, and speciation may eventually occur in response to new selective pressures. For species adapted to live along sea coasts, dispersal by sea is primarily directed for dissemination to another site by the sea coast. During dispersal several physiological changes may occur in the disseminules that facilitate colonization of the species at the new habitat. For example, Barbour (1972) reported that immersion of upper fruits of Cakile maritima in seawater stimulated their subsequent germination under controlled conditions. Seed coat dormancy may also be broken by abrasion of seeds in sand while being rolled along the sand surface. Considering the large number of species along coasts and on islands, only a very few species may be successfully disseminated in seawater.
3

Maun, M. Anwar. "The sand dune environment." In The Biology of Coastal Sand Dunes. Oxford University Press, 2009. http://dx.doi.org/10.1093/oso/9780198570356.003.0007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The micro-environmental conditions of different soil habitats are influenced by prevailing vegetation, aspect, soil texture, soil colour and other variables that influence the incoming and outgoing solar energy. The variability is especially pronounced in sand dunes because of shifting substrate, burial by sand, bare areas among plants, porous nature of sand and little or no organic matter, especially during the early stages of dune development. Even within a dune system there is disparity in radiative heating of different habitats that is manifested as variation in micro-environmental factors such as relative humidity, temperature, light, moisture content and wind turbulence. The major factor affecting these changes is the establishment of vegetation that stabilizes the surface, adds humus, develops shade, aids in the development of soil structure and reduces the severity of drought on the soil surface. The system changes from an open desert-like sandy substrate on the beach to a mature, well-developed soil system with luxuriant plant communities. The principal topics discussed in this chapter include accounts of micro-environmental factors of coastal sand dunes that influence the growth and reproduction of colonizing species. The water content of the substratum in sandy soils is one of the most important limiting factors in plant growth. Sandy soils have high porosity and after a rain most of the water is drained away from the habitat because of the large interstitial spaces between soil particles and the low capacity of sand to retain water. Evaporation in open dune systems also removes substantial quantities of water. Lichter (1998) showed that evaporation was greater on non-forested dune ridges than on forested areas and the rate of soil drying was influenced by soil depth and dune location. After 3 days of a heavy rainfall there was a drastic decrease in the percentage of moisture (67–80%) at 0–5 cm levels in open habitats compared to only 30–36% in the forested dune ridges. The same measurements at 10–15 cm depths showed much lower reduction in the percentage of moisture. In the swale (slack) even though the evaporative demand was the same, there was actually an increase in moisture because of seepage from the dune ridges.
4

Maun, M. Anwar. "Plant communities." In The Biology of Coastal Sand Dunes. Oxford University Press, 2009. http://dx.doi.org/10.1093/oso/9780198570356.003.0016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Plant communities of the dune complex are a result of interaction between tolerance of plant species and sandy substrate, high wind velocities, salt spray, sand accretion and environmental heterogeneity. Propagules of many plant species are dispersed by water currents and deposited on the driftline. Most of these species find ideal conditions for germination but seedling establishment, growth and reproduction is denied to all but a few species with ecological amplitude sufficient to withstand the physical stresses associated with sand accretion, erosion and sandblasting in the highly disturbed environment. The distinct differences between habitats from the water´s edge to the inland grass-forest ecotone leads eventually to the establishment of ecologically distinct communities consisting of both plants and animals. The distinction is caused by sharp differences in the physical environment that may create sharp zones with abrupt or gradual blending of the two community types. In some locations these zones are relatively stable for long periods before any visible change occurs in the community depending on the recession of the shoreline, availability of new bare areas and the advance of communities towards the sea coast. The occurrence of plant communities in zones has been documented along sea coasts worldwide. This chapter examines the plant communities of the sand dune complex along seashores of the world. The following information has been assembled from Doing (1985), Dry coastal ecosystems Vol. 2 A, B, C, edited by Eddy van der Maarel (1993), Doody (1991) and Thannheiser (1984). It presents data on plant communities and ecology of each zone from various parts of the world. The species complement in the ´foredune complex´ in tropical, temperate and other regions around the world may be different, but their response to the prevailing environmental stresses of foredunes is convergent. In different world regions the boundaries between vegetation zones of the sand dune complex may not be defined sharply because of climatic variability, geographic location, physiography of the dune system and other factors peculiar to each location. Usually three to six different plant assemblages have been identified on the dune complex along sea coasts and lakeshores. A brief description of vegetation and ecological traits of species in each zone are presented below.

До бібліографії