Добірка наукової літератури з теми "Sachdev-Ye-Kitaev"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Sachdev-Ye-Kitaev".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Sachdev-Ye-Kitaev"

1

Liu, Yizhuang, Maciej A. Nowak, and Ismail Zahed. "Disorder in the Sachdev–Ye–Kitaev model." Physics Letters B 773 (October 2017): 647–53. http://dx.doi.org/10.1016/j.physletb.2017.08.054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bagrets, Dmitry, Alexander Altland, and Alex Kamenev. "Sachdev–Ye–Kitaev model as Liouville quantum mechanics." Nuclear Physics B 911 (October 2016): 191–205. http://dx.doi.org/10.1016/j.nuclphysb.2016.08.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cao, Ye, Yi-Neng Zhou, Ting-Ting Shi, and Wei Zhang. "Towards quantum simulation of Sachdev-Ye-Kitaev model." Science Bulletin 65, no. 14 (July 2020): 1170–76. http://dx.doi.org/10.1016/j.scib.2020.03.037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Polchinski, Joseph, and Vladimir Rosenhaus. "The spectrum in the Sachdev-Ye-Kitaev model." Journal of High Energy Physics 2016, no. 4 (April 2016): 1–25. http://dx.doi.org/10.1007/jhep04(2016)001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Khramtsov, M. A. "Spontaneous Symmetry Breaking in the Sachdev–Ye–Kitaev Model." Physics of Particles and Nuclei 51, no. 4 (July 2020): 557–61. http://dx.doi.org/10.1134/s1063779620040401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bandyopadhyay, Soumik, Philipp Uhrich, Alessio Paviglianiti, and Philipp Hauke. "Universal equilibration dynamics of the Sachdev-Ye-Kitaev model." Quantum 7 (May 24, 2023): 1022. http://dx.doi.org/10.22331/q-2023-05-24-1022.

Повний текст джерела
Анотація:
Equilibrium quantum many-body systems in the vicinity of phase transitions generically manifest universality. In contrast, limited knowledge has been gained on possible universal characteristics in the non-equilibrium evolution of systems in quantum critical phases. In this context, universality is generically attributed to the insensitivity of observables to the microscopic system parameters and initial conditions. Here, we present such a universal feature in the equilibration dynamics of the Sachdev-Ye-Kitaev (SYK) Hamiltonian – a paradigmatic system of disordered, all-to-all interacting fermions that has been designed as a phenomenological description of quantum critical regions. We drive the system far away from equilibrium by performing a global quench, and track how its ensemble average relaxes to a steady state. Employing state-of-the-art numerical simulations for the exact evolution, we reveal that the disorder-averaged evolution of few-body observables, including the quantum Fisher information and low-order moments of local operators, exhibit within numerical resolution a universal equilibration process. Under a straightforward rescaling, data that correspond to different initial states collapse onto a universal curve, which can be well approximated by a Gaussian throughout large parts of the evolution. To reveal the physics behind this process, we formulate a general theoretical framework based on the Novikov–Furutsu theorem. This framework extracts the disorder-averaged dynamics of a many-body system as an effective dissipative evolution, and can have applications beyond this work. The exact non-Markovian evolution of the SYK ensemble is very well captured by Bourret–Markov approximations, which contrary to common lore become justified thanks to the extreme chaoticity of the system, and universality is revealed in a spectral analysis of the corresponding Liouvillian.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rashkov, Radoslav. "Integrable structures in low-dimensional holography and cosmologies." International Journal of Modern Physics A 33, no. 34 (December 10, 2018): 1845008. http://dx.doi.org/10.1142/s0217751x18450082.

Повний текст джерела
Анотація:
We focus on the integrable properties in low-dimensional holography. The motivation is that most of the integrable structures underlying holographic duality survive weak-strong coupling transition. We found relation between certain integrable structures in low-dimensional holography and key characteristics of the theories. We propose generalizations to higher spin (HS) theories including Sachdev–Ye–Kitaev (SYK) model. We comment on some of the intriguing relations found in this study.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nishinaka, Takahiro, and Seiji Terashima. "A note on Sachdev–Ye–Kitaev like model without random coupling." Nuclear Physics B 926 (January 2018): 321–34. http://dx.doi.org/10.1016/j.nuclphysb.2017.11.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fusy, É., L. Lionni, and A. Tanasa. "Combinatorial study of graphs arising from the Sachdev–Ye–Kitaev model." European Journal of Combinatorics 86 (May 2020): 103066. http://dx.doi.org/10.1016/j.ejc.2019.103066.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhang, Pengfei, and Hui Zhai. "Topological Sachdev-Ye-Kitaev model." Physical Review B 97, no. 20 (May 22, 2018). http://dx.doi.org/10.1103/physrevb.97.201112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Sachdev-Ye-Kitaev"

1

Pascalie, Romain. "Tenseurs aléatoires et modèle de Sachdev-Ye-Kitaev." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0099.

Повний текст джерела
Анотація:
Dans cette thèse nous traitons de différents aspects des tenseurs aléatoires. Dans la première partie de la thèse, nous étudions la formulation des tenseurs aléatoires en termes de théorie quantique des champs nommée théorie de champs tensoriels (TFT). En particulier nous déterminons les équations de Schwinger-Dyson pour une TFT de tenseurs de rang arbitraire, munie d'un terme d'intéraction quartic melonique U(N)-invariant.Les fonctions de corrélations sont classifiées par des graphes de bords et nous utilisons l'identité de Ward-Takashi pour déterminer le système complet d'équations de Schwinger-Dyson, exactes et analytiques, vérifiées par les fonctions de corrélations avec un graphe de bord connexe.Nous analysons ensuite la limite de grand N des équations de Schwinger-Dyson à rang 3 et trouvons les facteurs appropriés en puissance de N des différents termes de l'action. Cela nous permet de résoudre les équations de Schwinger-Dyson pour la fonction à 2-points d'une TFT avec seulement une intéraction quartique mélonique, dont la solution est basée sur la fonction W de Lambert, en utilisant une expansion perturbative et la resommation de Lagrange-Bürmann. Les fonctions de corrélation à plus haut nombre de points s'obtiennent récursivement.Dans la deuxième partie de la thèse, nous nous intéressons au modèle de Sachdev-Ye-Kitaev (SYK) qui est très similaires aux modèles de tenseurs. Il s'agit d'un modèle composé de N fermions qui intéragissent q à la fois et dont le couplage est un tensor moyenné selon une distribution Gaussienne. Nous étudions les effets du moyennage des couplages aléatoires selon une distributions non-Gaussienne dans une version complexe du modèle SYK. En utilisant une équation de type Polchinski et l'universalité de tenseurs aléatoires Gaussiens, nous montrons que le moyennage selon une distribution non-Gaussienne correspond à l'ordre dominant en N à un moyennage Gaussien avec une variance modifiée. Nous déterminons ensuite la forme de l'action effective à tout ordre et réalisons un calcul explicite de la modification de la variance dans le cas d'une perturbation quartique.Dans la troisième partie de la thèse, nous étudions une application des tenseurs aléatoires à l'étude des systèmes non-linéaire résonants. Nous nous focalisons sur un modèle typique, similaire au modèle SYK bosonique, dont le couplage tensoriel entre les modes est moyenné selon une distribution Gaussienne, ainsi que les conditions initiales. Dans la limite o`u la configuration initiale possède un grand nombre de modes excités, nous calculons la variance de normes de Sobolev qui caractérisent la représentativité du modèle moyenné pour cette classe de systèmes résonants
This thesis treats different aspects of random tensors. In the first part of the thesis, we study the formulation of random tensors as a quantum field theory called tensor field theory (TFT). In particular we derive the Schwinger-Dyson equations for a tensor field theory with an U(N)-invariant melonic quartic interactions, at any tensor rank. The correlation functions are classified by boundary graphs and we use the Ward-Takahashi identity to derive the complete tower of exact, analytic Schwinger-Dyson equations for correlation functions with connected boundary graph.We then analyse the large N limit of the Schwinger-Dyson equations for rank 3 tensors. We find the appropriate scalings in powers of N for the various terms present in the action. This enable us to solve the closed Schwinger-Dyson equation for the 2-point function of a TFT with only one quartic melonic interaction, in terms of Lambert's W-function, using a perturbative expansion and Lagrange-Bürmann resummation. Higher-point functions are then obtained recursively.In the second part of the thesis, we study the Sachdev-Ye-Kitaev (SYK) model which is closely related to tensor models. The SYK model is a quantum mechanical model of N fermions who interact q at a time and whose coupling constant is a tensor average over a Gaussian distribution. We study the effect of non-Gaussian average over the random couplings in a complex version of the SYK model. Using a Polchinski-like equation and random tensor Gaussian universality, we show that the effect of this non-Gaussian averaging leads to a modification of the variance of the Gaussian distribution of couplings at leading order in N. We then derive the form of the effective action to all orders and perform an explicit computation of the modification of the variance in the case of a quartic perturbation.In the third part of the thesis, we analyse an application of random tensors to non-linear resonant system. Focusing on a typical model similar to the SYK model but with bosons instead of fermions, we perform a Gaussian averaging both for the tensor coupling between modes and for the initial conditions. In the limit when the initial configuration has many modes excited, we compute the variance of the Sobolev norms to characterise how representative the averaged model is of this class of resonant systems
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bala, Subramanian P. N. "Applications of Holography." Thesis, 2018. https://etd.iisc.ac.in/handle/2005/5294.

Повний текст джерела
Анотація:
This thesis consists of four parts. In the first part of the thesis, we investigate the phase structure of Einstein-Maxwell-Scalar system with a negative cosmological constant. For the conformally coupled scalar, an intricate phase diagram is charted out between the four relevant solutions: global AdS, boson star, Reissner-Nordstrom black hole and the hairy black hole. The nature of the phase diagram undergoes qualitative changes as the charge of the scalar is changed, which we discuss. We also discuss the new features that arise in the extremal limit. In the second part, we do a systematic study of the phases of gravity coupled to an electromagnetic field and charged scalar in flat space, with box boundary conditions. The scalar-less box has previously been investigated by Braden, Brown, Whiting and York (and others) before AdS/CFT and we elaborate and extend their results in a language more familiar from holography. The phase diagram of the system is analogous to that of AdS black holes, but we emphasize the differences and explain their origin. Once the scalar is added, we show that the system admits both boson stars as well as hairy black holes as solutions, providing yet another way to evade flat space no-hair theorems. Furthermore both these solutions can exist as stable phases in regions of the phase diagram. The final picture of the phases that emerges is strikingly similar to that of holographic superconductors in global AdS, discussed in part one. We also point out previously unnoticed subtleties associated to the definition quasi-local charges for gravitating scalar fields in finite regions. In part three, we investigate a class of tensor models which were recently outlined as potentially calculable examples of holography, as their perturbative large-N behavior is similar to the Sachdev-Ye-Kitaev (SYK) model, but they are fully quantum mechanical (in the sense that there is no quenched disorder averaging). We explicitly diagonalize the simplest nontrivial Gurau-Witten tensor model and study its spectral and late-time properties. We find parallels to (a single sample of) SYK where some of these features were recently attributed to random matrix behavior and quantum chaos. In particular, after a running time average, the spectral form factor exhibits striking qualitative similarities to SYK. But we also observe that even though the spectrum has a unique ground state, it has a huge (quasi-?)degeneracy of intermediate energy states, not seen in SYK. If one ignores the delta function due to the degeneracies however, there is level repulsion in the unfolded spacing distribution hinting chaos. Furthermore, the spectrum has gaps and is not (linearly) rigid. The system also has a spectral mirror symmetry which we trace back to the presence of a unitary operator with which the Hamiltonian anticommutes. We use it to argue that to the extent that the model exhibits random matrix behavior, it is controlled not by the Dyson ensembles, but by the BDI (chiral orthogonal) class in the Altland-Zirnbauer classification. In part four, we construct general asymptotically Klebanov-Strassler solutions of a five dimensional SU(2) SU(2) Z2 Z2R truncation of IIB supergravity on T1;1, that break supersymmetry. This generalizes results in the literature for the SU(2) SU(2) Z2 U(1)R case, to a truncation that is general enough to capture the deformation of the conifold in the IR. We observe that there are only two SUSY-breaking modes even in this generalized set up, and by holographically computing Ward identities, we confirm that only one of them corresponds to spontaneous breaking: this is the mode triggered by smeared anti-D3 branes at the tip of the warped throat. Along the way, we address some aspects of the holographic computation of one-point functions of marginal and relevant operators in the cascading gauge theory. Our results strengthen the evidence that if the KKLT construction is meta-stable, it is indeed a spontaneously SUSY-broken (and therefore bona fide) vacuum of string theory.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Sachdev-Ye-Kitaev"

1

Tanasa, Adrian. Combinatorial Physics. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895493.001.0001.

Повний текст джерела
Анотація:
After briefly presenting (for the physicist) some notions frequently used in combinatorics (such as graphs or combinatorial maps) and after briefly presenting (for the combinatorialist) the main concepts of quantum field theory (QFT), the book shows how algebraic combinatorics can be used to deal with perturbative renormalisation (both in commutative and non-commutative quantum field theory), how analytic combinatorics can be used for QFT issues (again, for both commutative and non-commutative QFT), how Grassmann integrals (frequently used in QFT) can be used to proCve new combinatorial identities (generalizing the Lindström–Gessel–Viennot formula), how combinatorial QFT can bring a new insight on the celebrated Jacobian conjecture (which concerns global invertibility of polynomial systems) and so on. In the second part of the book, matrix models, and tensor models are presented to the reader as QFT models. Several tensor model results (such as the implementation of the large N limit and of the double-scaling limit for various such tensor models, N being here the size of the tensor) are then exposed. These results are natural generalizations of results extensively used by theoretical physicists in the study of matrix models and they are obtained through intensive use of combinatorial techniques (this time mainly enumerative techniques). The last part of the book is dedicated to the recently discovered relation between tensor models and the holographic Sachdev–Ye–Kitaev model, model which has been extensively studied in the last years by condensed matter and by high-energy physicists.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Sachdev-Ye-Kitaev"

1

Das, Sumit R., Animik Ghosh, Antal Jevicki, and Kenta Suzuki. "Duality in the Sachdev-Ye-Kitaev Model." In Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 2, 43–61. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2179-5_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

"Sachdev--Ye--Kitaev Models." In Quantum Phases of Matter, 406–31. Cambridge University Press, 2023. http://dx.doi.org/10.1017/9781009212717.033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tanasa, Adrian. "The Sachdev–Ye–Kitaev (SYK) holographic model." In Combinatorial Physics, 260–90. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895493.003.0015.

Повний текст джерела
Анотація:
In this chapter, we first review the Sachdev–Ye–Kitaev (SYK) model, which is a quantum mechanical model of N fermions. The model is a quenched model, which means that the coupling constant is a random tensor with Gaussian distribution. The SYK model is dominated in the large N limit by melonic graphs, in the same way the tensor models presented in the previous three chapters are dominated by melonic graphs. We then present a purely graph theoretical proof of the melonic dominance of the SYK model. It is this property which led E. Witten to relate the SYK model to the coloured tensor model. In the rest of the chapter we deal with the so-called coloured SYK model, which is a particular case of the generalisation of the SYK model introduced by D. Gross and V. Rosenhaus. We first analyse in detail the leading order and next-to-leading order vacuum, two- and four-point Feynman graphs of this model. We then exhibit a thorough asymptotic combinatorial analysis of the Feynman graphs at an arbitrary order in the large N expansion. We end the chapter by an analysis of the effect of non-Gaussian distribution for the coupling of the model.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tanasa, Adrian. "SYK-like tensor models." In Combinatorial Physics, 291–330. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895493.003.0016.

Повний текст джерела
Анотація:
In this chapter we analyse in detail the diagrammatics of various Sachdev–Ye–Kitaev-like tensor models: the Gurau–Witten model (in the first section), and the multi-orientable and O(N)3-invariant tensor models, in the rest of the chapter. Various explicit graph theoretical techniques are used. The Feynman graphs obtained through perturbative expansion are stranded graphs where each strand represents the propagation of an index nij, alternating stranded edges of colours i and j. However, it is important to emphasize here that since no twists among the strands are allowed, one can easily represent the Feynman tensor graphs as standard Feynman graphs with additional colours on the edges.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії