Дисертації з теми "Rotors – Aerodynamics"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Rotors – Aerodynamics.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "Rotors – Aerodynamics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Taylor, Dana J. "A method for the efficient calculation of elastic rotor blade dynamic response in forward flight." Diss., Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/12396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bitzer, Michael. "Identification of an improved body aerodynamics model for the BO 105." Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/13832.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Atkinson, G. T. "Wind rotors in yaw." Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384765.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Matos, Catherine Anne Moseley. "Download reduction on a wing-rotor configuation." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/12058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mahalingam, Raghavendran. "Structure of the near wake of a rotor in forward flight and its effect on surface interactions." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/11974.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kim, Jaimoo. "An experimental study of the interaction between a rotor wake and an airframe with and without flow separation." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/12173.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Funk, Robert Brent. "Transient interaction between a rotor wake and a lifting surface." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/12245.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chouchane, Mnaouar. "Application of a dynamic stall model to rotor trim and aeroelastic response." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/12368.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Higman, Jerry Paul. "On the indentification of harmonic loads and inflow of a coupled bending-torsion helicopter rotor blade." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/12529.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Stumpf, Walter Martin. "An integrated finite-state model for rotor deformation, nonlinear airloads, inflow and trim." Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/13341.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Xin, Hong. "Development and validation of a generalized ground effect model for lifting rotors." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/11880.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Rigsby, James Michael. "Stability and control issues associated with lightly loaded rotors autorotating in high advance ratio flight." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26536.

Повний текст джерела
Анотація:
Thesis (Ph.D)--Aerospace Engineering, Georgia Institute of Technology, 2009.
Committee Chair: J.V.R. Prasad; Committee Member: Daniel P. Schrage; Committee Member: David A. Peters; Committee Member: Dewey H. Hodges; Committee Member: Lakshmi N Sankar. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Bennetts, Alexander. "Aerodynamic interactions of non-planar rotors." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/aerodynamic-interactions-of-nonplanar-rotors(ede657de-a7d8-43d2-a659-453f31c086c1).html.

Повний текст джерела
Анотація:
The aim of this thesis is to improve understanding of the effects of rotor-rotor interference on small scale rotor systems used on Micro Air Vehicles (MAVs). Previous research on rotor-rotor interactions has focused primarily on planar co-axial and tandem rotors of large scale rotorcraft. The work presented is distinct from prior research not only in its consideration of non-planar rotor systems, but also because of the lower Reynolds numbers and the use of fixed-pitch variable-speed propulsion systems. A design for a novel adjustable rotor interaction test-rig is presented along with a methodology for acquiring accurate and repeatable steady state performance data for two interacting rotor systems. Two six-axis force balances are used to acquire instantaneous and time averaged force and torque data and PIV is used to derive instantaneous and time-averaged flow field data for single and interacting rotor cases. The resulting performance and flow field data represents a unique dataset that can be used in the analysis of small scale rotor interactions, and in the validation of CFD investigations. Results show that for disc angles of between 180 degrees and 90 degrees interactions between rotors are negligible. As the disc angle is reduced from the orthogonal case to the coaxial case interactions significantly effect thrust, pitching moment, and efficiency. It is recommended that in the design of non-planar multirotor vehicles disc angles greater than 75 degrees are utilised to avoid the strong rotor-rotor interactions seen at lower disc angles. A review of existing and future non-planar multirotor concepts shows that the majority avoid significant rotor interactions by virtue of large disc angles.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Yoo, Kyung M. "Unsteady vortex lattice aerodynamics for rotor aeroelasticity in hover and in forward flight." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/11961.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Kaladi, Vasudevan M. "Unsteady compressible lifting surface analysis for rotary wings using velocity potential modes." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/12524.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

He, Chengjian. "Development and application of a generalized dynamic wake theory for lifting rotors." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/12389.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Atilgan, Ali Rana. "Towards a unified analysis methodology for composite rotor blades." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/15403.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Su, Ay. "Application of a state-space wake model to elastic blade flapping in hover." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/11965.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

de, Andrade Donizeti. "Application of finite-state inflow to flap-lag-torsion damping in hover." Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/12412.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Berry, John D. "A method of computing the aerodynamic interactions of a rotor-fuselage configuration in forward flight." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/12936.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Wang, Yi-Ren. "The effect of wake dynamics on rotor eigenvalues in forward flight." Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/13031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Stettner, Martin. "Application of a state-space wake model to a servo flap controlled rotor in hover." Thesis, Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/20202.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Osborne, Denver Jackson Jr. "Time-resolved measurements of a transonic compressor during surge and rotating stall." Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-07102009-040321/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Brand, Albert G. "An experimental investigation of the interaction between a model rotor and airframe in forward flight." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/12433.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Thompson, Thomas L. "Velocity measurements near the blade tip and in the tip vortex core of a hovering model rotor." Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/13003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Schreiber, Olivier. "Aerodynamic interactions between bodies in relative motion." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/11693.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Usta, Ebru. "Application of a symmetric total variation diminishing scheme to aerodynamics of rotors." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/13018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Soykasap, Omer. "Aeroelastic optimization of a composite tilt rotor." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/11823.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Shang, Xiaoyang. "Aeroelastic stability of composite hingeless rotors with finite-state unsteady aerodynamics." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/12543.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Yang, Zhong. "A hybrid flow analysis for rotors in forward flight." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/13016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Kwon, Oh Joon. "A technique for the prediction of aerodynamics and aeroelasticity of rotor blades." Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/12159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Zaki, Afifa Adel. "Using tightly-coupled CFD/CSD simulation for rotorcraft stability analysis." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43579.

Повний текст джерела
Анотація:
Dynamic stall deeply affects the response of helicopter rotor blades, making its modeling accuracy very important. Two commonly used dynamic stall models were implemented in a comprehensive code, validated, and contrasted to provide improved analysis accuracy and versatility. Next, computational fluid dynamics and computational structural dynamics loose coupling methodologies are reviewed, and a general tight coupling approach was implemented and tested. The tightly coupled computational fluid dynamics and computational structural dynamics methodology is then used to assess the stability characteristics of complex rotorcraft problems. An aeroelastic analysis of rotors must include an assessment of potential instabilities and the determination of damping ratios for all modes of interest. If the governing equations of motion of a system can be formulated as linear, ordinary differential equations with constant coefficients, classical stability evaluation methodologies based on the characteristic exponents of the system can rapidly and accurately provide the system's stability characteristics. For systems described by linear, ordinary differential equations with periodic coefficients, Floquet's theory is the preferred approach. While these methods provide excellent results for simplified linear models with a moderate number of degrees of freedom, they become quickly unwieldy as the number of degrees of freedom increases. Therefore, to accurately analyze rotorcraft aeroelastic periodic systems, a fully nonlinear, coupled simulation tool is used to determine the response of the system to perturbations about an equilibrium configuration and determine the presence of instabilities and damping ratios. The stability analysis is undertaken using an algorithm based on a Partial Floquet approach that has been successfully applied with computational structural dynamics tools on rotors and wind turbines. The stability analysis approach is computationally inexpensive and consists of post processing aeroelastic data, which can be used with any aeroelastic rotorcraft code or with experimental data.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Liou, Shiuh-Guang. "Velocity measurements on a lifting rotor/airframe configuration in low speed forward flight." Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/12479.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Huang, Ming-Sheng. "Coupled elastic rotor/body vibrations with inplane degrees of freedom." Diss., Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/12495.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Smith, Marilyn Jones. "A fourth order Euler/Navier-Stokes prediction method for the aerodynamics and aeroelasticity of hovering rotor blades." Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/13058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Sturisky, Selwyn H. "A linear system identification and validaton of an AH-64 apache aeroelastic simulation model." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/13402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Hashemi-kia, Mostafa. "Dynamic testing techniques and applications for an aeroelastic rotor test facility." Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/13887.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Teare, David Alan. "Modeling and system identification for rotorcraft." Thesis, Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/17088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Berezin, Charles Robert. "A coupled Navier-Stokes/full-potential analysis for rotors." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/12329.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Collins, Kyle Brian. "A multi-fidelity framework for physics based rotor blade simulation and optimization." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26481.

Повний текст джерела
Анотація:
Thesis (Ph.D)--Aerospace Engineering, Georgia Institute of Technology, 2009.
Committee Co-Chair: Dr. Dimitri Mavris; Committee Co-Chair: Dr. Lakshmi N. Sankar; Committee Member: Dr. Daniel P. Schrage; Committee Member: Dr. Kenneth S. Brentner; Committee Member: Dr. Mark Costello. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Tatossian, Charles A. "Aerodynamic shape optimization via control theory of helicopter rotor blades using a non-linear frequency domain approach." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112586.

Повний текст джерела
Анотація:
This study presents a discrete adjoint-based aerodynamic optimization algorithm for helicopter rotor blades in hover and forward flight using a Non-Linear Frequency Domain approach. The goal is to introduce a Mach number variation into the Non-Linear Frequency Domain (NLFD) method and implement a novel approach to present a time-varying cost function through a multi-objective adjoint boundary condition. The research presents the complete formulation of the time dependent optimal design problem. The approach is firstly demonstrated for the redesign of a NACA 0007 and a NACA 23012 helicopter rotor blade section in forward flight. A three-dimensional inviscid Aerodynamic Shape Optimization (ASO) algorithm is then employed to validate and redesign the Caradonna and Tung experimental blade. The results in determining the optimum aerodynamic configurations require an objective function which minimizes the inviscid torque coefficient and maintains the desired thrust level at transonic conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Sutkowy, Mark Louis Jr. "Relationship between Rotor Wake Structures and Performance Characteristics over a Range of Low-Reynolds Number Conditions." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1534768619864476.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Velkova, Cvetelina Vladimirova. "Modélisation du comportement dynamique des rotors d’hélicoptères." Thesis, Paris, ENSAM, 2013. http://www.theses.fr/2013ENAM0055/document.

Повний текст джерела
Анотація:
Modélisation du comportement dynamique des rotors d'hélicoptèresL'objectif de la thèse est l'étude et la modélisation du comportement dynamique et aérodynamique du rotor de l'hélicoptère en considérant à la fois les forces d'inertie et les forces aérodynamiques et en tenant compte des déformations élastiques des pales. L'algorithme de couplage proposé permet d'effectuer le calcul transitoire avec échange de données entre les solveurs fluide et structure à chaque pas de temps.La particularité de cette étude est l'utilisation du modèle aérodynamique de la ligne active, qui représente les forces de pale appliquées au fluide par des termes sources. Ces termes sources sont répartis dans les cellules de maillage à l'emplacement de la pale. Ainsi, la rotation, la torsion et le battement de la pale peuvent être représentés sans aucune déformation du maillage. Un avantage de la ligne active est que la simulation utilise un nombre réduit de nœuds, car des conditions aux limites «lois des parois» ne doivent pas être modélisées.Le cas d'un petit rotor expérimental d'hélicoptère est étudié en vol d'avancement. Les solveurs de fluide et de structure sont couplés pour calculer le comportement aérodynamique et dynamique du rotor. Pour ce faire, un algorithme de couplage faible en série décalé est appliqué. Les calculs itératifs sont contrôlés par un code spécialement conçu. Au début de chaque itération, le code calcule et répartit les termes sources dans le domaine fluide. A la fin du pas de temps, le code exécute le solveur de calcul de structure pour calculer un seul pas de temps. Ce solveur calcule le déplacement de la pale sous l'effet des forces aérodynamiques, élastiques et d'inertie et renvoi les résultats au solveur fluide. Les déplacements de la pale calculés servent de référence pour le solveur fluide au pas de temps suivant, pour distribuer les termes sources. Le calcul s'arrête lorsque le critère de convergence est vérifié.Afin de valider le cas simulé, des expérimentations sont réalisées en soufflerie. La puissance et la poussée aérodynamique du rotor sont mesurées. La Vélocimétrie par images de particules (PIV) est utilisée pour obtenir le champ de vitesse autour du rotor. Les mesures PIV à phase bloqué dans des plans azimutaux ont permis de reconstituer le champ d'écoulement 3D. La comparaison entre les résultats numériques et les expériences montre un bon accord et permet de valider la méthode de couplage proposée
MODELING THE DYNAMIC BEHAVIOR OF HELICOPTER ROTORThe aim of the thesis is the investigation and modeling of dynamic and aerodynamic behavior of helicopter rotor considering both inertial and aerodynamic forces and taking into account the elastic deformation of the blades. The proposed coupling algorithm allows the transient calculations with data exchange between the fluid and structure solvers at each time step.The particularity of this research is the use of an actuator line aerodynamic model, which represents the blade forces applied to the fluid as source terms. These source terms are distributed in the grid cells where the blade is located. Thus the rotation, flapping and torsion of the blade can be represented without any grid deformation. An advantage of the actuator line is that the simulation uses a reduced number of nodes, because the “wall” boundary conditions do not need to be modeled.The case of small experimental helicopter rotor is studied in forward flight. The fluid and structure solvers are coupled to calculate aerodynamic and dynamic behavior of the rotor. For this purpose, a loosely coupling serial staggered algorithm is applied. The iterative calculations are controlled by specially developed code. At the beginning of each iteration, this code calculates and distributes the source terms in the fluid domain. At the end of the time step, the code runs the structural solver to execute a single time step. This solver calculates the blade displacement under aerodynamic, elastic and inertial forces, and the results are returned to the fluid solver. The calculated blade displacements serve as reference in the next fluid step to distribute the source terms. The calculation stops when the convergence criteria are met.In order to validate the simulated case, measurements are carried on in the wind tunnel. The power and aerodynamic thrust of the rotor are measured. Particle Image Velocimetry (PIV) is used to obtain the velocity field around the rotor. Phase locked measurement in azimuth planes enabled to reconstruct 3D flow field. The comparison between numerical results and experiments shows good agreement and permits to validate the proposed coupling method
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Ganesh, Balakrishnan. "Unsteady aerodynamics of rotorcraft at low advance ratios in ground effect." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-03072006-145825/.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Aerospace Engineering, Georgia Institute of Technology, 2006.
Narayanan Komerath, Committee Chair ; Lakshmi Sankar, Committee Member ; JVR Prasad, Committee Member ; Mark Costello, Committee Member ; A. Terrence Conlisk Jr., Committee Member.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Tapia, Fidencio. "Inverse methodology for multi-point aerodynamic rotor blade design." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/13335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Prichard, Devon S. "Development of a full potential solver for rotor aerodynamics analysis." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/12033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Wake, Brian E. "Solution procedure for the Navier-Stokes equations applied to rotors." Diss., Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/13088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Kim, Young K. "A numerical solution of implicit nonlinear equations of motion for rotor blades." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/12047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Reddy, Urmila Chennuru. "Whole field velocity measurements in three-dimensional periodic flows." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/12063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Mavris, Dimitri N. "An analytical method for the prediction of unsteady rotor/airframe interactions in forward flight." Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/12109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії