Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Root sequestration.

Дисертації з теми "Root sequestration"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-19 дисертацій для дослідження на тему "Root sequestration".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

CHIMENTO, CARLO. "ASSESSMENT OF THE CARBON SEQUESTRATION POTENTIAL IN SOIL AND IN BELOWGROUND BIOMASS OF SIX PERENNIAL BIOMASS CROP." Doctoral thesis, Università Cattolica del Sacro Cuore, 2015. http://hdl.handle.net/10280/6072.

Повний текст джерела
Анотація:
L'obiettivo della ricerca è stato quello di identificare la coltura bioenergetica con il maggior potenziale di sequestro del carbonio (C); sono state considerate tre colture perenni arboree (pioppo, robinia e salice) e tre colture erbacee perenni (canna comune , miscanto e panico ) al sesto anno dal loro impianto e coltivate nello stesso ambiente. In primo luogo sono state misurate le variazioni dei tassi del C organico del suolo (COS) per il primo 1 m, mentre per i primi 30 cm di suolo è stato stimato il grado di stabilita del COS valutando sette frazioni di COS che presentano differenti gradi di stabilizzazione; in secondo luogo, sono stati caratterizzati gli apparati radicali delle sei specie per la stessa profondità di suolo, per valutare dove le specie accumulano la biomassa radicale lungo il profilo di suolo. I risultati confermano che l’impianto di colture bioenergetiche perenni su superfici precedentemente dedite a colture annuali gestite convenzionalmente rappresenta una opzione valida per sequestrare C nel soulo. Tuttavia, è stata osservata una diversa capacità di sequestro di C tra specie arboree ed erbacee: le specie arboree hanno dimostrato aumentre il contenuto di COS nel primo strato di suolo ( 0-10 cm di suolo), ma la loro capacità di allocare biomassa radicale negli strati profondi del suolo è limitata; mentre, la specie erbacee allocano un’alta quantità di biomassa radicale negli strati profondi del suolo, ma solo il panico ed il miscanto hanno aumentato il contenuto di C nel primo strato di suolo.
The objective of the present research was to identify the bioenergy crop with the greatest carbon sequestration potential among three perennial woody crops (poplar, black locust and willow) and three perennial herbaceous crops (giant reed, miscanthus and switchgrass) at the sixth year from plantation and in the same location. First of all the SOC stock variations for the first 1 m soil depth and the quantification of seven soil C fractions related to SOC stabilization level of the first 30 cm of soil were assessed; secondly, a characterization of the root system and the traits which affect the carbon allocation in soil were considered. The results confirm that the establishment of perennial bioenergy crops in previous arable fields can be a suitable option to sequester carbon (C) belowground. However, a different C sequestration capacity was observed between woody and herbaceous crops: woody species showed the greatest SOC sequestration potential in the first soil layer (0-10 cm of soil) but their ability to allocate root biomass in the deeper soil layers was limited; while, the herbaceous species allocated a high amount of root biomass in the deeper soil layers, but only switchgrass and miscanthus sequester C in the first soil layer.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

CHIMENTO, CARLO. "ASSESSMENT OF THE CARBON SEQUESTRATION POTENTIAL IN SOIL AND IN BELOWGROUND BIOMASS OF SIX PERENNIAL BIOMASS CROP." Doctoral thesis, Università Cattolica del Sacro Cuore, 2015. http://hdl.handle.net/10280/6072.

Повний текст джерела
Анотація:
L'obiettivo della ricerca è stato quello di identificare la coltura bioenergetica con il maggior potenziale di sequestro del carbonio (C); sono state considerate tre colture perenni arboree (pioppo, robinia e salice) e tre colture erbacee perenni (canna comune , miscanto e panico ) al sesto anno dal loro impianto e coltivate nello stesso ambiente. In primo luogo sono state misurate le variazioni dei tassi del C organico del suolo (COS) per il primo 1 m, mentre per i primi 30 cm di suolo è stato stimato il grado di stabilita del COS valutando sette frazioni di COS che presentano differenti gradi di stabilizzazione; in secondo luogo, sono stati caratterizzati gli apparati radicali delle sei specie per la stessa profondità di suolo, per valutare dove le specie accumulano la biomassa radicale lungo il profilo di suolo. I risultati confermano che l’impianto di colture bioenergetiche perenni su superfici precedentemente dedite a colture annuali gestite convenzionalmente rappresenta una opzione valida per sequestrare C nel soulo. Tuttavia, è stata osservata una diversa capacità di sequestro di C tra specie arboree ed erbacee: le specie arboree hanno dimostrato aumentre il contenuto di COS nel primo strato di suolo ( 0-10 cm di suolo), ma la loro capacità di allocare biomassa radicale negli strati profondi del suolo è limitata; mentre, la specie erbacee allocano un’alta quantità di biomassa radicale negli strati profondi del suolo, ma solo il panico ed il miscanto hanno aumentato il contenuto di C nel primo strato di suolo.
The objective of the present research was to identify the bioenergy crop with the greatest carbon sequestration potential among three perennial woody crops (poplar, black locust and willow) and three perennial herbaceous crops (giant reed, miscanthus and switchgrass) at the sixth year from plantation and in the same location. First of all the SOC stock variations for the first 1 m soil depth and the quantification of seven soil C fractions related to SOC stabilization level of the first 30 cm of soil were assessed; secondly, a characterization of the root system and the traits which affect the carbon allocation in soil were considered. The results confirm that the establishment of perennial bioenergy crops in previous arable fields can be a suitable option to sequester carbon (C) belowground. However, a different C sequestration capacity was observed between woody and herbaceous crops: woody species showed the greatest SOC sequestration potential in the first soil layer (0-10 cm of soil) but their ability to allocate root biomass in the deeper soil layers was limited; while, the herbaceous species allocated a high amount of root biomass in the deeper soil layers, but only switchgrass and miscanthus sequester C in the first soil layer.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pangle, Robert E. "Soil Carbon Dioxide Efflux in Response to Fertilization and Mulching Treatments in a Two-Year-Old Loblolly Pine (Pinus taeda L.) Plantation in the Virginia Piedmont." Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/36359.

Повний текст джерела
Анотація:
Due to concern over the increasing concentration of carbon dioxide in the atmosphere, forest researchers and managers are currently studying the effects of varying silvicultural and harvesting practices on the carbon dynamics of intensely managed forest ecosystems. Soil carbon dioxide efflux resulting from soil microbial activity and root respiration is one of the major components of the total carbon flux in forested ecosystems. In an effort to examine the response of soil carbon dioxide efflux to changes in soil factors, nutrient availability, temperature, and moisture, soil respiration rates were measured monthly over an entire year in a two-year-old loblolly pine (Pinus taeda L.) plantation subjected to fertilization and mulching treatments. A dynamic, closed-chamber infrared gas analysis system was used to measure efflux rates from plots treated with one of four treatment combinations including: nitrogen (115 kg/ha) and phosphorus (11.5 kg/ha) fertilization with black landscape cloth (mulch), fertilization without mulch, mulch without fertilization, and no treatment (control). For each treatment combination, plots were established at the seedling base and 1.22 m away from the seedling base to examine the effect of seedling roots on soil carbon dioxide efflux rates. Soil temperature and moisture were measured at each chamber position monthly and soil coarse fragments, soil nutrient levels, percent carbon, root biomass and coarse woody debris were measured beneath 64 chambers at the end of the study. Fertilization had no significant effect on efflux rates during any of our monthly sampling sessions despite the fact that fertilized seedlings experienced significant increases in both above and belowground biomass. Conversely, regression analysis of growing season soil carbon dioxide efflux rates revealed a slightly negative correlation with both total seedling nutrient uptake and biomass. Rates in plots with mulching were significantly higher than rates from non-mulched plots during five monthly measurement sessions, and higher rates in mulched plots during winter months was attributable to warmer soil temperatures. Rates at the seedling base were always significantly higher than rates in plots away from the seedling. Although rates were always higher at the seedling base, the variability observed was only weakly correlated with the amount of pine roots present beneath respiration chambers. Utilizing soil temperature and moisture, soil carbon, and cuvette fine root biomass in a regression model explained 54% of the variance observed in efflux rates across the yearlong study period. Soil temperature alone explained 42.2% of the variance, followed by soil carbon and soil moisture at 5.2% and 2.7% respectively. The amount of pine fine roots under measurement chambers accounted for only 2.4% of the variance. An additional 1.5% was explained by other factors such as soil phosphorus, coarse woody debris, non-pine root biomass, and soil calcium. An examination of the factors affecting the spatial patterns of soil carbon dioxide efflux revealed that total soil carbon and the amount of fine pine root biomass beneath cuvette base rings explain 38% and 11% respectively, of the observed variability in mean annual soil carbon dioxide efflux from differing plots. The most influential factor affecting soil carbon dioxide efflux during the yearlong study period was soil temperature and modeling of seasonal soil carbon dioxide efflux rates from managed forests using both soil temperature and moisture should be achievable with the establishment of data sets and statistical models covering a range of sites differing in productivity, stand age, and management intensity. The establishment of data sets and statistical models across a variety of forest sites should account for the changing influence of soil carbon levels, aboveground biomass, microbial activity, organic matter inputs, and root biomass on soil carbon dioxide efflux.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mwafulirwa, Lumbani. "The potential for root trait selection to enhance soil carbon storage and sustainable nutrient supply." Thesis, University of Aberdeen, 2017. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=231426.

Повний текст джерела
Анотація:
Plant roots are central to C- and N-cycling in soil. However, (i) plants differ strongly in tissue recalcitrance (e.g. lignin content) affecting their mineralization in soil, and (ii) rhizodeposits also vary strongly in terms of the metabolites that they contain. Therefore, (i) we used 13C labelled ryegrass root and shoot residues as substrates to investigate the impact of tissue recalcitrance on soil processes through controlled incubation of soil, (ii) we assessed variations in root C-deposition between barley genotypes and their respective impacts on soil processes using 13CO2 labelled plants, (iii) using 13C/15N enriched ryegrass root residues as tracer material, we investigated the impacts of barley genotypes on mineralization of recently incorporated plant residues in soil and plant uptake of the residue-derived N, and (iv) we applied a quantitative trait loci analysis approach to identify barley chromosome regions affecting soil microbial biomass and other soil and root related traits. In the first study, addition of root residues resulted in reduced C-mineralization rates, soil microbial activity and soil organic matter (SOM) priming relative to shoot residues. Planted experiments revealed (i) genotype effects on plant-, SOM- and residuederived surface soil CO2-C efflux and showed that incorporation of plant derived-C to the silt-and-clay soil fraction varied between genotypes, indicating relative stabilization of root derived-C as a result of barley genotype, (ii) that plant uptake of residue released N between genotypes was linked to genotype impacts on residue mineralization, and (iii) barley chromosome regions that influence plant-derived microbial biomass C. These results (i) suggest that greater plant tissue recalcitrance can lower soil C-emissions and increase C-storage in soil, and (ii) demonstrate the barley genetic influence on soil microbial communities and C- and N-cycling, which could be useful in crop breeding to improve soil microbial interactions, and thus promote sustainable crop production systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

ROSSI, Lorenzo Matteo Walter. "Embankment as a carbon sink: a study on carbon sequestration pathways and mechanisms in topsoil and exposed subsoil." Doctoral thesis, Università degli studi di Cassino, 2019. http://hdl.handle.net/11580/75251.

Повний текст джерела
Анотація:
Carbon (C) sequestration is receiving increasing scientific and political attention in a framework of greenhouse gasses mitigation. However, geotechnical soils have been neglected for their C sequestration potential, with the global attention focusing on agricultural and natural soils. In the present thesis project, we aim to assess the potential of geotechnical embankments as C sink, and, through the study of plant species and soils showing contrasting features, shed light on C sequestration mechanisms and the role of the different actors involved. We aim not only to quantify the C gained and lost in soil, but even its origin (fresh new C input or old preexistent C) and how it is partitioned in different C pools characterized by different C stability (quality of stored C). First, we evaluated the C storage in different pools under soil sowed with 12 different herbaceous species in a 10 months experiment. Assessing different root traits allowed understanding the influence of root economic spectrum on C storage. We showed how traits linked to high labile C are linked to a higher C increase in the stable SILT+CLAY pool (<20µm). Root traits related to a low input of recalcitrant, instead, favor accumulation in the unstable POM fraction. Thanks to a 183 days stable isotope labelling experiment (CO2 constantly enriched with 13C) we were able to study the C dynamics in different C pools under two species (Lolium perenne and Medicago sativa) sowed on two soil (topsoil, 0-30cm depth and subsoil brought to the surface, 110-140 cm depth) showing contrasting characteristics. We evidenced the great interest of bridging C origin and C pools when studying soil C fates, allowing unveiling processes those more traditional methods would hide. New C and old C showed synergetic covariation, with lower old C losses associated to higher new C inputs. This is in good accordance with the Preferential Substrate Utilization hypothesis. The Preferential Substrate Utilization hypothesis was also validated with the study of priming effect and soil respiration, that showed higher plant derived C in respired CO2 when plant C input was high, while increasing old C mineralization when plant C input was low, i.e. in subsoil. We observed significant plant derived new C input in the SILT+CLAY fraction (<20µm, highly stable) supporting evidence of the in vivo entombing effect in the soil Microbial Carbon Pump hypothesis. The species effect mainly occurred on new C input, but it was overpowered by the soil effect, with lower C storage in low quality soil (low nitrogen and microbial biomass and activity). In general, microbiological conditions were the main driver for new C accumulation and old C loss, and helped to explain why no effect of soil C saturation – a central theory in recent studies on C sequestration - was found in the protected carbon. Such fundamental understanding of plant-soil interactions helps us to better optimize soil and vegetation management for road embankment revegetation
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Selig, Marcus Franklin. "Soil Co2 Efflux and Soil Carbon Content as Influenced by Thinning in Loblolly Pine Plantations on the Piedmont of Virginia." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/33866.

Повний текст джерела
Анотація:
The thinning of loblolly pine plantations has a great potential to influence the fluxes and storage of carbon within managed stands. This study looked at the effects of thinning on aboveground carbon and mineral soil carbon storage, 14-years after the thinning of an 8-year-old loblolly pine plantation on the piedmont of Virginia. The study also examined soil respiration for one year following the second thinning of the same stand at age twenty-two. The study was conducted using three replicate .222 hectare stands planted using 3.05 by 3.05 meter spacing in 1980 at the Reynolds Homestead in Critz, VA. Using two different sample collection methods it was determined that soil carbon was evenly dispersed throughout thinned plots, and that random sampling techniques were adequate for capturing spatial variability. Soil carbon showed a significant negative correlation with soil depth (p=0.0001), and by testing the difference between intercepts in this relationship, it was determined that thinning significantly increased soil carbon by 31.9% across all depths (p=0.0004). However, after accounting for losses in aboveground wood production, thinning resulted in an overall 10% loss in stand carbon storage. However, this analysis did not take into account the fate of wood products following removal. Soil respiration, soil temperature, and soil moisture were measured every month for one year near randomly selected stumps and trees. In order to account for spatial variation, split plots were measured at positions adjacent to stumps and 1.5 meters away from stumps. Soil temperature and moisture were both significantly affected by thinning. Regression analysis was performed to determine significant drivers in soil CO2 efflux. Temperature proved to be the most significant driver of soil respiration, with a positive correlation in thinned and unthinned stands. When modeled using regression, thinning was a significant variable for predicting soil respiration (p < 0.0009), but explained only 3.4% of the variation. The effects of thinning were responsible for decreased respiration, however, when coupled with increased temperatures, soil respiration was elevated in thinned stands.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Soethe, Nathalie. "Structure and function of root systems at different altitudes of a south Ecuadorian montane forest." Doctoral thesis, Humboldt-Universität zu Berlin, Landwirtschaftlich-Gärtnerische Fakultät, 2007. http://dx.doi.org/10.18452/15667.

Повний текст джерела
Анотація:
Es wurden Wurzelsysteme auf 1900, 2400 und 3000 m eines südecuadorianischen Bergregenwaldes untersucht. Ziel war es, ein besseres Verständnis über den Einfluss der Höhenstufe auf die Wurzelfunktionen Nährstoffaneignung und Verankerung sowie Speicherung von C und Nährstoffen in der Wurzelbiomasse zu erlangen. Auf 2400 und 3000 m nahmen die Wurzellängendichten (WLD) mit zunehmender Bodentiefe schneller ab als auf 1900 m. Die vertikale Verteilung der N-Aufnahme war ähnlich der Verteilung der WLD. Das Nährstoffaneignungsvermögen war also in größerer Meereshöhe deutlich mehr auf die organische Auflage konzentriert war als auf 1900 m. Nährstoffkonzentrationen in Blättern zeigten, dass auf 1900 m das Pflanzenwachstum nicht durch Nährstoffmangel limitiert war, während auf 2400 und 3000 m v. a. N, aber auch P, S und K das Pflanzenwachstum limitierten. Die schlechte Nährstoffversorgung der Pflanzen in großer Meereshöhe war vermutlich auf langsame Mineralisation organisch gebundener Nährstoffe und auf ein geringes Nährstoffaneignungsvermögen aus tieferen Bodenschichten zurückzuführen. Die Wurzelbiomasse war auf 3000 m höher als in niedrigerer Meereshöhe. Die Bedeutung des Wurzelsystems für die C-Speicherung stieg also mit zunehmender Höhenstufe. Auch Vorräte an N, S, K, Ca und Mg in den Wurzeln waren auf 3000 m am höchsten. Die Grobwurzelsysteme der Bäume wiesen auf allen Höhenstufen Verankerungs-fördernde Merkmale auf. Bäume auf 3000 m bildeten flachgründigere Wurzelteller als auf 1900 m. Wurzeleigenschaften, die die horizontale Ausdehnung des Wurzeltellers fördern, waren auf 3000 m häufiger oder ausgeprägter als auf 1900 m. Es wird gefolgert, dass eine gehemmte Tiefendurchwurzelung des Bodens in größerer Meereshöhe sowohl das Nährstoffaneignungsvermögen als auch auf die Verankerung der Bäume verringerte. Die hohe Biomasseallokation in die Wurzeln in größerer Meereshöhe weist darauf hin, dass Umweltbedingungen hier besondere Anforderungen an die Wurzelfunktionen stellen.
Root systems at 1900, 2400 and 3000 m of a south Ecuadorian montane forest were investigated. The aim of this study was to improve our knowledge on the impact of altitude on the root functions nutrient acquisition, anchorage and storage of C and nutrients in root biomass. At 2400 and 3000 m, the decrease of root length densities (RLD) with increasing soil depth was more pronounced than at 1900 m. The vertical distribution of N uptake was similar to the vertical distribution of RLD. Thus, the ability for nutrient uptake was more concentrated to the organic surface layer at high altitudes than at 1900 m. Foliar nutrient concentrations showed that plant growth at 1900 m was not limited by nutrient deficiency. In contrast, at 2400 and 3000 m especially N, but also P, S and K limited plant growth. The decreased nutritional status of plants at high altitudes was caused by low mineralization rates of nutrients as well as low ability for nutrient acquisition from deeper soil layers. At 3000 m, root biomass was higher than at low altitudes. Hence, the importance of root systems for C sequestration increased with increasing altitude. Similarly, pools of N, S, K, Ca and Mg were higher at 3000 m than at 1900 and 2400 m. At all altitudes, coarse root systems of trees showed traits that are supposed to improve anchorage. At 3000 m, root soil plates were more superficial than at 1900 m. Root traits that improve the horizontal extension of root soil plates were more pronounced or occurred more often at 3000 m than at 1900 m. It is concluded that impeded rooting in deeper soil layers at high altitudes decreased both the ability for nutrient acquisition and anchorage. At high altitudes, the high allocation of biomass to the root systems showed that at these sites, environmental conditions enhanced the requirements to the functions of roots.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rossi, Lorenzo Matteo Walter. "Embankment as a carbon sink : a study on carbon sequestration pathways and mechanisms in topsoil and exposed subsoil." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTG083.

Повний текст джерела
Анотація:
La séquestration du carbone (C) fait l'objet d'une attention scientifique et politique croissante dans le cadre de la réduction des gaz à effet de serre. Les sols géotechniques ont été négligés en raison de leur potentiel de séquestration du carbone, et l'attention étant concentrée sur les sols agricoles et naturels. Nous visons à évaluer le potentiel des talus géotechniques comme puits de carbone et, par l'étude des espèces végétales et des sols présentant des caractéristiques contrastées, à mettre en lumière les mécanismes de séquestration du carbone organique et les rôles des différents acteurs impliqués. Nous visons non seulement à quantifier le C gagné et perdu dans le sol, mais aussi son origine (nouveau C frais et ancien C préexistant) et comment il est réparti dans différents pools de C qui montrent une stabilité du C différente (qualité du C stocké). Tout d'abord, nous avons évalué la séquestration du carbone dans différents pools de carbone sous un sol semé de 12 espèces herbacées différentes sur une période de 10 mois. La caractérisation des différents traits de racine a permis de comprendre l'influence de la stratégie d'alimentation des ressources en racines (représentée par le spectre économique de la racine) sur la séquestration du carbone. Nous avons montré que les espèces dont les caractéristiques racinaires sont associées à une production élevée de C labile entraînent une augmentation plus élevée de C dans le pool stable de SILT+CLAY (<20µm). Les espèces dont les traits de racine sont associés à un faible apport de C récalcitrant favorisent plutôt l'accumulation dans la fraction POM instable. Ensuite, grâce à une expérience de marquage isotopique stable de 183 jours (CO2 constamment enrichi en 13C), nous avons pu étudier la dynamique du C dans différents pools de C sous deux espèces (L. perenne et M. sativa) sur deux sols (terre végétale, profondeur 0-30 cm et sol remonté, profondeur 110-140 cm) aux caractéristiques opposées. Nous avons mis en évidence le grand intérêt de faire le pont entre l'origine du C et les pools de C lors de l'étude des destins du C du sol, ce qui permet de dévoiler des processus que les méthodes plus traditionnelles cachent. Le nouveau C et l'ancien C présentaient une covariation synergique, avec des pertes plus faibles de l'ancien C associées à de nouvelles entrées de C plus élevées. Ceci est conforme à l'hypothèse de l'utilisation préférentielle du substrat. Cette hypothèse a également été validée par l'étude de l’effet d’amorçage et de la respiration du sol. Celle-ci a montré que la teneur en CO2 inhalé était plus élevée lorsque les entrée C de la plante étaient élevées, tout en augmentant la minéralisation de l’ancien C lorsque les entrées de C de la plante étaient faibles, c’est-à-dire dans le sous-sol. De plus, nous avons validé l'hypothèse de réconciliation entre 'l'hypothèse de l'Utilisation Préférentielle des Substrats' et 'l'hypothèse de la Concurrence', cette dernière déterminant le 'priming effect' dans le sous-sol à faible fertilité. Nous avons observé de nouveaux apports significatifs de C d'origine végétale dans la fraction SILT+CLAY (<20µm, très stable) à l'appui de la preuve de l'effet d'ensevelissement in vivo dans l'hypothèse de la pompe à carbone microbienne du sol. L'effet de l'espèce s'est produit principalement sur les entrées de nouveaux C, mais il a été maîtrisé par l'effet du sol, avec un stockage de C plus faible dans un sol de faible qualité (faible activité et biomasse d'azote et microbienne). Les conditions microbiologiques ont été le principal moteur de la nouvelle accumulation de C et de l'ancienne perte de C et ont aidé à expliquer pourquoi aucun effet de la saturation en C du sol - une théorie centrale dans des études récentes sur la séquestration de C - n'a été trouvé dans le carbone protégé. Cette compréhension fondamentale des interactions plantes-sol nous aide à mieux optimiser la gestion des sols et de la végétation des talus des routes
Carbon (C) sequestration is receiving increasing scientific and political attention in a framework of greenhouse gasses mitigation. However, geotechnical soils have been neglected for their C sequestration potential, with the global attention focusing on agricultural and natural soils. In the present thesis project we aim to assess the potential of geotechnical embankments as C sink, and, through the study of plant species and soils showing contrasting features, shed light on SOC sequestration mechanisms and the role of the different actor involved. We aim not only to quantify the C gained and lost in soil, but even its origin (fresh new C input or old preexistent C) and how it is partitioned in different C pools characterized by different C stability (quality of stored C). First, we evaluated the C storage in different pools under soil sowed with 12 different herbaceous species in a 10 months experiment. Assessing different root traits allowed understanding the influence of root economic spectrum on C storage. We showed how traits linked to high labile C are linked to a higher C increase in the stable SILT+CLAY pool (<20µm). Root traits related to a low input of recalcitrant, instead, favor accumulation in the unstable POM fraction. Thanks to a 183 days stable isotope labelling experiment (CO2 constantly enriched with 13C) we were able to study the C dynamics in different C pools under two species (L. perenne and M. sativa) sowed on two soil (topsoil, 0-30cm depth and subsoil brought to the surface, 110-140 cm depth) showing contrasting characteristics. We evidenced the great interest of bridging C origin and C pools when studying soil C fates, allowing unveiling processes those more traditional methods would hide. New C and old C showed synergetic covariation, with lower old C losses associated to higher new C inputs. This is in good accordance with the Preferential Substrate Utilization hypothesis (Cheng and Kuzyakov, 2005). The Preferential Substrate Utilization hypothesis was also validated with the study of priming effect and soil respiration, that showed higher plant derived C in respired CO2 when plant C input were high, while increasing old C mineralization when plant C input were low, i.e. in subsoil. We observed significant plant derived new C input in the SILT+CLAY fraction (<20µm, highly stable) supporting evidence of the in vivo entombing effect in the soil Microbial Carbon Pump hypothesis (Liang et al., 2017). The species effect mainly occurred on new C input, but it was overpowered by the soil effect, with lower C storage in low quality soil (low nitrogen and microbial biomass and activity). In general, microbiological conditions were the main driver for new C accumulation and old C loss, and helped to explain why no effect of soil C saturation – a central theory in recent studies on C sequestration - was find in the protected carbon. Such fundamental understanding of plant-soil interactions help us to better optimize soil and vegetation management for road embankment revegetation
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Arneth, Almut. "Fluxes of carbon and water in a Pinus radiata plantation and a clear-cut, subject to soil water deficit." Lincoln University, 1998. http://hdl.handle.net/10182/1955.

Повний текст джерела
Анотація:
This thesis investigates the abiotic control of carbon (C) and water vapour fluxes (FCO₂ and E, respectively) in a New Zealand Pinus radiata D. Don plantation and a nearby clearcut. It concentrates on the limitation of these fluxes imposed by growing season soil water deficit. This results from low precipitation (658 mm a⁻¹) in combination with a limited root zone water storage capacity of the very stony soil (> 30% by volume). The thesis analyses results from seven eddy covariance flux measurement campaigns between November 1994 and March 1996. The study site was located in Balmoral Forest, 100 km north-west of Christchurch (42° 52' S, 172° 45' E), in a (in November 1994) 8-year-old stand. One set of measurements was conducted in an adjacent clearcut. Ecosystem flux measurements were accompanied by separate measurements of ground fluxes and of the associated environmental variables. Flux analysis focussed on the underlying processes of assimilation (Ac), canopy stomatal conductance (Gc) and respiration (Reco), using biophysical models coupled to soil water balance and temperature subroutines. Aiming to link time inegrated net ecosystem C (NEP) to tree growth, sequestration in tree biomass (NPP) was quantified by regular measurements of stem diameter using allometric relationships. Average rates of FCO₂ and E were highest in spring (324 mmol m⁻² d⁻¹ and 207 mol m⁻² d⁻¹, respectively) when the abiotic environment was most favourable for Gc and Ac. During summer, fluxes were impeded by the depletion of available soil water (θ) and the co-occurrence of high air saturation deficit (D) and temperature (T) and were equal or smaller than during winter (FCO₂ = 46 mmol m⁻² d⁻¹ in summer and 115 mmol m⁻² d⁻¹ in winter; E = 57 and 47 mol m⁻² d⁻¹, respectively). With increasingly dry soil, fluxes and their associated ratios became predominantly regulated by D rather than quantum irradiance, and on particularly hot days the ecosystem was a net C source. Interannually, forest C and water fluxes increased strongly with rainfall, and the simultaneously reduced D and T. For two succeeding years, the second having 3 % more rain, modelled NEP was 515 and 716 g C m⁻² a⁻¹, Ac 1690 and 1841 g C m⁻² a⁻¹ and Reco 1175 and 1125 g C m⁻² a⁻¹. NEP / E increased in wetter (and cooler) years (1.3 and 1.5 g kg⁻¹), reflecting a relatively larger gain in NEP. Responding mainly to increased rainfall during commonly dry parts of the year (ie summer), and reflecting the otherwise benign maritime climate of New Zealand, NEP during the winter months could exceed NEP during the middle of the notional tree growing season. Annual Ac, NEP, and NPP were strongly linearly related. This relation did not hold during bi-weekly periods when the processes of intermediate C storage were influential. Separate knowledge of tree growth and C fluxes allowed quantification of autotrophic, and heterotrophic respiration (Rhet≈ 0.4 NEP), as well as fine-root turnover (≈0.2 NEP). The ratio of NEP and stem volume growth was conservative (0.24 t C m⁻³) and allows a direct connection to be made between ecosystem carbon fluxes and forest yield tables. In the absence of living roots, the clearcut flux measurements demonstrated the expected limitation of Rhet by soil temperature (Ts) and θ. However, an additional 'pumping effect' was discovered at the open site whereby turbulence increased CO₂ efflux considerably when the soil surface was wet. Accounting for the combined effects of Ts, θ and turbulence, annual Rhet at the clear-cut site (loss to the atmosphere) was »50 % of NEP (C sequestered from the atmosphere) in the nearby forest. Clearly, there is an important contribution of C fluxes during early stages of ecosystem development to the total C sequestered over the lifetime of a plantation.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Raut, Yogendra Y. "Sustainable Bioenergy Feedstock Production Using Long-Term (1999-2014) Conservation Reserve Program Land." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu148344789416295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Vidal, Agathe. "La fertilisation soufrée est-elle un levier efficace pour limiter le transfert sol-grain du Cd chez le blé dur ?" Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0399.

Повний текст джерела
Анотація:
Le cadmium (Cd) est un élément métallique non essentiel et très toxique, présent généralement à l’état de trace dans les sols. Son origine est naturelle en lien avec la pédogenèse mais aussi anthropique (contamination des intrants agricoles rejets industriels etc.). En prélevant le Cd du sol par leurs racines, les plantes accumulent ce contaminant dans leurs parties aériennes, menaçant ainsi la qualité sanitaire des denrées alimentaires. C’est le cas du blé dur, qui est la céréale accumulant le plus fortement le Cd dans ses grains et qui contribue fortement à l’exposition chronique de la population française au Cd par voie alimentaire. Compte-tenu de la forte toxicité pour l’Homme de ce métal classé cancérogène et reconnu pour ses effets délétères sur les reins notamment, l’Union Européenne a établi des seuils réglementaires fixant les teneurs maximales du Cd dans un grand nombre de denrées alimentaires. Suite à de récentes études toxicologiques, les seuils réglementaires se multiplient et se durcissent. Pour les grains de blé dur, le seuil a récemment été abaissé de 0.20 mg Cd kg-1 à 0.18 mg Cd kg-1 (CE 915/2023). D’autres baisses seront probablement mises en application à l’avenir, ce qui nécessite de trouver des leviers pour limiter le transfert sol-grain du Cd. Le Cd a une forte affinité chimique pour le soufre (S) avec lequel il forme des complexes très stables dans le cas des groupements thiols (-SH) des molécules organiques, plus labiles dans le cas des sulfates. La littérature montre que l’apport de S au sol peut modifier la phytodisponibilité du Cd du sol et affecter la répartition entre organes, les complexes Cd-ligand soufrés contribuant à détoxifier ce métal en le séquestrant dans les vacuoles, notamment dans les racines. Cependant, la littérature concerne majoritairement les sols pollués et la phytoextraction. Peu de travaux portent sur les sols agricoles faiblement contaminés. Ce travail de thèse avait pour objectif de tester si l’apport de S à des doses et formes chimiques utilisées en céréaliculture pouvait limiter l’accumulation de Cd dans les grains de blé dur dans le contexte des sols agricoles. Nous avons montré, en conditions contrôlées, que la solubilité du Cd pouvait être augmentée par l’apport de sulfate d’ammonium, non pas par l’effet direct des sulfates mais par l’effet d’acidification résultant de la nitrification de l’ammonium. En conditions contrôlées et au champ, les apports de S ont légèrement diminué la concentration en Cd dans les grains de blé dur parfois en lien avec une plus forte rétention racinaire du Cd comme attendu. Nous avons observé que le Cd était majoritairement stocké dans les racines et, aux stades reproducteurs, qu’il était remobilisé vers les parties aériennes en même temps que le S. En réduisant la remobilisation du S à partir des racines, la fertilisation soufrée pourrait contribuer à également limiter la remobilisation du Cd des racines vers les grains. Par ailleurs, nos résultats ont montré que la fertilisation S pouvait également affecter la distribution de la biomasse entre les organes, affectant ainsi leur teneur en Cd. Nos travaux suggèrent donc que chez le blé dur, veiller à satisfaire les besoins en S des plantes permettrait de réduire légèrement la teneur en Cd des grains indirectement par des effets sur la biomasse et aussi peut être par des mécanismes directs d’interactions S-Cd. Même s’il n’est pas majeur, le levier de la fertilisation soufrée mérite d’être considéré pour réduire la contamination cadmiée du blé dur
Cadmium (Cd) is a non-essential and highly toxic metal, generally occurring at trace level in soils. Its origins are natural, linked to pedogenesis, but also anthropogenic (contamination by agricultural inputs, industrial wastes, etc.). By taking up Cd from the soil through their roots, plants accumulate this contaminant in their aboveground parts, threatening the food safety. This is the case for durum wheat, which is the cereal that accumulates the most Cd in its grains, and therefore is a strong contributor to the chronic dietary exposure of the French population to Cd. Cd is carcinogenic and highly toxic to humans especially for kidneys and therefore, the European Union has established regulatory limits setting maximum levels of Cd in numerous foodstuffs. As a result of recent toxicological studies, numerous new regulatory limits have been established and existing ones have been decreased. For durum wheat grain, the limit has recently been revised downwards from 0.20 mg Cd kg-1 to 0.18 mg Cd kg-1 (EC 915/2023). Further decreases are expected in the future, pointing out the need to find solutions to limit the transfer of Cd from soil to grain. Cd has a strong affinity for sulfur (S), with which it forms complexes that are highly stable with the thiol (-SH) groups of organic molecules, and more labile with sulfates. The literature shows that the addition of S to soil can modify not only the phytoavailability of this metal in soil but also its distribution between plant organs. Cd-S ligand complexes are known to detoxify this metal by sequestration in vacuoles, particularly in roots. However, literature mainly concerns polluted soils and phytoextraction, with little work on weakly contaminated agricultural soils. The aim of this thesis work was to test whether the addition of S at doses and chemical forms used in cereal cultures could limit Cd accumulation in durum wheat grains in the context of agricultural soils. We showed, under controlled conditions, that the solubility of Cd can be increased by the addition of ammonium sulfate, not by the direct effects of sulphates, but by the acidification resulting from the nitrification of ammonium. In hydroponics and in the field, the addition of S slightly reduced the Cd concentration in durum wheat grains, sometimes in association with greater retention of Cd in roots, as expected. We observed that most of the Cd was stored in the roots and that, during the grain filling, it was remobilized and transferred to the aboveground parts concomitantly with S. By reducing the remobilization of S from the roots, sulfur fertilization could then help to also limit the remobilization of Cd from the roots to the grain. Besides, our results showed that S fertilization could also affect the distribution of biomass between organs, thus affecting their Cd content. Overall, our work suggests that in durum wheat, ensuring that the S requirements of the plant are met could slightly reduce the Cd content of the grain through indirect effects on biomass and possibly through direct S-Cd interaction mechanisms. Even if its effect is not very strong, it is worth considering S fertilization as a lever to reduce cadmium contamination in durum wheat
Стилі APA, Harvard, Vancouver, ISO та ін.
12

FIORINI, ANDREA. "VERSO UNA RIDUZIONE DELL'IMPATTO DELLA GESTIONE DEL SUOLO E DELLE PRATICHE DI COLTIVAZIONE SUL CAMBIAMENTO CLIMATICO GLOBALE." Doctoral thesis, Università Cattolica del Sacro Cuore, 2018. http://hdl.handle.net/10280/39869.

Повний текст джерела
Анотація:
L'adozione di (agro)ecosistemi sostenibili viene indicata come una efficace strategia in grado sequestrare carbonio (C) nel suolo, mitigando così il cambiamento climatico e migliorando la fertilità. Sebbene il potenziale di sequestro del C della non-lavorazione (NT) sia stato generalmente sovrastimato, esso risulta essere di 0,26 Mg ha-1 anno-1 superiore rispetto al regime arativo. Inoltre, il 76,6% di questo quota è localizzato in frazioni considerabili come relativamente stabili. Il NT aumenta lo sviluppo radicale delle colture erbacee (es. mais, soia, frumento) negli stati superficiali del suolo (0-5 cm). Le correlazioni tra i parametri di densità radicale e le proprietà fisiche del suolo mostrano come lo sviluppo radicale sia un fondamentale indicatore di qualità del suolo in NT. I residui delle cover crops influenzano le emissioni di protossido d’azoto (N2O) in NT: i residui di segale favoriscono l'immobilizzazione dell’azoto (N), aumentandone così l'efficienza d’utilizzo e diminuendo le emissioni, mentre i residui di veccia vellutata aumentano l’N2O come conseguenza della mineralizzazione dell’N. Le emissioni di N2O e la produttività dei prati stabili possono essere positivamente correlate, perché meccanismi diversi rispetto alla regolazione indotta dalla disponibilità di N possono controllare l'N2O: il C potrebbe essere un principale fattore di regolazione per nitrificazione e denitrificazione.
Adoption of sustainable (agro)ecosystems has been widely suggested to increase soil organic carbon (C) sequestration, to mitigate climate change and enhance soil fertility. Although its carbon sequestration potential has been generally overestimated, no-till (NT) results in an extra C sequestration of 0.26 ± 0.18 Mg ha-1 yr-1 as compared to conventional tillage and 76.6% of this extra C is located in C pools which could be considered relatively stable. NT increases root development of field crops (i.e. maize, soybean, winter wheat) in the top soil (0-5 cm), while does not in the deeper soil (5-60 cm). Positive correlations between root density and soil physical parameters shows how roots are main drivers of soil physical properties under NT. Cover crop residues may affect nitrous oxide (N2O) emissions under NT: rye residues enhances soil-nitrogen (N) immobilization, thus increasing N use efficiency and decreasing N2O, while hairy vetch residues as cover crop under NT increases N2O as a consequence of soil-N mineralization. N2O emissions and shoot productivity may be positive correlated in grasslands, because other mechanisms than plant-induced regulation of soil N pool may control N2O: C could be a major factor regulating nitrification and denitrification processes.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

FIORINI, ANDREA. "VERSO UNA RIDUZIONE DELL'IMPATTO DELLA GESTIONE DEL SUOLO E DELLE PRATICHE DI COLTIVAZIONE SUL CAMBIAMENTO CLIMATICO GLOBALE." Doctoral thesis, Università Cattolica del Sacro Cuore, 2018. http://hdl.handle.net/10280/39869.

Повний текст джерела
Анотація:
L'adozione di (agro)ecosistemi sostenibili viene indicata come una efficace strategia in grado sequestrare carbonio (C) nel suolo, mitigando così il cambiamento climatico e migliorando la fertilità. Sebbene il potenziale di sequestro del C della non-lavorazione (NT) sia stato generalmente sovrastimato, esso risulta essere di 0,26 Mg ha-1 anno-1 superiore rispetto al regime arativo. Inoltre, il 76,6% di questo quota è localizzato in frazioni considerabili come relativamente stabili. Il NT aumenta lo sviluppo radicale delle colture erbacee (es. mais, soia, frumento) negli stati superficiali del suolo (0-5 cm). Le correlazioni tra i parametri di densità radicale e le proprietà fisiche del suolo mostrano come lo sviluppo radicale sia un fondamentale indicatore di qualità del suolo in NT. I residui delle cover crops influenzano le emissioni di protossido d’azoto (N2O) in NT: i residui di segale favoriscono l'immobilizzazione dell’azoto (N), aumentandone così l'efficienza d’utilizzo e diminuendo le emissioni, mentre i residui di veccia vellutata aumentano l’N2O come conseguenza della mineralizzazione dell’N. Le emissioni di N2O e la produttività dei prati stabili possono essere positivamente correlate, perché meccanismi diversi rispetto alla regolazione indotta dalla disponibilità di N possono controllare l'N2O: il C potrebbe essere un principale fattore di regolazione per nitrificazione e denitrificazione.
Adoption of sustainable (agro)ecosystems has been widely suggested to increase soil organic carbon (C) sequestration, to mitigate climate change and enhance soil fertility. Although its carbon sequestration potential has been generally overestimated, no-till (NT) results in an extra C sequestration of 0.26 ± 0.18 Mg ha-1 yr-1 as compared to conventional tillage and 76.6% of this extra C is located in C pools which could be considered relatively stable. NT increases root development of field crops (i.e. maize, soybean, winter wheat) in the top soil (0-5 cm), while does not in the deeper soil (5-60 cm). Positive correlations between root density and soil physical parameters shows how roots are main drivers of soil physical properties under NT. Cover crop residues may affect nitrous oxide (N2O) emissions under NT: rye residues enhances soil-nitrogen (N) immobilization, thus increasing N use efficiency and decreasing N2O, while hairy vetch residues as cover crop under NT increases N2O as a consequence of soil-N mineralization. N2O emissions and shoot productivity may be positive correlated in grasslands, because other mechanisms than plant-induced regulation of soil N pool may control N2O: C could be a major factor regulating nitrification and denitrification processes.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

MARTANI, ENRICO. "Conversion of perennial cropping systems to arable land: keyelements for an ecologically sustainable transition." Doctoral thesis, Università Cattolica del Sacro Cuore, 2021. http://hdl.handle.net/10280/96576.

Повний текст джерела
Анотація:
La coltivazione dei sistemi colturali poliennali su terreni marginali combina la produzione sostenibile di biomassa per diversi utilizzi a benefici di carattere ambientale come il sequestro del C atmosferico nel suolo. La limitata longevità di questi sistemi colturali (10-20 anni), fornisce la possibilità di sfruttarli come una tecnica temporanea per rigenerare la fertilità dei terreni marginali e di studiare il loro effetto nel lungo periodo sul carbonio del suolo. Con questa tesi, avevo l'obiettivo di studiare l'effetto della riconversione a coltura annuali dei sistemi agricoli poliennali sul carbonio del suolo: per raggiungere questo obiettivo, ho combinato ad una meta-analisi di letteratura sull'effetto della riconversione, con un esperimento di campo di lungo periodo, un esperimento di incubazione in laboratorio e l'uso di un modello matematico del carbonio del suolo. L'uso combinato di questi approcci mi ha permesso di mostrare il potenziale che i sistemi colturali poliennali hanno nel sostenere il sequestro del C ne suolo anche dopo la loro riconversione. Quindi i sistemi colturali poliennali sono una pratica sostenibile promettente che può essere integrata in rotazioni agricole di 13 anni sui terreni marginali del nord d'Italia per ripristinare il carbonio del suolo.
The cultivation of perennial cropping systems on marginal lands combines the production of sustainable biomass for multiple uses with environmental benefits such as carbon (C) sequestration in soil. In this thesis, we studied the effect of perennial cropping system on soil C considering the scenario of perennial cropping systems reversion to arable land. The limited longevity (10-20 years) of perennial cropping systems, gives the possibility of using these crops as a temporary- option to restore soil fertility of marginal lands and to study the long-term legacy of these cropping systems on soil C. In this thesis I aimed to study the effect of perennial cropping systems reversion to arable land on soil C: to achieve this objective, I combined a literature meta-analysis on the effect of reversion of perennial cropping systems on soil C, with a long-term field experiment on perennial cropping systems, an incubation experiment and the use of a process-based soil C model. The combined use of these approaches gave me the chance to show the potential of perennial cropping systems to support C sequestration even after their reversion. Therefore, perennial cropping systems are a promising sustainable practice which could be integrated on a 13-year agricultural rotation on marginal lands of northern Italy to restore soil C.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

MARTANI, ENRICO. "Conversion of perennial cropping systems to arable land: keyelements for an ecologically sustainable transition." Doctoral thesis, Università Cattolica del Sacro Cuore, 2021. http://hdl.handle.net/10280/96576.

Повний текст джерела
Анотація:
La coltivazione dei sistemi colturali poliennali su terreni marginali combina la produzione sostenibile di biomassa per diversi utilizzi a benefici di carattere ambientale come il sequestro del C atmosferico nel suolo. La limitata longevità di questi sistemi colturali (10-20 anni), fornisce la possibilità di sfruttarli come una tecnica temporanea per rigenerare la fertilità dei terreni marginali e di studiare il loro effetto nel lungo periodo sul carbonio del suolo. Con questa tesi, avevo l'obiettivo di studiare l'effetto della riconversione a coltura annuali dei sistemi agricoli poliennali sul carbonio del suolo: per raggiungere questo obiettivo, ho combinato ad una meta-analisi di letteratura sull'effetto della riconversione, con un esperimento di campo di lungo periodo, un esperimento di incubazione in laboratorio e l'uso di un modello matematico del carbonio del suolo. L'uso combinato di questi approcci mi ha permesso di mostrare il potenziale che i sistemi colturali poliennali hanno nel sostenere il sequestro del C ne suolo anche dopo la loro riconversione. Quindi i sistemi colturali poliennali sono una pratica sostenibile promettente che può essere integrata in rotazioni agricole di 13 anni sui terreni marginali del nord d'Italia per ripristinare il carbonio del suolo.
The cultivation of perennial cropping systems on marginal lands combines the production of sustainable biomass for multiple uses with environmental benefits such as carbon (C) sequestration in soil. In this thesis, we studied the effect of perennial cropping system on soil C considering the scenario of perennial cropping systems reversion to arable land. The limited longevity (10-20 years) of perennial cropping systems, gives the possibility of using these crops as a temporary- option to restore soil fertility of marginal lands and to study the long-term legacy of these cropping systems on soil C. In this thesis I aimed to study the effect of perennial cropping systems reversion to arable land on soil C: to achieve this objective, I combined a literature meta-analysis on the effect of reversion of perennial cropping systems on soil C, with a long-term field experiment on perennial cropping systems, an incubation experiment and the use of a process-based soil C model. The combined use of these approaches gave me the chance to show the potential of perennial cropping systems to support C sequestration even after their reversion. Therefore, perennial cropping systems are a promising sustainable practice which could be integrated on a 13-year agricultural rotation on marginal lands of northern Italy to restore soil C.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Wig, Jennifer D. "Effects of 20 years of litter and root manipulations on soil organic matter dynamics." Thesis, 2012. http://hdl.handle.net/1957/30031.

Повний текст джерела
Анотація:
Globally, the forestry sector is the second largest contributor of greenhouse gases, and sustainable forest management is a major target of international environmental policy. However, there is the assumption underlying many policy recommendations that an increase in above-ground carbon stocks correspond to long term increases in ecosystem carbon stocks, the majority of which is stored in soils. We analyzed soil carbon and nitrogen dynamics in forest soils that had undergone twenty years of organic inputs manipulations as part of the Detritus Input and Removal Treatment (DIRT) network. There was no statistically significant effect of the rate of litter or root inputs on the carbon or nitrogen in bulk soil, on respiration rates of soil in laboratory incubations, on the non-hydrolyzed fraction of soil organic matter, or on any organic matter associated with any density. However, there is evidence for positive priming due to increased litter inputs; doubling the rate of litter inputs decreased C and N contents of bulk soil and decreased respiration rates of soil. Furthermore, there is evidence that roots influence soil organic matter dynamics more strongly than above-ground inputs. Both of these results trends match data from other DIRT sites, and are supported by the literature.
Graduation date: 2012
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Wu, H. "Tissue specificity of cytosolic `K^+` retention, `Na^+` extrusion, and vacuolar `Na^+` sequestration traits in the context of differential salinity stress tolerance in barley and wheat." Thesis, 2016. https://eprints.utas.edu.au/23053/1/Wu_whole_thesis_ex_pub_mat.pdf.

Повний текст джерела
Анотація:
Wheat and barley are ranked the second and fifth most important crops in terms of dry matter production. Both of them are classified as glycophytes, and their production is strongly affected by soil salinity. Thus, given the extent of land salinization in the world and predicted population growth to 9.3 billion by 2050, creating salt tolerant wheat and barley germplasm remains one of highest priorities for breeders. Salinity tolerance is a complex physiological trait composed of numerous sub-traits controlled by multiple regulatory pathways. Until now, most studies were focused on traits related to sodium, such as `Na^+` exclusion from uptake, control of xylem `Na^+` loading, `Na^+` retrieval from the shoot or vacuolar Na+ sequestration. However, it is not `Na^+` but the `K^+``/Na^+` ratio in the cytosol that ultimately determines plant performance under saline conditions. In recent years, `K^+` retention in root mature zone has emerged as an important component of salt tolerance mechanisms in many plant species. However, whether the importance of cell’s ability to maintain `K^+` in plant overall salt tolerance can be extrapolated to other root zones or tissues (e.g. leaves) remained obscure prior to this work. Also elusive remained the essentiality of root `Na^+` exclusion and vacuolar `Na^+` sequestration in various root tissues. Furthermore, the relative contribution of each of the above salt tolerant mechanisms towards the overall salinity tolerance remained unclear, especially at the tissue specific level.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Abou, Rajab Yasmin Joana Monna. "Shade trees in cacao agroforestry systems: influence on roots and net primary production." Doctoral thesis, 2015. http://hdl.handle.net/11858/00-1735-0000-002B-7C03-E.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Adamek, Markus. "Effects of increased nitrogen input on the net primary production of a tropical lower montane rain foest, Panama." Doctoral thesis, 2009. http://hdl.handle.net/11858/00-1735-0000-0006-B124-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії