Добірка наукової літератури з теми "Robots souples en silicone"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Robots souples en silicone".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Robots souples en silicone"
Azouz, Naoufel, Madeleine Pascal, and Alain Combescure. "Application de la MEF à la modélisation dynamique des robots souples." Revue Européenne des Éléments Finis 7, no. 7 (January 1998): 763–91. http://dx.doi.org/10.1080/12506559.1998.10511340.
Повний текст джерелаLin, Hao, Yihui Chen, and Wei Tang. "Soft Electrohydraulic Bending Actuators for Untethered Underwater Robots." Actuators 13, no. 6 (June 8, 2024): 214. http://dx.doi.org/10.3390/act13060214.
Повний текст джерелаWang, Jie, Haoyu Zhou, Yong Gao, Yupeng Xie, Jing Zhang, Yaocheng Hu, Dengwang Wang, et al. "The Characterization of Silicone-Tungsten-Based Composites as Flexible Gamma-Ray Shields." Materials 14, no. 20 (October 11, 2021): 5970. http://dx.doi.org/10.3390/ma14205970.
Повний текст джерелаGarcía-Samartín, Jorge Francisco, Adrián Rieker, and Antonio Barrientos. "Design, Manufacturing, and Open-Loop Control of a Soft Pneumatic Arm." Actuators 13, no. 1 (January 17, 2024): 36. http://dx.doi.org/10.3390/act13010036.
Повний текст джерелаSun, Hao, Bin Cheng, Ning Yang Wang, and Xiao Ping Chen. "A Preliminary Study of the HPN Robot." Applied Mechanics and Materials 575 (June 2014): 726–30. http://dx.doi.org/10.4028/www.scientific.net/amm.575.726.
Повний текст джерелаMarzi, Christian, Nikola Fischer, and Franziska Mathis-Ullrich. "Biocompatible Soft Material Actuator for Compliant Medical Robots." Current Directions in Biomedical Engineering 7, no. 1 (August 1, 2021): 58–62. http://dx.doi.org/10.1515/cdbme-2021-1013.
Повний текст джерелаBehkam, Bahareh, and Metin Sitti. "Design Methodology for Biomimetic Propulsion of Miniature Swimming Robots." Journal of Dynamic Systems, Measurement, and Control 128, no. 1 (September 23, 2005): 36–43. http://dx.doi.org/10.1115/1.2171439.
Повний текст джерелаCondino, Sara, Kanako Harada, Nicola Ng Pak, Marco Piccigallo, Arianna Menciassi, and Paolo Dario. "Stomach Simulator for Analysis and Validation of Surgical Endoluminal Robots." Applied Bionics and Biomechanics 8, no. 2 (2011): 267–77. http://dx.doi.org/10.1155/2011/583608.
Повний текст джерелаChiu, Wan-Ting, Yui Watanabe, Masaki Tahara, Tomonari Inamura, and Hideki Hosoda. "Investigations of Shape Deformation Behaviors of the Ferromagnetic Ni–Mn–Ga Alloy/Porous Silicone Rubber Composite towards Actuator Applications." Micromachines 14, no. 8 (August 14, 2023): 1604. http://dx.doi.org/10.3390/mi14081604.
Повний текст джерелаLi, Junfeng, Songyu Chen, and Minjie Sun. "Design and fabrication of a crawling robot based on a soft actuator." Smart Materials and Structures 30, no. 12 (November 9, 2021): 125018. http://dx.doi.org/10.1088/1361-665x/ac2e1b.
Повний текст джерелаДисертації з теми "Robots souples en silicone"
Mosser, Loïc. "Contribution à la conception et la fabrication de robots souples pneumatiques." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD009.
Повний текст джерелаThis thesis covers the design of pneumatic soft robots, which move thanks to deformation using pneumatic chambers. We contribute to the design of a robot from the formulation of the need to the manufacturing of the robot. We address the problems associated with the design and manufacture of these robots. For design, we propose a genetic algorithm accelerated by the use of an AI model enabling rapid estimation of the behavior of new geometries and the search for solutions. For manufacturing, we propose an instrumented silicone additive manufacturing platform enabling the acquisition of point clouds on each produced layer. Indicators are then proposed to monitor ongoing production and the integrity of soft robots, and these indicators are evaluated experimentally
Kraehn, Baptiste. "Approche intégrée matériau-procédé appliquée à la conception de doigts souples pour la manipulation dextre." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD042.
Повний текст джерелаThis thesis proposes an integrated approach to the design of pneumatic silicone fingers for dexterous manipulation. Based on a comparative approach between experimentation and numerical prediction, the identification of silicone behavioral models allows the prediction of pneumatic finger behavior. The design is then guided by simulation with the aim of reducing the finger's dependence on the Mullins effect. The chosen manufacturing method, low-pressure injection molding, allows a robust overmolding process for the rigid reinforcements and the base of the finger. The finger and tooling are designed to enable production of the complete assembly in a single injection step
PHAM, CHI MINH. "Identification et commande des robots souples." Nantes, 1992. http://www.theses.fr/1992NANT2042.
Повний текст джерелаDepincé, Philippe. "Contribution a l'elaboration d'un modele minimal de robots souples." Nantes, 1993. http://www.theses.fr/1993NANT2080.
Повний текст джерелаBochard, Stéphane. "Contrôle actif par composants piézo-électriques de structures souples en grands déplacements." Lyon, INSA, 2002. http://theses.insa-lyon.fr/publication/2002ISAL0051/these.pdf.
Повний текст джерелаWhen vibrating structures are subjected to large displacements, coupling may occur between the vibrations and the displacements inducing possibly strongly non-linear behaviour. In this case, linear control algorithms and independent control strategy are no longer suitable. This study deals with the non-linear control of Bi-articulated structures. A model that combines both finite element (FE) discretisation, taking into account strains/electric field coupling, and global behaviour is carried out. Electromechanical and piezoelectric actuators carry out the multivariable control. The control strategy developed consists in weighting the output of parallel state controllers, calculated for the p discretized operating points crossed during the progression of the structure’s dynamic behaviour. The multivariable control u is obtained by weighting interpolation functions fi of the linear quadratic control gains Ki of each controller optimised according to large displacements. The first application to Bi-articulated rigid beam systems shows, in comparison with a stable linear control, that non-linear control is by far the better of the two. This is mainly due to increased efficiency of motor torque use. The second application of the proposed non-linear control algorithm concerns a Bi-articulated flexible beam system modelled by two rigid body modes and five flexible modes. The control obtained is robust regarding both stability and performance. Quasi-steady controlled dynamic behaviour is obtained during movement. The last application deals with a flexible link featuring two piezoelectric sensors and one pair of the piezoelectric actuators pasted to the both sides of the beam. The associated model is adjusted by optimisation. The control of the beam, clamped-free or articulated by the geared motor, shows performance. The simulated results accords with the experimental ones
Bochard, Stéphane Lalanne Michel. "Contrôle actif par composants piézo-électriques de structures souples en grands déplacements." Villeurbanne : Doc'INSA, 2007. http://docinsa.insa-lyon.fr/these/pont.php?id=bochard.
Повний текст джерелаAzouz, Naoufel. "Modélisation des structures souples poly-articulées : application à la simulation des robots." Paris 6, 1994. http://www.theses.fr/1994PA066021.
Повний текст джерелаColas, Frederic. "Synthèse et réglage de lois de commandes adaptées aux axes souples en translation : application aux robots cartésiens 3 axes." Ecole Centrale de Lille, 2007. http://www.theses.fr/2007ECLI0023.
Повний текст джерелаCartesian robots are generally devoted to industrial pick-and-place applications such as demoulding plastic injection machines. From the industrial point of view, the demand for improved performances motivates the use of lightweight structures. Indeed the lightening of moving masses makes it possible to cut production costs while improving the overall dynamics. However, additional stresses are generated which consequently induce undesirable vibrations. Adequate controller design, which is the core of this study, has been shown to be able to improve the performances of flexible axes while damping mechanical vibrations. A modelling/control/self-tuning development has been introduced, which can be considered from the mechanical design stage. The modal parameters of the system are obtained from a continuous model which has been derived from a finite element model. A control synthesis method using the inversion principle has been developed to monitor flexible axes. The many feedforward or trajectory planning algorithms thereby designed have shown to be able to enhance the overall dynamics of the machine while limiting the deformation modes vibrations. A feedback control has been embedded into the control architecture in order to develop robustness with respect to model uncertainties and rejection of external disturbances. Control strategies have been validated on two Cartesian robots with different generation and size. At last, auto-tuning methods tailored to the feedforward and feedback controllers introduced previously have been presented
Thérien, Francis. "Conception et calibration de capteurs de mouvement à film diélectrique pour robots souples multi-degrés de liberté." Mémoire, Université de Sherbrooke, 2015. http://hdl.handle.net/11143/8388.
Повний текст джерелаGlandais, Nathalie. "Modelisation et simulation des robots souples : extension de la methode du repere flottant au domaine des grands deplacements elastiques." Nantes, 1999. http://www.theses.fr/1999NANT2081.
Повний текст джерелаЧастини книг з теми "Robots souples en silicone"
Dawood, Abu Bakar, Hareesh Godaba, and Kaspar Althoefer. "Silicone Based Capacitive E-Skin Sensor for Soft Surgical Robots." In Towards Autonomous Robotic Systems, 62–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63486-5_8.
Повний текст джерелаRanjbar, Sadegh, Mohammad Lakhi, Mahdi Bodaghi, Morteza Sayah Irani, and Ali Zolfagharian. "Silicone elastomer soft robots via 4D printing." In Smart Materials in Additive Manufacturing Volume 3, 167–201. Elsevier, 2024. http://dx.doi.org/10.1016/b978-0-443-13673-3.00007-9.
Повний текст джерелаİlman, Mehmet Mert, and Hamza Taş. "A Soft Robotic Gripper Material Study." In Design and Control Advances in Robotics, 60–73. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-5381-0.ch004.
Повний текст джерелаТези доповідей конференцій з теми "Robots souples en silicone"
Xiao, Fei, Zhuoheng Wei, Hao Wang, Jisen Li, and Jian Zhu. "Embedded 3D Printing of Silicone for Soft Actuator with Stiffness Gradient and Programmable Workspace." In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 10913–18. IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10801545.
Повний текст джерелаPutzu, Fabrizio, Kaspar Althoefer, and Luigi Manfredi. "Silicone-based ultra-stretchable strain sensors." In UK-RAS Conference: Robots Working For and Among Us. EPSRC UK-RAS Network, 2018. http://dx.doi.org/10.31256/ukras17.46.
Повний текст джерелаWeigand, Felix, Anh Minh Nguyen, Jan Wolff, and Arthur Seibel. "Toward Industrial Silicone 3D Printing of Soft Robots." In 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft). IEEE, 2021. http://dx.doi.org/10.1109/robosoft51838.2021.9479196.
Повний текст джерелаPak, Nicola Ng, Robert J. Webster, Arianna Menciassi, and Paolo Dario. "Electrolytic Silicone Bourdon Tube Microactuator for Reconfigurable Surgical Robots." In 2007 IEEE International Conference on Robotics and Automation. IEEE, 2007. http://dx.doi.org/10.1109/robot.2007.363993.
Повний текст джерелаFang, Wu, Seung Ki Moon, and Hungsun Son. "Voice coil navigation sensor for endoscopic silicone intubation." In 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). IEEE, 2014. http://dx.doi.org/10.1109/urai.2014.7057449.
Повний текст джерелаYi Sun, Yun Seong Song, and Jamie Paik. "Characterization of silicone rubber based soft pneumatic actuators." In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013). IEEE, 2013. http://dx.doi.org/10.1109/iros.2013.6696995.
Повний текст джерелаDawood, Abu Bakar, Hareesh Godaba, Ahmad Ataka, and Kaspar Althoefer. "Silicone-based Capacitive E-skin for Exteroception and Proprioception." In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020. http://dx.doi.org/10.1109/iros45743.2020.9340945.
Повний текст джерелаCarpi, Federico, Azadeh Khanicheh, Constantinos Mavroidis, and Danilo De Rossi. "Silicone Made Contractile Dielectric Elastomer Actuators Inside 3-Tesla MRI Environment." In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2008. http://dx.doi.org/10.1109/iros.2008.4651064.
Повний текст джерелаZheng, G., O. Goury, M. Thieffry, A. Kruszewski, and C. Duriez. "Controllability pre-verification of silicone soft robots based on finite-element method." In 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019. http://dx.doi.org/10.1109/icra.2019.8794370.
Повний текст джерелаChen, G., M. Pham, and T. Redarce. "Development and kinematic analysis of a silicone-rubber bending tip for colonoscopy." In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2006. http://dx.doi.org/10.1109/iros.2006.282129.
Повний текст джерела