Дисертації з теми "Robotics and neuroscience"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-39 дисертацій для дослідження на тему "Robotics and neuroscience".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Kazer, J. F. "The hippocampus in memory and anxiety : an exploration within computational neuroscience and robotics." Thesis, University of Sheffield, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339963.
Повний текст джерелаHunt, Alexander Jacob. "Neurologically Based Control for Quadruped Walking." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1445947104.
Повний текст джерелаSzczecinski, Nicholas S. "MASSIVELY DISTRIBUTED NEUROMORPHIC CONTROL FOR LEGGED ROBOTS MODELED AFTER INSECT STEPPING." Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1354648661.
Повний текст джерелаKodandaramaiah, Suhasa Bangalore. "Robotics for in vivo whole cell patch clamping." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/51932.
Повний текст джерелаBlitch, John G. "Engagement and not workload is implicated in automation-induced learning deficiencies for unmanned aerial system trainees." Thesis, Colorado State University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3624259.
Повний текст джерелаAutomation has been known to provide both costs and benefits to experienced humans engaged in a wide variety of operational endeavors. Its influence on skill acquisition for novice trainees, however, is poorly understood. Some previous research has identified impoverished learning as a potential cost of employing automation in training. One prospective mechanism for any such deficits can be identified from related literature that highlights automation's role in reducing cognitive workload in the form of perceived task difficulty and mental effort. However three experiments using a combination of subjective self-report and EEG based neurophysiological instruments to measure mental workload failed to find any evidence that link the presence of automation to workload or to performance deficits resulting from its previous use. Rather the results in this study implicate engagement as an underlying basis for the inadequate mental models associated with automation-induced training deficits. The conclusion from examining these various states of cognition is that automation-induced training deficits observed in novice unmanned systems operators are primarily associated with distraction and disengagement effects, not an undesirable reduction in difficulty as previous research might suggest. These findings are consistent with automation's potential to push humans too far "out of the loop" in training. The implications of these findings are discussed.
Pike, Frankie. "Low Cost NueroChairs." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/887.
Повний текст джерелаHorchler, Andrew de Salle. "Design of Stochastic Neural-inspired Dynamical Architectures: Coordination and Control of Hyper-redundant Robots." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1459442036.
Повний текст джерелаMoualla, Aliaa. "Un robot au Musée : Apprentissage cognitif et conduite esthétique." Thesis, CY Cergy Paris Université, 2020. http://www.theses.fr/2020CYUN1002.
Повний текст джерелаIn my thesis I treat the subject of autonomous learning based on social referencing in a real environment, "the museum". I am interested in adding and analyzing the mechanisms necessary for a robot to pursue such a type of learning. I am also interested in the impact of a specific and individual learning to each robot on the whole of a group of robots confronted with a known situation or on the contrary new, more precisely:In the first chapter, we will discuss in a didactic way the tools needed to understand the models and methods that we will use throughout our work. We will discuss the basics of neural formalism, conditioning learning, categorization, and dynamic neural fields.In the second chapter, we will briefly present the biological visual system then we will review a state of the art of different models dealing with visual perception and object recognition. As part of a bio-inspired approach, we will then present the model of the visual system of the "Berenson" robot, the sensorimotor architecture allowing to associate an emotional value with an observed object. Then we study the performances of the visual system with and without space competition mechanism.In the third chapter we will move to the level of human-machine interactions, we will show that the interest of visitors to the robot does not only depend on its shape, but on its behavior and more specifically its ability to interact on an emotional level. (here facial expressions). We first analyze the impact of the visual system on the low level control of robot actions. We show that the low level of the spatial competition between the values associated with the zones of interest of the image is important for the recognition of objects and thus affects the coherence of the behavior of the robot and therefore the legibility of this behavior. . We then introduce modifications on the control of eye, head and body movements inspired by biological processes (change of the frame of reference). In the end, we analyze the tests performed in the museum to assess the readability of the behavior of the robot (its movements and facial expressions).In the fourth chapter, our work continues with the addition of inspired bio-based neural mechanisms that allow the emergence of important joint attention capacity to achieve more "natural" interactions with visitors to the museum but also to discuss a point from a theoretical point of view the emergence of the notion of agency. Berenson represents today a form of experimentation unique in the social sciences as in development robotics.In the fifth chapter, we will focus on evaluating the effect of the emergence of aesthetic preferences on a whole population of robots (in simulation). We argue that the variability of learning offered by special environments such as a museum leads to the individuation of robots. We also question the interest of teaching artificial systems using a single large database in order to improve their performance. Avoiding a uniform response to an unknown situation in a population of individuals increases its chances of success
Chinellato, Eris. "Visual neuroscience of robotic grasping." Doctoral thesis, Universitat Jaume I, 2008. http://hdl.handle.net/10803/669156.
Повний текст джерелаL'haridon, Louis. "La douleur et le plaisir dans la boucle motivation-émotion-cognition : les robots en tant qu'outils et que modèles." Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1342.
Повний текст джерелаIn this thesis, I explore the integration of pain, its perception, its features, and its sensory process into robotic models, focusing on its influence on motivation-based action selection architecture. Drawing inspiration from clinician psychology, neurobiology, and computation neuroscience, I aim to provide a framework with different perspectives to study how bio-inspired pain mechanisms can affect decision-making systems.Pain plays a crucial role in biological systems, influencing behaviors essential to survival and maintaining homeostasis, yet it is often neglected in emotional models. In humans and other animals, pain serves as an adaptive response to noxious stimuli, triggering protective actions that prevent harm and promote recovery. This thesis seeks to improve action selection by incorporating pain and its related features into robots, extending the current understanding of artificial agents and exploring how robots can use pain to modulate behavior, adapt to threats, and optimize survival.Embracing the embodied Artificial Intelligence paradigm and building upon prior work on motivation-based action selection models, this thesis proposes to study different perspectives on pain and its impact on action selection.First, I provide an overview of related work and the state of the art in relevant disciplines.In the initial part of this work, I propose an enhanced motivation-based action selection architecture by introducing an embodied model that enables robots to perceive and respond to noxious stimuli. Using artificial nociceptors, I simulate the sensation of damage in robotic agents and compute the emotional state of pain as an artificial hormone. This model investigates how varying levels of pain perception influence behavioral responses, with results emphasizing the adaptive value of pain modulation in action selection, particularly in extreme or hazardous environments.Next, I introduce an artificial hormonal neuromodulation mechanism featuring a simulated cortisol hormone that modulates the action selection process. This cortisol mechanism incorporates temporal dynamics, resulting in habituation and sensitization processes. I demonstrate how hormonal neuromodulation can lead to emergent behaviors that improve the overall response of robotic agents to environmental variability in extreme scenarios.Additionally, I propose a novel framework for tactile sensing in mobile robotic platforms. This framework computes a nociceptive and mechanoceptive process capable of localizing and classifying noxious and tactile stimuli. In collaboration with Raphaël Bergoin, we send this sensory signal to a spiking neural network, demonstrating the segregation of cortical areas for nociceptive and mechanoceptive signals and learning embodied sensory representations.Finally, I present an integrated action selection architecture that combines these new mechanoceptive and nociceptive sensory processes, behavioral responses, hormonal neuromodulation, and the learning of embodied representations. This architecture is examined in a social context with varying levels of interaction with predators. I highlight the importance of social interaction in learning embodied sensory representations and demonstrate how this cortex-based model improves hormonal management and action selection in dynamic environments.In conclusion, I discuss the results of this research and offer perspectives for future work
Bakkum, Douglas James. "Dynamics of embodied dissociated cortical cultures for the control of hybrid biological robots." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/22596.
Повний текст джерелаCommittee Chair: Steve M. Potter; Committee Member: Eric Schumacher; Committee Member: Robert J. Butera; Committee Member: Stephan P. DeWeerth; Committee Member: Thomas D. DeMarse.
GHIGLINO, DAVIDE. "The distracted robot: what happens when artificial agents behave like us." Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1040674.
Повний текст джерелаVoils, Danny. "Scale Invariant Object Recognition Using Cortical Computational Models and a Robotic Platform." PDXScholar, 2012. https://pdxscholar.library.pdx.edu/open_access_etds/632.
Повний текст джерелаFalotico, Egidio. "Study, modelling and robotic implementation of eye and head movements." Paris 6, 2013. http://www.theses.fr/2013PA066087.
Повний текст джерелаThis thesis aims to become a valuable tool in the symbiotic relationship between neuroscience and humanoid robotics, not only within this relationship, but also within the individual areas. The study, modeling and robotic implementation of mechanisms which regulate eye and head movements represent a milestone in the field of neuroscience and bio-inspired robotics. Understanding of physiology and neurophysiology underlying fundamental processes of the extraordinary human machine, such as eye-head movements and vestibular mechanisms, adds an essential piece to the puzzle of neuroscientific knowledge. From the robotic point of view, the implementation of a neuroscientific model leads to a further step toward the performance improving of existing robotic platforms. Furthermore, reproducing human mechanisms on a robotic platform allows the validation of the neuroscientific model itself
Felip, León Javier. "Contact driven robotic grasping." Doctoral thesis, Universitat Jaume I, 2016. http://hdl.handle.net/10803/662853.
Повний текст джерелаComo resultado del trabajo presentado en esta tesis, se proporciona una implementación completa de un sistema de manipulación que puede funcionar en entornos no estructurados. Sin embargo, hay margen de mejora en todos los componentes y quedan muchas preguntas sin resolver que deberían ser abordadas en el futuro.
Szczecinski, Nicholas S. "Synthetic Nervous Systems and Design Tools for Legged Locomotion." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1499122178853385.
Повний текст джерелаLorenz, Tamara. "Emergent coordination between humans and robots." Diss., Ludwig-Maximilians-Universität München, 2015. http://nbn-resolving.de/urn:nbn:de:bvb:19-181066.
Повний текст джерелаSpontan auftretende Koordination oder Bewegungssynchronisierung ist ein häufig zu beobachtendes Phänomen im Verhalten von Menschen. Menschen synchronisieren ihre Schritte beim nebeneinander hergehen, sie synchronisieren die Schwingbewegung zum Ausgleich der Körperbalance wenn sie nahe beieinander stehen und sie synchronisieren ihr Bewegungsverhalten generell in vielen weiteren Handlungen des täglichen Lebens. Die Frage nach dem warum ist eine Frage mit der sich die Forschung in der Psychologie, Neuro- und Bewegungswissenschaft aber auch in der Sozialwissenschaft nach wie vor beschäftigt: offenbar spielt die Bewegungssynchronisierung eine Rolle in der kindlichen Entwicklung und beim Erlernen von Fähigkeiten und Verhaltensmustern; sie steht in direktem Bezug zu unserem sozialen Verhalten und unserer emotionalen Wahrnehmung in der Interaktion mit Anderen; sie ist ein grundlegendes Prinzip in der Organisation von Kommunikation durch Sprache oder Gesten; außerdem können Modelle, die Bewegungssynchronisierung zwischen zwei Individuen erklären, auch auf das Verhalten innerhalb von Gruppen ausgedehnt werden. Insgesamt kann man also sagen, dass Bewegungssynchronisierung ein wichtiges Prinzip im menschlichen Interaktionsverhalten darstellt. Neben der Interaktion mit anderen Menschen interagieren wir in den letzten Jahren auch zunehmend mit der uns umgebenden Technik. Hier fand zunächst die Interaktion mit Maschinen im industriellen Umfeld Beachtung, später die Mensch-Computer-Interaktion. Seit kurzem sind wir jedoch mit einer neuen Herausforderung konfrontiert: der Interaktion mit aktiven und autonomen Maschinen, Maschinen die sich bewegen und aktiv mit Menschen interagieren, mit Robotern. Sollte die Vision der heutigen Roboterentwickler Wirklichkeit werde, so werden Roboter in der nahen Zukunft nicht nur voll in unser Arbeitsumfeld integriert sein, sondern auch in unser privates Leben. Roboter sollen den Menschen in ihren täglichen Aktivitäten unterstützen und sich sogar um sie kümmern. Diese Umstände erfordern die Entwicklung von neuen Interaktionsprinzipien, welche Roboter in der direkten Koordination mit dem Menschen anwenden können. In dieser Dissertation wird zunächst das Problem umrissen, welches sich daraus ergibt, dass Roboter zunehmend Einzug in die menschliche Gesellschaft finden. Außerdem wird die Notwendigkeit der Untersuchung menschlicher Interaktionsprinzipien, die auf die Mensch-Roboter-Interaktion transferierbar sind, hervorgehoben. Die Argumentation der Dissertation ist, dass die menschliche Bewegungssynchronisierung ein einfaches aber bemerkenswertes menschliches Interaktionsprinzip ist, welches in der Mensch-Roboter-Interaktion angewendet werden kann um menschliche Aktivitäten des täglichen Lebens, z.B. Aufnahme-und-Ablege-Aufgaben (pick-and-place tasks), zu unterstützen. Diese Argumentation wird auf fünf Publikationen gestützt. In der ersten Publikation wird die menschliche Bewegungssynchronisierung in einer zielgerichteten Aufgabe untersucht, welche die gleichen Anforderungen erfüllt wie die Aufnahme- und Ablageaufgaben des täglichen Lebens. Um zu untersuchen ob eine rein repetitive Bewegung des Roboters ausreichend ist um den Menschen zur Etablierung von Bewegungssynchronisierung zu ermutigen, wird in der zweiten Publikation eine Mensch-Roboter-Interaktionsstudie vorgestellt in welcher ein Mensch mit einem nicht-adaptiven Roboter interagiert. In dieser Studie wird jedoch keine Bewegungssynchronisierung zwischen Mensch und Roboter etabliert, was die Notwendigkeit von adaptiven Mechanismen unterstreicht. Daher wird in der dritten Publikation menschliches Adaptationsverhalten in der Bewegungssynchronisierung in zielgerichteten Aufgaben untersucht. Um die so gefundenen Mechanismen für die Mensch-Roboter Interaktion nutzbar zu machen, wird in der vierten Publikation die Entwicklung eines Interaktionsmodells basierend auf Dynamischer Systemtheorie behandelt. Dieses Modell kann direkt in eine Roboterplattform implementiert werden. Anschließend wird kurz auf eine erste Studie zur Mensch- Roboter Interaktion basierend auf dem entwickelten Modell eingegangen. Die letzte Publikation beschreibt eine Weiterentwicklung des bisherigen Vorgehens welche der Tendenz im menschlichen Verhalten Rechnung trägt, die Bewegungen an Ereignissen auszurichten. Hier wird außerdem eine erste Mensch-Roboter- Interaktionsstudie vorgestellt, die die Anwendbarkeit des Modells bestätigt. Die Dissertation wird mit einer Diskussion der präsentierten Ergebnisse im Kontext der Mensch-Roboter-Interaktion und psychologischer Aspekte der Interaktionsforschung sowie der Problematik von beiderseitiger Adaptivität abgeschlossen.
Venot, Tristan. "Design and evaluation of a multimodal control of a robotic arm with a Brain Computer Interface." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS418.
Повний текст джерелаBrain-machine interfaces (BMIs) left the realm of science fiction in the 1970s with Jacques Vidal's reflection on the feasibility of using electroencephalogram signals as a means of communication between the brain and external devices. During the development of this research field, various approaches have been explored to create a true interface between the brain and a machine. The methods of data acquisition have taken different forms, and with the improvement of computer capabilities and the advent of machine learning, methods to classify brain data have become more refined, capable of capturing complex information from brain data. A promising avenue to assist patients lies in the rehabilitation process following a stroke. By performing movements or providing feedback to patients about their brain activity, it is possible to help their brains adapt to neuronal deficits and aid them in overcoming their impairments. In this context, BMIs act as a support, like crutches, during the rehabilitation period. However, in this context, one challenge is to create differentiable brain patterns at the EEG level. To create these patterns, cognitive tasks that modify brain activity profiles are relied upon. One such task is motor imagery of limb movements, where subjects imagine movements without executing them. This particular task is unfamiliar to many and thus becomes complex to execute. One way to assist subjects in performing it is to provide evocative feedback in the BMI context, such as a robotic arm. Nurturing a sense of control over the arm and its movements helps elicit more differentiable brain patterns. Nevertheless, due to current limitations in the degree of control permitted by BMI systems, full control of a robotic arm is not yet possible. A solution is to couple the BMI with another technology to increase the degree of control and reinforce subjects' sense of agency over the arm. Among the technologies offering insights into subjects' intentions without requiring movement, the eye tracker appears to be an elegant solution. The integration of these two components creates a hybrid BCI system capable of intuitively controlling the arm. This hybridization has been demonstrated as a proof of concept in the BMI field, but the impact of integrating these modalities on the brain remains to be studied. A better understanding of how to shape the interaction between the eye tracker, BMI, and robotic arm would shed light on why good performances are obtained and how to elicit these discriminant brain patterns. The work in this thesis focused on creating an experimental platform that intertwines these different modalities to establish robust control over the arm. Through an experimental protocol, we assessed how to define the interaction through in-depth analysis, covering the system's pure performance and the physiological and neurophysiological responses of subjects. We found that consistency is crucial in the interaction, and we demonstrated the importance of movement in eliciting brain responses in this particular context. Our work paves the way for a better understanding of the brain's dynamics in controlling external devices in a multimodal setup. Additionally, we propose a new framework for controlling a robotic arm using a hybrid BCI. The thesis is structured into five chapters, covering the overall context of BMIs, the development of the experimental platform, the results from the experimental protocol and their discussion, and finally, a general conclusion
Hirel, Julien. "Codage hippocampique par transitions spatio-temporelles pour l'apprentissage autonome de comportements dans des tâches de navigation sensori-motrice et de planification en robotique." Phd thesis, Université de Cergy Pontoise, 2011. http://tel.archives-ouvertes.fr/tel-00660862.
Повний текст джерелаColbrunn, Robb William. "A Robotic Neuro-Musculoskeletal Simulator for Spine Research." Cleveland State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=csu1367977446.
Повний текст джерелаFarkhatdinov, Ildar. "Modélisation d'estimation de la verticalité pendant locomotion." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00993270.
Повний текст джерелаLlofriu, Alonso Martin I. "Multi-Scale Spatial Cognition Models and Bio-Inspired Robot Navigation." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6888.
Повний текст джерелаKaraouzene, Ali. "Construction sociale d'une esthétique artificielle : Berenson, un robot amateur d'art." Thesis, Cergy-Pontoise, 2017. http://www.theses.fr/2017CERG0903/document.
Повний текст джерелаIn this thesis we propose a robot as tool to study minimal bricks that helps human develop their aesthetic preferences. We refer to the robot preference using the term Artificial Esthetics (A.E).Several research work tries to establish a unified theory of esthetics. We divide them into two approaches. In one side, the empirical approaches which study esthetic preferences in an experimental manner. We mainly discuss the more radical branch of those approaches named "Neuroesthetic". Neuroesthetic advocates the existence of neural structures dedicated to visual scene preference and particularly to art appreciation. In another side, the social approaches which advocate that esthetic preferences are transmitted generation after generation, and they are built according to the individual historic and his interaction with others. Historical contextualism is a branch of the social approaches of art that draws a link between the appreciation of an artwork and the context where the artwork is observed.Without rejecting the neuroscientific approach, we choose a social and developmental way to study artificial esthetic using experimental methods from the empirical esthetic. We study the esthetic preferences development in the social referencing framework. Social referencing is the ability to attribute emotional values to à priori neutral objects. We test our hypothesis on a mobile robot in a triadic interaction : human-robot-object. This in a natural human centered environment. Humans play the role of the teachers. They have to fololow the robot in his development and teach it their preferences in order to help it develop its own "taste".We chose to conduct our experiment in places dominated by art and esthetics like museums and art galleries, however, this kind of experiment can take place anyway where human and objects are present.We named our robot Berenson in reference to a famous art historian of the 19th century. Berenson is a tool to understand how human project intentions into machines in one hand, and in the other hand the robot helps scientist build and understand minimal artificial intelligence bricks to build an artificial esthetic
Gao, Minqi. "Learning mobile robot control for obstacle avoidance based on motion energy neurons /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?ECED%202009%20GAO.
Повний текст джерелаHanoune, Souheïl. "Vers un modèle plausible de sélection de l'action pour un robot mobile." Thesis, Cergy-Pontoise, 2015. http://www.theses.fr/2015CERG0758/document.
Повний текст джерелаThis thesis aims at studying the different mechanisms involved in action selection and decision making processes, according to animal experiments and neurobiological recordings. For that matter, we propose several biologically plausible models for action selection. The goal is to achieve a better understanding of the animal's brain functions. This gives us the opportunity todevelop bioinspired control architectures for robots that are more robust and adaptative to a real environement. These models are based on Artificial Neural Networks, allowing us to test our hypotheses on simulations of different brain regions and function, implemented on robots and virtual agents.Action selection for mobile robots can be approached from different angles. This process can be seen as the selection between two possibilities, e.g. go left or go right. Those mechanisms involve the ability to learn and categorize specific events, encoding contexts where a change in the perception is perceived, a change in the behavior is noticed or the decision is made. There-fore, this thesis studies those capacities of acquisition, categorisation and coding of different events that can be relevant for action selection.We also, approach the action selection as a strategy selection. The different behaviors are guided consciously or through automated behavior learned as habits. We investigate different possibilities allowing a robot to develop those capacities. Also, we aim at studying interactions that can emerge between those mechanisms during navigational behaviors.The work presented in this these is based on the modelisation of the hippocampo-cotico-basal loops involved in the navigational behaviors, the action selection and the multimodal categorisation of events. We base our models on a previous model of the hippocampus for the learning of spatio-temporal associations and for multimodal conditionning of perceptive events. It is based on sensorimotor associations between place cells and actions to achieve navigational behaviors. The model involves also a specific type of hippocampic cells, named transition cells, for temporal prediction of future events. This capacity allows the model to learn spatio-temporal sequences, and it represents the neural substrate for the learning of a cognitive map, hypothesised to be localized in prefrontal and/or parietal areas. This kind of topological map allows to plan the behavior of the robot according to its motivations, which is used in goal orientedexperiments to achieve goals and capture rewards
SECOLI, RICCARDO. "CONTROLLO DI ROBOT PER LA RIABILITAZIONE DELL'ARTO SUPERIORE DI PAZIENTI POST-STROKE." Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3426991.
Повний текст джерелаL'ictus celebrale è la terza causa di morte dopo i decessi cardiovascolari e il cancro, e rappresenta una grave disabilà nell’epoca moderna [1]. Ogni anno in USA ed Europa ci sono tra i 200 e 300 nuovi casi ogni 100.000, in cui il 30% dei quali sopravvive con gravi invalidità e limitazioni sulle attività quotidiane, principalmente dovute ad un deterioramento del controllo motorio e alla perdita quindi, della destrezza nell’utilizzare gli arti [1, 2]. Considerando l’innalzamento dell’età media della popolazione, l’ictus rappresenta un fenomeno in via di crescita nei prossimi anni [2]. L’allenamento motorio post-ictus è diventato un bisogno primario sociale, basato sull’evidente beneficio che provoca sulla plasticità del sistema motorio a seguito di ictus [3]. Tipicamente i soggetti affetti da ictus ricevono delle cure fisioterapiche diversi mesi dopo lo stroke, per riuscire a migliorare le semi-paresi e per recuperare l’indipendenza motoria. Una relazione tra intensità ed effetto dei trattamenti si è instaurata tra la quantità di terapia individuale somministrata e il guadagno ottenuto nella mobilità motoria [4, 5, 6, 7, 8, 9]. E comunque da considerare che l’ammontare totale della terapia ricevuta, coinvolgendo direttamente il contatto diretto del fisioterapeuta, è limitato dai costi [10, 11, 12]. I pazienti tuttavia possono esercitarsi al di fuori delle sessioni fisioterapiche, ma i movimenti individuali sono particolarmente difficili per gli individui che non sono capaci di sollevare il proprio arto o con una minima mobilità alla mano, pertanto il contributo degli esercizi svolti a casa al fine del recupero motorio ha dato scarsi risultati [13, 14, 15]. E' necessario pertanto, sviluppare nuove strategie per la divulgazione delle terapie a basso costo, con l’obiettivo di permettere ai pazienti di esercitarsi per lungo tempo, massimizzando quindi il recupero motorio. Per far fronte a questo bisogno, nelle ultime due decadi si sono visti protagonisti un distinto numero di gruppi di ricerca ed industrie che hanno sviluppato dispositivi robotici per la riabilitazione di persone con disabilità (vedi revisioni [16, 17, 18, 19, 20, 21, 22]). La maggior parte di questo lavoro è incentrata nella riabilitazione dei movimenti a seguito di ictus poiché i sopravvissuti rappresentano una larga parte della popolazione presa in esame, sebbene vi siano altri lavori riguardanti il recupero motorio a seguito di paralisi celebrale infantile, sclerosi multipla e danni alla spina dorsale. Tipicamente sono tre gli obiettivi da raggiungere in questo settore: automatizzare la ripetibilità e l’arduo lavoro fisico della terapia, divulgare la terapia riabilitativa in più modi possibili, quantificare i risultati terapeutici con grande precisione. Dispositivi robotici sono stati sviluppati per assistere la riabilitazione di braccia, mani e gambe. Il paradigma più comune è utilizzare i dispositivi robotici per assistere fisicamente il completamento di movimenti desiderati di braccia, mani o gambe dei pazienti mentre svolgono dei giochi al computer. Diverse strategie di controllo sono state sviluppate (vedi revisione: [23]), e spaziano da robot che spostano rigidamente gli arti lungo un percorso predefinito, a robot che assistono il paziente solo se la performance di quest’ultimo non rientra dentro dei limiti spaziali o temporali, a robot che costruiscono un modello della disabilità del paziente. Due recenti revisioni del primo Randomized Controlled Trials (RCTs) di robot per la riabilitazione degli arti superiori hanno evidenziato che i risultati clinici sono distanti dall’essere soddisfacenti [21, 24]. Infatti, anche se il recupero motorio è maggiore nel gruppo della terapia robotica che in quello tradizionale, solo alcuni studi su pazienti in fase acuta e sub-acuta hanno dimostrato risultati positivi a livello funzionale (es. svolgimento delle attività quotidiane), complessivamente gli effetti complessivi sono tendenti a zero. Ciò suggerisce che le terapie, gli esercizi e i protocolli riabilitativi fin qui sviluppati devono essere ulteriormente perfezionati e ottimizzati. Due recenti sforzi in questa direzioni sono stati fatti: il controllo “assist-asneeded” proposto da Reinkensmayer per il Pneu-wrex, un esoscheletro ad attuazione pneumatica per la riabilitazione degli arti, e il controllo con assistenza progressiva in base alla performance del più famoso dispositivo riabilitativo per gli arti superiori il MIT-MANUS[25, 26, 27], il quale assiste il braccio del paziente nei movimenti svolti in un piano orizzontale. Il primo tipo di controllo permette di modulare lo sforzo del paziente mantenendolo vicino ad un percorso predefinito[28, 29]. Il secondo, è un metodo che adatta l’assistenza del robot alla performance del paziente (H.I. Krebs, unpublished conference presentation). Lo scopo di entrambi gli algoritmi è di incrementare lo sforzo e la partecipazione del paziente durante l’esecuzione degli esercizi. Forse, il problema fondamentale è che la terapia robotica non svolge un efficace progresso in questo senso è dovuto alla mancata conoscenza di come il motor learning funziona durante il lavoro di neuro-riabilitazione ad un livello tale da poter stabilire delle specifiche per la progettazione dei dispositivi robotici per la terapia [30]. Sappiamo che la ripetizione, con la partecipazione attiva del paziente, favorisce la riorganizzazione [31, 32]. Sappiamo che gli errori cinematici stimolano l’adattabilità motoria [33, 34, 35]. Alcuni esempi di correlazione tra sforzo del paziente o recupero dell’errore cinematico sono [34, 36, 37, 38]. In questi lavori, alcuni modelli matematici del comportamento di Soggetti sani o di Pazienti sono stati proposti e/o comparati con risultati sperimentali. Inoltre, ci sono anche dei test relativi all’utilizzo di feeback acustico per imparare ad eseguire dei task motori [39], anche se il sistema acustico è ancora largamente sottoutilizzato nei sistemi di riabilitazione robotica. I precisi processi di coinvolgimento mentale, le ripetizioni, gli errori cinematici e le informazioni sensoriali tradotte generalmente in un metodo di recupero non sono ancora state ben definite nella riabilitazione [30]. Il lavoro presentato in questa Tesi è la prima parte di una ricerca che ha come scopo principale di identificare i meccanismi chiave per determinare un coinvolgimento del paziente durante la terapia robotica assistita post-ictus, al fine di ottimizzare la progettazione dei dispositivi robotici. L’ipotesi chiave che sta dietro la ricerca è che il coinvolgimento del paziente e lo sforzo sono relazionati con le informazioni sensoriali fornite dal sistema robotico, e più il paziente sarà coinvolto più ci saranno degli incrementi nei benefici della terapia robotica assistita. Al fine di raggiungere questi risultati primari, è stata progettata una macchina planare a cavi per la riabilitazione degli arti superiori per pazienti post-ictus, abbastanza economica per l’utilizzo in ambulatorio. In questo dispositivo è stato progettato e perfezionato il controllo di tipo “assist-as-needed” per ottenere un controllore che coinvolga attivamente il paziente durante la terapia. Lo scopo finale di questo progetto sarà sviluppare una serie di equazioni matematiche che relazionino alcune variabili (es.: misurazioni del feedback) ad altre variabili (misura del coinvolgimento del paziente), per modellizzare il metodo comportamentale con cui il paziente interagisce con il robot. In questo modo si riuscirà a capire la risposta del paziente ad un livello sufficiente per dettare delle linee guida nella progettazione dei dispositivi robotici. Un punto fondamentale sarà definire le variabili impiegate per quantificare la partecipazione del paziente e gli ingressi sensoriali nel modello computazionale, e il loro metodo di misurazione. Per investigare su questo punto fondamentale è stata progettata un’interfaccia multi-feedback utilizzando un feedback sonoro per incrementare l’attenzione del paziente durante la terapia robotica assistita. Sono stati svolti dei test clinici con soggetti sani e pazienti post-stroke utilizzando la nuova interfaccia e il controllo “assist-as-needed” modificato. I risultati dei test hanno confermato le ipotesi iniziali: un’interfaccia multifeedback con il controllo “assist-as-needed” migliora le erformance dei pazienti durante la terapia robotica e il feedback sonoro incrementa l’attenzione durante gli esercizi. Uno step successivo del lavoro di Tesi, riguarderà il perfezionamento dell’interfaccia multi-feedback e del modello computazionale di controllo motorio per pazienti post-ictus.
Arechavaleta, Servin Gustavo. "An optimality principle governing human walking." Toulouse, INSA, 2007. http://eprint.insa-toulouse.fr/archive/00000193/.
Повний текст джерелаNarsipura, Sreenivasa Manish. "Modeling of human movement for the generation of humanoid robot motion." Thesis, Toulouse, INPT, 2010. http://www.theses.fr/2010INPT0120/document.
Повний текст джерелаHumanoid robotics is coming of age with faster and more agile robots. To compliment the physical complexity of humanoid robots, the robotics algorithms being developed to derive their motion have also become progressively complex. The work in this thesis spans across two research fields, human neuroscience and humanoid robotics, and brings some ideas from the former to aid the latter. By exploring the anthropological link between the structure of a human and that of a humanoid robot we aim to guide conventional robotics methods like local optimization and task-based inverse kinematics towards more realistic human-like solutions. First, we look at dynamic manipulation of human hand trajectories while playing with a yoyo. By recording human yoyo playing, we identify the control scheme used as well as a detailed dynamic model of the hand-yoyo system. Using optimization this model is then used to implement stable yoyo-playing within the kinematic and dynamic limits of the humanoid HRP-2. The thesis then extends its focus to human and humanoid locomotion. We take inspiration from human neuroscience research on the role of the head in human walking and implement a humanoid robotics analogy to this. By allowing a user to steer the head of a humanoid, we develop a control method to generate deliberative whole-body humanoid motion including stepping, purely as a consequence of the head movement. This idea of understanding locomotion as a consequence of reaching a goal is extended in the final study where we look at human motion in more detail. Here, we aim to draw to a link between “invariants” in neuroscience and “kinematic tasks” in humanoid robotics. We record and extract stereotypical characteristics of human movements during a walking and grasping task. These results are then normalized and generalized such that they can be regenerated for other anthropomorphic figures with different kinematic limits than that of humans. The final experiments show a generalized stack of tasks that can generate realistic walking and grasping motion for the humanoid HRP-2. The general contribution of this thesis is in showing that while motion planning for humanoid robots can be tackled by classical methods of robotics, the production of realistic movements necessitate the combination of these methods with the systematic and formal observation of human behavior
Manoonpong, Poramate. "Neural preprocessing and control of reactive walking machines : towards versatile artificial perception-action systems /." Berlin : Springer, 2007. http://sfx.ethz.ch/sfx_locater?sid=ALEPH:EBI01&genre=book&isbn=978-3-540-68802-0&id=doi:10.1007/978-3-540-68803-7.
Повний текст джерелаAvrin, Guillaume. "Modélisation du contrôle moteur humain lors de tâches rythmiques hybrides et application à la commande de robots anthropomorphes." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS334.
Повний текст джерелаThe identification of the neurbiological principles underlying human motor control is a very active reseach topic. Indeed, human movement has a level of robustness and dexterity still unmatched by robots. The objective is therefore to better understand the origin of this efficiency to replicate these performances in robotics. It has been shown that spinal rhythm generators, known as Central Pattern Generators (CPG), are responsible for the generation of rhythmic movements such as locomotion and respiration in vertebrates. These CPG constitute dynamic nonlinear systems modulated by sensory signals and descending signals from the cortex to adapt the behavior to the changing environment.The present study hypothesizes that visual information is also coupled to the CPG and that these couplings are responsible for the temporal and spatial synchronization observed during rhythmic visuomotor tasks. This assumption is confronted with experimental results from human participants performing ball bouncing, a well-known benchmark in neuroscience and robotics for its intrinsic dynamic properties. This task allows for the investigation of rhythmic movement generation by spinal networks, the temporal synchronization with the environment, the on-line correction of spatial errors and the interception of ballistic projectiles.This thesis proposes an innovative mathematical behavioral model based on a neuronal oscillator whose attractor, which defines the paddle trajectories, is modulated on-line by the visual perception of the ball trajectory. The relevance of the model is validated by comparison with experimental data and models previously proposed in the literature. The robustness of this control strategy is quantified by an asymptotic stability analysis. The bio-inspired controller presented in this thesis harmoniously combines a prospective control of the ball-paddle synchronization, an intermittent parametric control that scales the movement and a control emerging from the coupled system limit cycle. It efficiently reproduces the human modulation in motor action and performance during ball bouncing, without relying on movement planning or explicit internal representation of the environment. The results of this study lead to the realistic assumption that much part of the human behavior during ball bouncing is directly structured by sensory information and on-line error correction processes, in agreement with the behavioral dynamics theory. This control architecture holds promise for the control of humanoid robots as it is able to ensure stability and energy saving through control laws of reduced complexity and computational cost
Lagarde, Matthieu, Philippe Gaussier, and Pierre Andry. "Apprentissage de nouveaux comportements: vers le développement épigénétique d'un robot autonome." Phd thesis, Université de Cergy Pontoise, 2010. http://tel.archives-ouvertes.fr/tel-00749761.
Повний текст джерелаKhamassi, Mehdi. "Rôles complémentaires du cortex préfrontal et du striatum dans l'apprentissage et le changement de stratégies de navigation basées sur la récompense chez le rat." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2007. http://tel.archives-ouvertes.fr/tel-00688927.
Повний текст джерелаOuanezar, Sofiane. "Contrôle moteur par le cervelet et interface Cerveau-Machine pour commander un doigt robotique." Phd thesis, Télécom ParisTech, 2010. http://pastel.archives-ouvertes.fr/pastel-00577959.
Повний текст джерелаSadat, Rezai Seyed Omid. "A Neurocomputational Model of Smooth Pursuit Control to Interact with the Real World." Thesis, 2014. http://hdl.handle.net/10012/8224.
Повний текст джерела"Interconnects and Packaging to Enable Autonomous Movable MEMS Microelectrodes to Record and Stimulate Neurons in Deep Brain Structures." Master's thesis, 2016. http://hdl.handle.net/2286/R.I.38726.
Повний текст джерелаDissertation/Thesis
Masters Thesis Bioengineering 2016
"Brain Computer Interfaces for the Control of Robotic Swarms." Master's thesis, 2017. http://hdl.handle.net/2286/R.I.45014.
Повний текст джерелаDissertation/Thesis
Masters Thesis Mechanical Engineering 2017
(7043360), Chuhao Wu. "EYE TRACKING AND ELECTROENCEPHALOGRAM (EEG) MEASURES FOR WORKLOAD AND PERFORMANCE IN ROBOTIC SURGERY TRAINING." Thesis, 2019.
Знайти повний текст джерелаRobotic-assisted surgery (RAS) is one of the most significant advancements in surgical techniques in the past three decades. It provides benefits of reduced infection risks and shortened recovery time over open surgery as well as improved dexterity, stereoscopic vision, and ergonomic console over laparoscopic surgery. The prevalence of RAS systems has increased over years and is expected to grow even larger. However, the major concerns of RAS are the technical difficulty and the system complexity, which can result in long learning time and impose extra cognitive workload and stress on the operating room. Human Factor and Ergonomics (HFE) perspective is critical to patient safety and relevant researches have long provided methods to improve surgical outcomes. Yet, limited studies especially using objective measurements, have been done in the RAS environment.
With advances in wearable sensing technology and data analytics, the applications of physiological measures in HFE have been ever increasing. Physiological measures are objective and real-time, free of some main limitations in subjective measures. Eye tracker as a minimally-intrusive and continuous measuring device can provide both physiological and behavioral metrics. These metrics have been found sensitive to changes in workload in various domains. Meanwhile, electroencephalography (EEG) signals capture electrical activity in the cerebral cortex and can reflect cognitive processes that are difficult to assess with other objective measures. Both techniques have the potential to help address some of the challenges in RAS.
In this study, eight RAS trainees participated in a 3-month long experiment. In total, they completed 26 robotic skills simulation sessions. In each session, participants performed up to 12 simulated RAS exercises with varying levels of difficulty. For Research Question I, correlation and mixed effect analyses were conducted to explore the relationships between eye tracking metrics and workload. Machine learning classifiers were used to determine the sensitivity of differentiating low and high workload with eye tracking metrics. For Research Question II, two eye tracking metrics and one EEG metric were used to explain participants’ performance changes between consecutive sessions. Correlation and ANOVA analyses were conducted to examine whether variations in performance had significant relationships with variations in objective metrics. Classification models were built to examine the capability of objective metrics in predicting improvement during RAS training.
In Research Question I, pupil diameter and gaze entropy distinguished between different task difficulty levels, and both metrics increased as the level of difficulty increased. Yet only gaze entropy was correlated with subjective workload measurement. The classification model achieved an average accuracy of 89.3% in predicting workload levels. In Research Question II, variations in gaze entropy and engagement index were negatively correlated with variations in task performance. Both metrics tended to decrease when performance increased. The classification model achieved an average accuracy of 68.5% in predicting improvements.
Eye tracking metrics can measure both task workload and perceived workload during simulated RAS training. It can potentially be used for real-time monitoring of workload in RAS procedure to identify task contributors to high workload and provide insights for training. When combined with EEG, the objective metrics can explain the performance changes during RAS training, and help estimate room for improvements.
"Upper limb proprioceptive sensitivity in three-dimensional space: effects of direction, posture, and exogenous neuromodulation." Doctoral diss., 2018. http://hdl.handle.net/2286/R.I.51739.
Повний текст джерелаDissertation/Thesis
Doctoral Dissertation Neuroscience 2018
"Towards adaptive micro-robotic neural interfaces: Autonomous navigation of microelectrodes in the brain for optimal neural recording." Doctoral diss., 2013. http://hdl.handle.net/2286/R.I.21030.
Повний текст джерелаDissertation/Thesis
Ph.D. Bioengineering 2013