Добірка наукової літератури з теми "Robotic Manipulation of Deformable Objects (RMDO)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Robotic Manipulation of Deformable Objects (RMDO)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Robotic Manipulation of Deformable Objects (RMDO)"
Hou, Yew Cheong, Khairul Salleh Mohamed Sahari, and Dickson Neoh Tze How. "A review on modeling of flexible deformable object for dexterous robotic manipulation." International Journal of Advanced Robotic Systems 16, no. 3 (May 1, 2019): 172988141984889. http://dx.doi.org/10.1177/1729881419848894.
Повний текст джерелаWang, Liman, and Jihong Zhu. "Deformable Object Manipulation in Caregiving Scenarios: A Review." Machines 11, no. 11 (November 7, 2023): 1013. http://dx.doi.org/10.3390/machines11111013.
Повний текст джерелаChatzilygeroudis, Konstantinos, Bernardo Fichera, Ilaria Lauzana, Fanjun Bu, Kunpeng Yao, Farshad Khadivar, and Aude Billard. "Benchmark for Bimanual Robotic Manipulation of Semi-Deformable Objects." IEEE Robotics and Automation Letters 5, no. 2 (April 2020): 2443–50. http://dx.doi.org/10.1109/lra.2020.2972837.
Повний текст джерелаVerleysen, Andreas, Thomas Holvoet, Remko Proesmans, Cedric Den Haese, and Francis wyffels. "Simpler Learning of Robotic Manipulation of Clothing by Utilizing DIY Smart Textile Technology." Applied Sciences 10, no. 12 (June 13, 2020): 4088. http://dx.doi.org/10.3390/app10124088.
Повний текст джерелаZhu, Jihong, Benjamin Navarro, Robin Passama, Philippe Fraisse, Andre Crosnier, and Andrea Cherubini. "Robotic Manipulation Planning for Shaping Deformable Linear Objects WithEnvironmental Contacts." IEEE Robotics and Automation Letters 5, no. 1 (January 2020): 16–23. http://dx.doi.org/10.1109/lra.2019.2944304.
Повний текст джерелаAspragathos, Nikos A. "Intelligent Robot Systems for Manipulation of Non-Rigid Objects." Solid State Phenomena 260 (July 2017): 20–29. http://dx.doi.org/10.4028/www.scientific.net/ssp.260.20.
Повний текст джерелаZaidi, Lazher, Juan Antonio Corrales Ramon, Laurent Sabourin, Belhassen Chedli Bouzgarrou, and Youcef Mezouar. "Grasp Planning Pipeline for Robust Manipulation of 3D Deformable Objects with Industrial Robotic Hand + Arm Systems." Applied Sciences 10, no. 23 (December 6, 2020): 8736. http://dx.doi.org/10.3390/app10238736.
Повний текст джерелаRuggiero, Fabio, Antoine Petit, Diana Serra, Aykut C. Satici, Jonathan Cacace, Alejandro Donaire, Fanny Ficuciello, et al. "Nonprehensile Manipulation of Deformable Objects: Achievements and Perspectives from the Robotic Dynamic Manipulation Project." IEEE Robotics & Automation Magazine 25, no. 3 (September 2018): 83–92. http://dx.doi.org/10.1109/mra.2017.2781306.
Повний текст джерелаSanchez, Jose, Juan-Antonio Corrales, Belhassen-Chedli Bouzgarrou, and Youcef Mezouar. "Robotic manipulation and sensing of deformable objects in domestic and industrial applications: a survey." International Journal of Robotics Research 37, no. 7 (June 2018): 688–716. http://dx.doi.org/10.1177/0278364918779698.
Повний текст джерелаAlmaghout, K., and A. Klimchik. "Vision-Based Robotic Comanipulation for Deforming Cables." Nelineinaya Dinamika 18, no. 5 (2022): 0. http://dx.doi.org/10.20537/nd221213.
Повний текст джерелаДисертації з теми "Robotic Manipulation of Deformable Objects (RMDO)"
Roca, Filella Nicolas. "Contributions à la robotisation de tâches entrant dans la fabrication de pneumatiques." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2023. http://www.theses.fr/2023UCFA0011.
Повний текст джерелаRobotics research is increasingly interested in the manipulation of soft objects: fabrics, foams or any other deformable object like rubber. The deformation of such an object is usually modeled by introducing new degrees of freedom, which makes its control more complex. In the context of the industry of the future, the Manufacture Française des Pneumatiques Michelin wishes to modernize its tire manufacturing process which consists of assembling, layer by layer, strips and plies of rubber. These tasks, which have never been robotized before this thesis, fall within the domain of robotic manipulation of deformable objects (RMDO).Through the CIFRE plan (French Industrial Research Training Convention) of the ANRT (French National Association for Technological Research), this thesis addresses this issue in an industrial application context through the design of a robotic cell by providing innovative technological solutions, especially in terms of actuation, perception, and control. However, we show that the integration of these solutions is limited by classical problems of RMDO, such as the modeling of object deformations, multimodal perception or dynamic control and generation of tasks.A first contribution is the adaptation of image processing algorithms from open-source libraries to an industrial context. These algorithms replace commercial industrial solutions and allow a greater freedom of parameterization for each function. The result is an assembly of flexible algorithmic bricks adapted to the specificities of the tire manufacturing process.This thesis also explores the use of a reduced physical model to control the tension in a suspended gum strip, one end of which is wrapped around a spool while the other is manipulated by a robot. We distinguish three contributions: vision-based estimation of the tension, a closed-loop control law to regulate the rotation speed of the reel and thus vary the length of the suspended part of the strip, and a planning algorithm to achieve the desired tension.A last contribution concerns a visual feedback control allowing to join end to end the two ends of a web wrapped around a cylindrical surface. This complex operation is based on visual perception and 3D reconstruction of the edge of the ply as well as a control law considering a weighted measure of the error.Our developments have enabled the design and production of an industrial demonstrator that is ready for deployment in a factory. This means that industrial constraints such as sizing, cycle time, available hardware and software architecture, and quality tolerances have been considered from the beginning of the scientific reflection. Experimental validations were carried out on this test bench
Caporali, Alessio. "Robotic manipulation of cloth-like deformable objects." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Знайти повний текст джерелаZhu, Jihong. "Vision-based robotic manipulation of deformable linear objects." Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTS008.
Повний текст джерелаIn robotics, the area of deformable object manipulation receives far less attention than that of rigid object manipulation. However, many objects in real life are deformable. Research on deformable object manipulation is indispensable to equip robots with full manipulation dexterity. Deformable linear object (DLO) is one type of deformable objects that commonly presents in the industry and households, for instance, electrical cables for power transfer, USB cables for data transfer, or ropes for dragging and lifting equipment. In the context of H2020 VERSATILE, a project focusing on industrial automation using robots, we focus our research on DLO manipulation via visual feedback.One characteristic of deformable object manipulation is that the object shape changes while being manipulated. Consequently, a research direction is to control the shape of the object during manipulation. We tackle the shape control problem by using vision. Initially, we parameterize the shape with Fourier series, estimate and update the interaction matrix online, and finally control the DLO shape.In the subsequent research, instead of using human-defined features for parameterization, we let the robot automatically learn feature vectors from visual data. We propose a method that allows the robot to simultaneously generate a feature vector and the interaction matrix from the same data. Our approach requires minimum data for initialization. Learning and control can be done online in an adaptive manner. We can also apply the method to rigid object manipulation directly without modification.Neither of the two frameworks requires camera calibration, and both are verified with simulation and real robotic experiments.Another area of importance in deformable object manipulation is the utilization of external contacts. The object deformation is defined in a configuration space of infinite dimension. Nonetheless, the inputs from robots are limited. External contacts can and should be used for manipulating deformable objects. We take a practical scenario in the industry -- cable routing with external contacts as the process to automate with our robot. We propose a planning algorithm that allows the robot to use contacts for shaping the cable and achieving the desired cable configuration. Real robotic experiments with different contact placement scenarios further validate the algorithms
Wang, Zhifeng. "Robotic Manipulation of Deformable Linear Objects: Modelling and Simulation." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Знайти повний текст джерелаRowlands, Stephen. "Robotic Control for the Manipulation of 3D Deformable Objects." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42554.
Повний текст джерелаZanella, Riccardo <1991>. "Robotic Sensing and Manipulation of Deformable Linear Objects with Learning-based methods." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9704/1/phd_thesis_riccardo_zanella.pdf.
Повний текст джерелаChandra, Rohit. "Application of Dual Quaternion for Bimanual Robotic Tasks." Thesis, Université Clermont Auvergne (2017-2020), 2019. http://www.theses.fr/2019CLFAC042.
Повний текст джерелаThe classical approach for dual-arm cooperative task space control was revisited and the symmetric formulation of dual arm coordination using virtual sticks was implemented using screw-based kinematics with dual quaternion representation. The proposed coupled control of cooperative task space, i.e. simultaneous control of both position and orientation setpoints of relative and absolute task space was compared against the performance of a proportional decoupled controller treating position and orientation error separately. The coupled controller demonstrated better tracking of pose and orientation in terms of accuracy and stability compared to the decoupled controller for tasks requiring faster operation in the relative task space of dual-arm manipulators.The cooperative task space modelling and control approach using screw-based kinematics and dual quaternions were extended for the cooperation modelling of the fingers of an anthropomorphic robotic hand. Additionally, the coupling of joints in the underactuated fingers of the robotic hand was represented with a coupled finger Jacobian. The coupled Jacobian of the robotic finger was used for inverse kinematic control, while allowing easy integration with a robotic arm.The idea of coupled treatment of position and orientation variables was capitalized further with the design of a second-order trajectory tracker using dual quaternions. The trajectory controller hence designed was capable of tracking pose, velocity and acceleration setpoints for the end-effector using inverse dynamic model of the robot. The coupled resolved rate acceleration controller was found to be capable of tighter trajectory control, specially for error terms related to orientation, compared to the conventional decoupled controller that treated the position and orientation setpoints separately and ignored the inherent effect of rotation on translational motion. Additionally, it also led to lower oscillations in the joint torque command when implemented for the control of one of the arms of Baxter dual-arm robot.Finally, a complete framework for the coordination of bi-arm robotic systems was proposed with the addition of a cooperative task planner. The simplicity of screw theory was exploited additionally for parametrized generation of generalized second order trajectories for tasks requiring simplified motion, like translation, rotation and screw motion around an arbitrary 6D screw-axis given in a known reference frame. The trajectory generation method was extended to represent the constraints related to tasks involving contact between objects using the concept of virtual mechanism
Phillips-Grafflin, Calder. "Enabling Motion Planning and Execution for Tasks Involving Deformation and Uncertainty." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-dissertations/307.
Повний текст джерелаЧастини книг з теми "Robotic Manipulation of Deformable Objects (RMDO)"
Millard, David, James A. Preiss, Jernej Barbič, and Gaurav S. Sukhatme. "Parameter Estimation for Deformable Objects in Robotic Manipulation Tasks." In Springer Proceedings in Advanced Robotics, 239–51. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-25555-7_16.
Повний текст джерелаF., Fouad, and Pierre Payeur. "Dexterous Robotic Manipulation of Deformable Objects with Multi-Sensory Feedback - a Review." In Robot Manipulators Trends and Development. InTech, 2010. http://dx.doi.org/10.5772/9183.
Повний текст джерелаТези доповідей конференцій з теми "Robotic Manipulation of Deformable Objects (RMDO)"
Mira, D., A. Delgado, C. M. Mateo, S. T. Puente, F. A. Candelas, and F. Torres. "Study of dexterous robotic grasping for deformable objects manipulation." In 2015 23th Mediterranean Conference on Control and Automation (MED). IEEE, 2015. http://dx.doi.org/10.1109/med.2015.7158760.
Повний текст джерелаLi, Xiang, Zerui Wang, and Yun-Hui Liu. "Sequential Robotic Manipulation for Active Shape Control of Deformable Linear Objects." In 2019 IEEE International Conference on Real-time Computing and Robotics (RCAR). IEEE, 2019. http://dx.doi.org/10.1109/rcar47638.2019.9044123.
Повний текст джерелаTang, Te, Changliu Liu, Wenjie Chen, and Masayoshi Tomizuka. "Robotic manipulation of deformable objects by tangent space mapping and non-rigid registration." In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016. http://dx.doi.org/10.1109/iros.2016.7759418.
Повний текст джерелаBednarek, Michal, and Krzysztof Walas. "Comparative Assessment of Reinforcement Learning Algorithms in the Taskof Robotic Manipulation of Deformable Linear Objects." In 2019 4th International Conference on Robotics and Automation Engineering (ICRAE). IEEE, 2019. http://dx.doi.org/10.1109/icrae48301.2019.9043790.
Повний текст джерелаValencia, Angel J., Felix Nadon, and Pierre Payeur. "Toward Real-Time 3D Shape Tracking of Deformable Objects for Robotic Manipulation and Shape Control." In 2019 IEEE SENSORS. IEEE, 2019. http://dx.doi.org/10.1109/sensors43011.2019.8956623.
Повний текст джерелаZürn, Manuel, Annika Kienzlen, Lars Klingel, Armin Lechler, Alexander Verl, Shiyi Ren, and Weiliang Xu. "Deep Learning-Based Instance Segmentation for Feature Extraction of Branched Deformable Linear Objects for Robotic Manipulation." In 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE). IEEE, 2023. http://dx.doi.org/10.1109/case56687.2023.10260646.
Повний текст джерела