Дисертації з теми "RNA"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "RNA".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Warner, Katherine Deigan. "Structural studies of small molecule-RNA interactions in druggable RNA targets and fluorogenic RNAs." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708889.
Повний текст джерелаHall, Adam. "Biogenesis of Y RNA-derived small RNAs." Thesis, University of East Anglia, 2013. https://ueaeprints.uea.ac.uk/42404/.
Повний текст джерелаRichter, Andreas S. [Verfasser], and Rolf [Akademischer Betreuer] Backofen. "Computational analysis and prediction of RNA-RNA interactions = Computergestützte Analyse und Vorhersage von RNA-RNA-Interaktionen." Freiburg : Universität, 2012. http://d-nb.info/1123475695/34.
Повний текст джерелаGarbutt, Jennifer S. "RNA interference in insects : persistence and uptake of double-stranded RNA and activation of RNAi genes." Thesis, University of Bath, 2011. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.548101.
Повний текст джерелаWilm, Andreas. "RNA-Alignments und RNA-Struktur in silico." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=979837278.
Повний текст джерелаSalgado, Maria Paula Santos Cordeiro. "Structural studies of RNA-dependent RNA polymerases." Thesis, Open University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.430559.
Повний текст джерелаLai, Daniel. "Computational analysis of ribonucleic acid basepairs in RNA structure and RNA-RNA interactions." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/57538.
Повний текст джерелаScience, Faculty of
Graduate
Poolsap, Unyanee. "Computational methods for predictions of RNA pseudoknotted secondary structures and RNA-RNA interactions." 京都大学 (Kyoto University), 2011. http://hdl.handle.net/2433/147348.
Повний текст джерелаFritz, Sarah E. "Molecular basis of the DExH-box RNA helicase RNA helicase A (RHA/DHX9) in eukaryotic protein synthesis." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437413252.
Повний текст джерелаPereira, Tiago Campos. "Estudo de possiveis aplicações médicas da interferencia por RNA." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/316861.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-04T19:04:59Z (GMT). No. of bitstreams: 1 Pereira_TiagoCampos_D.pdf: 3895694 bytes, checksum: d999bfc92e9a2e2c757db34bbfc7d7fa (MD5) Previous issue date: 2005
Doutorado
Genetica Animal e Evolução
Doutor em Genetica e Biologia Molecular
Lackey, Jeremy. "New methods for the synthesis of RNA, novel RNA pro-drugs and RNA microarrays." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=92290.
Повний текст джерелаA major goal of this thesis work was aimed at finding ribonucleoside synthons that potentially benefit two critical aspects of RNA manufacturing: yield and ease of post-synthesis processing. Towards these goals, we developed methods for the synthesis of RNA using 2'-O-Lv and 2'-O-acetal Lv (ALE) ribonucleoside derivatives. Deprotection of the RNA chains consisted of a three-step deprotection scheme, which eliminated the need for any harsh basic hydrolytic steps, generally composed of: (1) treatment with anhydrous NEt3 (r.t., 1 h) to deblock the phosphate's cyanoethyl groups; (2) hydrazinolysis (r.t., 30 min 4 h) to simultaneously deprotect the nucleobases and 2'-OH positions, and (3) fluoride treatment (r.t., 30 min) to effect cleavage from the controlled pore glass solid support. Significantly, the rather mild conditions to remove 2'-O-Lv or 2'-O-ALE protecting groups did not lead to RNA strand scission. Furthermore, in the case of 2'-O-ALE protection, higher step-wise monomer coupling yields (~98.7%) was possible, since the ALE protection is less bulky than conventional silyl protection, i.e. TBDMS. Furthermore, both 2'-O-Lv or 2'O-ALE chemistries are completely compatible with the synthesis cycles used by all automated gene synthesizers.
With adjustments in protecting group strategies for the 5'-OH, exocyclic amino nucleobase groups and the development of a light-labile solid support, two other major goals were achieved: (1) the first in situ synthesis of RNA on microarrays, and (2) synthesis of chemically modified RNA strands with 2'-O-acetal ester and 2'-O-acetal ester pyrrolidines in order to increase lipophilicity and cellular permeability over native RNA. When RNA synthesis was carried out with 5'-O-NPPOC 2'-O-ALE monomers on a microarray ("chip"), deprotection typically involved (1) cleavage of the photolabile 5'-protecting group; (2) treatment with anhydrous NEt3 (r.t., 1 h) to deblock the phosphate's cyanoethyl groups; (3) hydrazinolysis (r.t., 30 min 4 h) to simultaneously deprotect bases and 2'-OH positions. The latter step could also be accomplished with ethylenediamine at room temperature. An RNase A assay was performed as "proof-of-principle" to demonstrate the value of a DNA-RNA microarray for studying enzyme kinetics and specificity on oligonucleotide based libraries. We showed that RNase A acts effectively on a DNA-RNA substrate with measurable kinetics analogous to those of the reference substrates.
The novel 2'-O-modified RNA were tested as short interfering RNA pro-drugs ("pro-siRNA") that would cross the cell membrane and be hydrolyzed (at the 2'-O-ester groups) by ubiquitous esterases to release the active (siRNA) molecules. Indeed, both siRNA and pro-siRNA prepared via 2'-O-ALE chemistry were shown to be active in an RNAi luciferase gene knockdown assay, confirming the integrity of the synthesized RNA strands and the promise of the pro-siRNA approach.
Jensen, Morten Bernt. "Characterisation of an Arabidopsis RNA-dependent RNA polymerase." Thesis, University of East Anglia, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437828.
Повний текст джерелаShechner, David M. "The structural basis of RNA-catalyzed RNA polymerization." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/58463.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references.
The Class I ligase is an artificial ribozyme that catalyzes a reaction chemically identical to a single turnover of RNA-dependent RNA polymerization. Such an activity would have been requisite for the emergence of a self-replicase ribozyme, an enzyme that, according to the RNA World hypothesis, would be fundamental for the emergence of life. Demonstrating the plausibility of RNA-catalyzed self-replication, the Class I ligase catalytic machinery was previously harnessed to produce general RNA polymerase ribozymes. Hence, this ligase represents a robust model system for studying both the potential role RNA may have played in the origins of life and RNA catalysis in general. Through a combination of crystallographic and biochemical experiments, we have sought to elucidate the structure and mechanism of this ribozyme. As a starting point for our experiments, the crystal structure of the self-ligated product was solved to 3.0 Angstrom resolution, revealing a tripodal architecture in which three helical domains converge in the vicinity of the ligation junction. A handful of tertiary interactions decorate this tripod scaffold; among them were two instances of a novel motif, the A-minor triad. The structure elucidated interactions that recognize and bind the primer-template duplex and those that position the reaction electrophile. It furthermore revealed functional groups that compose the active site. Biochemical evidence and the position of these groups lead us to propose a reaction mechanism similar to that used by proteinaceous polymerases. Using a slowly reacting mutant, 3.05-3.15 Angstrom crystal structures were solved of unreacted, kinetically trapped ligase-substrate complexes bound to different metal ions. Comparison of the Ca2+- and Mg2+-bound structures explains the preference of the ligase for Mg 2+. Moreover, these structures revealed features missing in the product structure: interactions to the 5'-triphosphate and an active site catalytic metal ion. While this metal is positioned in a manner similar to the canonical "Metal A" of proteinaceous polymerases, the role of "Metal B" might have been supplanted by functional groups on the RNA. Kinetic isotope experiments and atomic mutagenesis of two active site functional groups imply that they may act in concert to electrostatically aid transition-state stabilization.
by David M. Shechner.
Ph.D.
Tomescu, Alexandra Iulia. "Fluorescence studies of influenza RNA and RNA polymerase." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:77f33f82-76f7-4154-912e-5c92bd4bf9c6.
Повний текст джерелаBrown, James W. "RNA polymerase binding sites and polyadenylated RNAs in archaebacteria /." The Ohio State University, 1988. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487591658174843.
Повний текст джерелаWright, Sam Mathew. "Structural and biophysical studies of RNA-dependent RNA polymerases." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:d5c2a16d-e1e2-4c22-aca5-70f72aa96853.
Повний текст джерелаHahn, Daniela. "Brr2 RNA helicase and its protein and RNA interactions." Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/5775.
Повний текст джерелаKimura, Richard Henry. "The SINE RNA stress response and Alu RNA activity /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2003. http://uclibs.org/PID/11984.
Повний текст джерелаD'Abramo, Claudia M. "Biochemical characterization of the BVDV RNA-dependent RNA polymerase during initiation and elongation of RNA synthesis." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111870.
Повний текст джерелаBöhm, Stefanie. "Non-protein-coding RNA : Transcription and regulation of ribosomal RNA." Doctoral thesis, Stockholms universitet, Institutionen för molekylär biovetenskap, Wenner-Grens institut, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-102718.
Повний текст джерелаAt the time of the doctoral defence the following papers were unpublished and had a status as follows: Paper 2: Manuscript; Paper 3: Manuscript
Marr, Edward John. "RNA interference (RNAi) for selective gene silencing in Astigmatid mites." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/25722.
Повний текст джерелаJady, Béata Erika. "RNA-guided post-transcriptional modification of spliceosomal small nuclear RNAs." Toulouse 3, 2001. http://www.theses.fr/2001TOU30156.
Повний текст джерелаKable, Moffett Lee. "Kinetoplastid RNA editing : analysis of the mechanism of guide RNA directed uridylate insertion into precursor messenger RNA /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/9295.
Повний текст джерелаVasale, Jessica J. "Roles of Cellular RNA-Dependent RNA Polymerases in Endogenous Small RNA Pathways in Caenorhabditis elegans: A Dissertation." eScholarship@UMMS, 2010. https://escholarship.umassmed.edu/gsbs_diss/481.
Повний текст джерелаCroci, R. "RNA DEPENDENT RNA POLYMERASE: A VALUABLE TARGET TO BLOCK VIRAL REPLICATION IN SINGLE-STRANDED (+)SENSE RNA VIRUSES." Doctoral thesis, Università degli Studi di Milano, 2014. http://hdl.handle.net/2434/243352.
Повний текст джерелаNip, Ka Ming. "RNA-Bloom : de novo RNA-seq assembly with Bloom filters." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62590.
Повний текст джерелаScience, Faculty of
Alumni
Graduate
DeBlasio, Daniel. "NEW COMPUTATIONAL APPROACHES FOR MULTIPLE RNA ALIGNMENT AND RNA SEARCH." Master's thesis, University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4070.
Повний текст джерелаM.S.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Computer Science MS
Digard, Paul Eugene. "Analysis of the influenza virus RNA-dependent RNA poymerase complex." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304251.
Повний текст джерелаXu, Guorong. "RNA CoMPASS: RNA Comprehensive Multi-Processor Analysis System for Sequencing." ScholarWorks@UNO, 2012. http://scholarworks.uno.edu/td/1531.
Повний текст джерелаSarver, Michael. "STRUCTURE-BASED MULTIPLE RNA SEQUENCE ALIGNMENT AND FINDING RNA MOTIFS." Bowling Green State University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1151076710.
Повний текст джерелаPhosiwa, Maanda Noaxe. "Molecular characterization of a porcine picobirnavirus RNA-dependent RNA polymerase." Diss., Pretoria : [s.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-07152009-175205/.
Повний текст джерелаBakker, Saskia. "RNA packaging and uncoating in simple single-stranded RNA viruses." Thesis, University of Leeds, 2012. http://etheses.whiterose.ac.uk/2801/.
Повний текст джерелаJamieson, Lauren Vilda. "The RNA-dependent RNA polymerase of the hepatitis A virus." Thesis, University of Bath, 1998. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268194.
Повний текст джерелаZhou, Yu. "Application of RNA Bioinformatics in decoding RNA structure and regulation." Paris 11, 2008. http://www.theses.fr/2008PA112234.
Повний текст джерелаMy thesis focuses on the application of RNA bioinformatics analysis to solve the problems originated from biological requirements, ranging from structure prediction, common structure identification, microRNA target discovery, splicing regulation prediction, and RNA design (inverse folding). The first chapter concerns the establishment of an iterative method for the secondary structure prediction of group I introns including pseudo-knots, and the development of a comprehensive group I intron sequence and structure database. In the second chapter, I describe my work on bioinformatics analysis of the Pyrrolysine (Pyl, 22nd amino acid) insertion structure in Pyl-associated genes in archaea. The third and fourth chapters are devoted to develop two methods of experimental data analysis for identification of micro-RNA target sites, and for determination of binding sites of a RNA binding protein implicated in pre-mRNA splicing, independently. Finally, the fifth chapter presents an algorithm for RNA design under motif constraints, involving manipulation of automata and context-free grammars
Stoppel, Rhea. "Chloroplast RNA metabolism." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-152718.
Повний текст джерелаLawrence, Michael S. (Michael Scott) 1975. "[RNA polymerase ribozymes]." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/31193.
Повний текст джерелаTitle supplied by cataloger from abstract.
Includes bibliographical references.
The RNA World is a hypothetical ancient evolutionary era during which RNA was both genome and catalyst. During that time, RNA was the only kind of enzyme yet in existence, and one of its chief duties was the replication of RNA. This scenario presupposes that among all possible RNA sequences, there exist RNA replicase ribozymes, capable of synthesizing RNA using the information in an RNA template. The goal of the present work is to provide experimental evidence in support of this conjecture, by isolating such ribozymes in the laboratory. We created a large pool of RNA molecules each containing a previously isolated RNA ligase ribozyme and a large stretch of random RNA. Applying in vitro evolution to select for molecules that could extend a tethered RNA primer using nucleoside triphosphates, we isolated nine distinct classes of polymerase ribozymes. Two of these rudimentary polymerases were further evolved to the point that they each could add 14 nucleotides to an untethered primer-template. One of them was subjected to a detailed further characterization. The polymerization it catalyzes was shown to be accurate, with an average fidelity of nearly 97%. It was shown to be general, with primer-templates of all sequences and lengths being accepted as substrates. Finally, it was shown to be partially processive, with the polymerase achieving processivity as high as 90% in a few instances. The polymerase is currently limited by its low affinity for the primer-template. Future work will focus on improving primer- template binding, in order to produce a polymerase that can synthesize longer RNA.
Michael S. Lawrence.
Ph.D.
Zhang, Tongchuan. "RNA Structural Modelling." Thesis, Griffith University, 2021. http://hdl.handle.net/10072/404155.
Повний текст джерелаThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Institute for Glycomics
Griffith Health
Full Text
Swiatecka-Hagenbruch, Monika. "Phagenähnliche RNA-Polymerasen." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2009. http://dx.doi.org/10.18452/15924.
Повний текст джерелаAlthough chloroplasts of higher plants have small genomes, their transcription machinery is very complex. Plastid genes of higher plants are transcribed by the plastid-encoded plastid RNA polymerase PEP and the nuclear-encoded plastid RNA polymerases NEP. Here, promoters of plastid genes and operons have been characterized in Arabidopsis thaliana. For the first time spectinomycin-treated, chlorophyll-deficient Arabidopsis plants lacking PEP activity have been used to discriminate between NEP and PEP promoters. Although there are plastid genes that are transcribed from a single promoter, the transcription of plastid genes and operons by multiple promoters seems to be a common feature. Comparison of plastid promoters from tobacco and Arabidopsis revealed a high diversity, which my also apply to other plants. The diversity in individual promoter usage in different plants suggests that there are species-specific solutions for attaining control over gene expression in plastids. The nuclear genome of Arabidopsis contains two candidate genes for NEP transcription activity, RpoTp and RpoTmp, both coding for phage-type RNA polymerases. In this study the usage of NEP and PEP promoters has been analysed in transgenic Arabidopsis plants with reduced and lacking RpoTp activity. Differences in promoter usage between wild type and mutant plants were most obvious early in development. Nearly all NEP promoters were active in plants with low or lacking RpoTp activity, though certain promoters showed reduced or even increased usage. The strong NEP promoter of the essential ycf1 gene was not transcribed in young seedlings without functional RpoTp. These results provide evidence for NEP being represented by two phage-type RNA polymerases RpoTp and RpoTmp that have overlapping as well as specific functions in the transcription of plastid genes.
Forrest, Sophie. "Use of RNA aptamers to further elucidate the role of FMDV RNA-dependent RNA polymerase (3Dpol) in replication." Thesis, University of Leeds, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.574540.
Повний текст джерелаXu, Ning. "Adenoviral Control of RNAi/miRNA Pathways in Human Cells." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distribution], 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9387.
Повний текст джерелаKajitani, Takuiya. "Ser7 of RNAPII-CTD facilitates heterochromatin formation by linking ncRNA to RNAi." Kyoto University, 2018. http://hdl.handle.net/2433/232146.
Повний текст джерелаAttwater, James. "Ice as a medium for RNA-catalysed RNA synthesis and evolution." Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/246525.
Повний текст джерелаYin, Peng. "Structural and functional studies of reovirus RNA-dependent RNA polymerase complex." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ32040.pdf.
Повний текст джерелаCheng, Chi-Ping. "VIRAL RNA ELEMENTS AND HOST GENES AFFECTING RNA RECOMBINATION IN TOMBUSVIRUSES." UKnowledge, 2005. http://uknowledge.uky.edu/gradschool_diss/436.
Повний текст джерелаDall'Ara, Mattia. "RNA/RNA interactions involved in the regulation of Benyviridae viral cicle." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAJ019/document.
Повний текст джерелаMultipartite RNA virus condition to provide a complete set of genomic segments in each infected cell implies a high level of MOI that results in an unsustainable biological cost in terms of viral replication. In the proposed model, to minimize the cost of the genome integrity preservation, a network of RNA/RNA interactions determines the recognition and the mobilization of at least one of each genomic RNAs in a modular RNP complex. Such complex must be considered as the mobile infectious unit of the segmented genome during viral spread in the plant. The Aim of this thesis was to experimentally determine the existence of RNA/RNA interactions between BNYVV RNAs and their implication in the viral cycle. BNYVV genomic segments have been co-detected within isolated single cells from systemic tissues where they accumulate to reach set point genome formulas. In the model where vRNAs interact each other to form the minimal mobile infective unit, RNA1 and RNA2 interaction domain has been identified in silico and in vitro. The rationale of such an interaction has been provided in vivo using BNYVV and Beet soil-borne mosaic virus chimeras
Hunter, Lydia Jane. "The role of RNA-dependent RNA-polymerase 1 in antiviral defence." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648332.
Повний текст джерелаTurnbull, Carly. "Sequence and structure requirements of Y RNA-derived small RNA biogenesis." Thesis, University of East Anglia, 2014. https://ueaeprints.uea.ac.uk/49478/.
Повний текст джерелаHengrung, Narin. "Structure of the RNA-dependent RNA polymerase from influenza C virus." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:694e16a6-f94e-4375-a1f9-7e250aea7343.
Повний текст джерелаGrierson, Patrick Michael. "The BLM helicase facilitates RNA polymerase I-mediated ribosomal RNA transcription." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1337865492.
Повний текст джерелаBurger, Kaspar. "CDK9 links RNA polymerase II transcription to processing of ribosomal RNA." Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-167037.
Повний текст джерела