Добірка наукової літератури з теми "Rhizobiote"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Rhizobiote".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Rhizobiote":

1

Ariza-Mejía, Daniella, Guadalupe Oyoque-Salcedo, Valentina Angóa-Pérez, Hortencia G. Mena-Violante, Dioselina Álvarez-Bernal, and Jesús R. Torres-García. "Diversity and Potential Function of the Bacterial Rhizobiome Associated to Physalis Ixocarpa Broth. in a Milpa System, in Michoacan, Mexico." Agronomy 12, no. 8 (July 28, 2022): 1780. http://dx.doi.org/10.3390/agronomy12081780.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Michoacan state has a long history in plant domestication’s. Physalis ixocarpa is a native plant that growth associated to maize crops from this region. Due to the domestication process includes the adaptation to environmental factors, we ask if (1) Does P. ixocarpa has the capacity of association with bacterial communities of the zone where it was domesticated? and (2) Does the rhizobiome of this plant can increase the potential functions in the soil? An experiment was established in a traditional milpa system. Samples of rhizobiome from corn, P. ixocarpa, P. philadelphica, and soil were sequenced using Next Generation Sequencing in the region 16S. The potential function, metabolic pathway reconstruction and participation of each bacteria genus was inferred using iVikodak platform. A total of 34 Phyla and 795 genera were identified. Purine metabolism’s was the principal function, where all rhizobiomes showed similar metabolic pathways. However, the difference among plant species is the participation of the distinct genera in the Purine metabolism. We conclude that the rhizobiome of P. ixocarpa maintains the capacity of bacterial association in the region and shows complementarity for the soil functions. Therefore, their utilization can be helpful in zones where the agricultural practices have degraded microbiological soil conditions.
2

Vieira, Selma, Johannes Sikorski, Sophie Dietz, Katharina Herz, Marion Schrumpf, Helge Bruelheide, Dierk Scheel, Michael W. Friedrich, and Jörg Overmann. "Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands." ISME Journal 14, no. 2 (October 28, 2019): 463–75. http://dx.doi.org/10.1038/s41396-019-0543-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The active bacterial rhizobiomes and root exudate profiles of phytometers of six plant species growing in central European temperate grassland communities were investigated in three regions located up to 700 km apart, across diverse edaphic conditions and along a strong land use gradient. The recruitment process from bulk soil communities was identified as the major direct driver of the composition of active rhizosphere bacterial communities. Unexpectedly, the effect of soil properties, particularly soil texture, water content, and soil type, strongly dominated over plant properties and the composition of polar root exudates of the primary metabolism. While plant species-specific selection of bacteria was minor, the RNA-based composition of active rhizosphere bacteria substantially differed between rhizosphere and bulk soil. Although other variables could additionally be responsible for the consistent enrichment of particular bacteria in the rhizosphere, distinct bacterial OTUs were linked to the presence of specific polar root exudates independent of individual plant species. Our study also identified numerous previously unknown taxa that are correlated with rhizosphere dynamics and hence represent suitable targets for future manipulations of the plant rhizobiome.
3

Quattrone, Amanda, Yuguo Yang, Pooja Yadav, Karrie A. Weber, and Sabrina E. Russo. "Nutrient and Microbiome-Mediated Plant–Soil Feedback in Domesticated and Wild Andropogoneae: Implications for Agroecosystems." Microorganisms 11, no. 12 (December 13, 2023): 2978. http://dx.doi.org/10.3390/microorganisms11122978.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Plants influence the abiotic and biotic environment of the rhizosphere, affecting plant performance through plant–soil feedback (PSF). We compared the strength of nutrient and microbe-mediated PSF and its implications for plant performance in domesticated and wild grasses with a fully crossed greenhouse PSF experiment using four inbred maize genotypes (Zea mays ssp. mays b58, B73-wt, B73-rth3, and HP301), teosinte (Z. mays ssp. parviglumis), and two wild prairie grasses (Andropogon gerardii and Tripsacum dactyloides) to condition soils for three feedback species (maize B73-wt, teosinte, Andropogon gerardii). We found evidence of negative PSF based on growth, phenotypic traits, and foliar nutrient concentrations for maize B73-wt, which grew slower in maize-conditioned soil than prairie grass-conditioned soil. In contrast, teosinte and A. gerardii showed few consistent feedback responses. Both rhizobiome and nutrient-mediated mechanisms were implicated in PSF. Based on 16S rRNA gene amplicon sequencing, the rhizosphere bacterial community composition differed significantly after conditioning by prairie grass and maize plants, and the final soil nutrients were significantly influenced by conditioning, more so than by the feedback plants. These results suggest PSF-mediated soil domestication in agricultural settings can develop quickly and reduce crop productivity mediated by PSF involving changes to both the soil rhizobiomes and nutrient availability.
4

Orozco-Mosqueda, Ma del Carmen, Ajay Kumar, Olubukola Oluranti Babalola, and Gustavo Santoyo. "Rhizobiome Transplantation: A Novel Strategy beyond Single-Strain/Consortium Inoculation for Crop Improvement." Plants 12, no. 18 (September 11, 2023): 3226. http://dx.doi.org/10.3390/plants12183226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The growing human population has a greater demand for food; however, the care and preservation of nature as well as its resources must be considered when fulfilling this demand. An alternative employed in recent decades is the use and application of microbial inoculants, either individually or in consortium. The transplantation of rhizospheric microbiomes (rhizobiome) recently emerged as an additional proposal to protect crops from pathogens. In this review, rhizobiome transplantation was analyzed as an ecological alternative for increasing plant protection and crop production. The differences between single-strain/species inoculation and dual or consortium application were compared. Furthermore, the feasibility of the transplantation of other associated micro-communities, including phyllosphere and endosphere microbiomes, were evaluated. The current and future challenges surrounding rhizobiome transplantation were additionally discussed. In conclusion, rhizobiome transplantation emerges as an attractive alternative that goes beyond single/group inoculation of microbial agents; however, there is still a long way ahead before it can be applied in large-scale agriculture.
5

Pollak, Shaul, and Otto X. Cordero. "Rhizobiome shields plants from infection." Nature Microbiology 5, no. 8 (July 24, 2020): 978–79. http://dx.doi.org/10.1038/s41564-020-0766-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kuramae, Eiko E., Stan Derksen, Thiago R. Schlemper, Maurício R. Dimitrov, Ohana Y. A. Costa, and Adriana P. D. da Silveira. "Sorghum Growth Promotion by Paraburkholderia tropica and Herbaspirillum frisingense: Putative Mechanisms Revealed by Genomics and Metagenomics." Microorganisms 8, no. 5 (May 13, 2020): 725. http://dx.doi.org/10.3390/microorganisms8050725.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Bacteria from the genera Paraburkholderia and Herbaspirillum can promote the growth of Sorghum bicolor, but the underlying mechanisms are not yet known. In a pot experiment, sorghum plants grown on sterilized substrate were inoculated with Paraburkholderia tropica strain IAC/BECa 135 and Herbaspirillum frisingense strain IAC/BECa 152 under phosphate-deficient conditions. These strains significantly increased Sorghum bicolor cultivar SRN-39 root and shoot biomass. Shotgun metagenomic analysis of the rhizosphere revealed successful colonization by both strains; however, the incidence of colonization was higher in plants inoculated with P. tropica strain IAC/BECa 135 than in those inoculated with H. frisingense strain IAC/BECa 152. Conversely, plants inoculated with H. frisingense strain IAC/BECa 152 showed the highest increase in biomass. Genomic analysis of the two inoculants implied a high degree of rhizosphere fitness of P. tropica strain IAC/BECa 135 through environmental signal processing, biofilm formation, and nutrient acquisition. Both genomes contained genes related to plant growth-promoting bacterial (PGPB) traits, including genes related to indole-3-acetate (IAA) synthesis, nitrogen fixation, nodulation, siderophore production, and phosphate solubilization, although the P. tropica strain IAC/BECa 135 genome contained a slightly more extensive repertoire. This study provides evidence that complementary mechanisms of growth promotion in Sorghum might occur, i.e., that P. tropica strain IAC/BECa 135 acts in the rhizosphere and increases the availability of nutrients, while H. frisingense strain IAC/BECa 152 influences plant hormone signaling. While the functional and taxonomic profiles of the rhizobiomes were similar in all treatments, significant differences in plant biomass were observed, indicating that the rhizobiome and the endophytic microbial community may play equally important roles in the complicated plant-microbial interplay underlying increased host plant growth.
7

Harsono, A., D. Sucahyono, E. Pratiwi, A. Sarjia, H. Pratiwi, D. Andreas, and T. Simarmata. "The effectiveness of technology packages of 15 biofertilizer formulas to increase soybean productivity on acidic soils." IOP Conference Series: Earth and Environmental Science 911, no. 1 (November 1, 2021): 012041. http://dx.doi.org/10.1088/1755-1315/911/1/012041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The potentcy of acidic soils for soybean development in Indonesia is quite large. However low of soil fertility and microorganisms population become contrains for achieving high productifity of soybean. The aim of this research is to determine the effectiveness of technology packages for 15 biofertilizers formula to increase soybean productivity in acidic soils. The research was conducted during the end of rainy season in South Kalimantan. The soil use in the study had pH 5.2 and soil Al-saturation 34.2%. The reasearch was arranged in a randomized block design, three replications consisted of 20 treatmens, namely: 1) 0 NPK, 2) 50% NPK, 3) 50% NPK +2 t/ha organic fertilizer 4) 70% NPK, 5) 100% NPK (100 kg urea + 100 kg SP36 + 100 kg KCl/ha), 6) Iletrisoy+ Biovam+Starmix, 7) Iletrosoy Plus, 8) Beyonic, 9 Biotrico, 10) Probio New, 11) RhizoBIOST, 12) Bio-SRF, 13) Biopim, 14) BioMIGE, 15) Biocoat, 16) FajarSOYA, 17) Rhizobion, 18) Agrizone, 19) Rhizoplus, and 20) BISRF. For each biological fertilizer, 50-75% of recommended NPK fertilizers were given at 15 days after planting. The results indicated that combination of Biovam + Iletrisoy + Startmix biofertilizers, Iletrisoy plus, Biotricho, Probio New, Bio Mige, and Fajar SOYA were effective for increasing soybean productivity on acidic soils. These biological fertilizers + 50% recommended NPK + 1.5 t/ha organic fertilizer increases pods number, and soybean productivity more than 10% compared to the recommended NPK fertilizer dosage whic was 1.81 t/ha. Several of these biological fertilizers have good prospects to be developed as bio-fertilizers for soybeans in acidic soils.
8

Prabha, Ratna, Dhananjaya P. Singh, Shailendra Gupta, Vijai Kumar Gupta, Hesham A. El-Enshasy, and Mukesh K. Verma. "Rhizosphere Metagenomics of Paspalum scrobiculatum L. (Kodo Millet) Reveals Rhizobiome Multifunctionalities." Microorganisms 7, no. 12 (November 23, 2019): 608. http://dx.doi.org/10.3390/microorganisms7120608.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Multifunctionalities linked with the microbial communities associated with the millet crop rhizosphere has remained unexplored. In this study, we are analyzing microbial communities inhabiting rhizosphere of kodo millet and their associated functions and its impact over plant growth and survival. Metagenomics of Paspalum scrobiculatum L.(kodo millet) rhizopshere revealed taxonomic communities with functional capabilities linked to support growth and development of the plants under nutrient-deprived, semi-arid and dry biotic conditions. Among 65 taxonomically diverse phyla identified in the rhizobiome, Actinobacteria were the most abundant followed by the Proteobacteria. Functions identified for different genes/proteins led to revelations that multifunctional rhizobiome performs several metabolic functions including carbon fixation, nitrogen, phosphorus, sulfur, iron and aromatic compound metabolism, stress response, secondary metabolite synthesis and virulence, disease, and defense. Abundance of genes linked with N, P, S, Fe and aromatic compound metabolism and phytohormone synthesis—along with other prominent functions—clearly justifies growth, development, and survival of the plants under nutrient deprived dry environment conditions. The dominance of actinobacteria, the known antibiotic producing communities shows that the kodo rhizobiome possesses metabolic capabilities to defend themselves against biotic stresses. The study opens avenues to revisit multi-functionalities of the crop rhizosphere for establishing link between taxonomic abundance and targeted functions that help plant growth and development in stressed and nutrient deprived soil conditions. It further helps in understanding the role of rhizosphere microbiome in adaptation and survival of plants in harsh abiotic conditions.
9

Cotton, T. E. Anne, Pierre Pétriacq, Duncan D. Cameron, Moaed Al Meselmani, Roland Schwarzenbacher, Stephen A. Rolfe, and Jurriaan Ton. "Metabolic regulation of the maize rhizobiome by benzoxazinoids." ISME Journal 13, no. 7 (February 22, 2019): 1647–58. http://dx.doi.org/10.1038/s41396-019-0375-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Somera, Tracey, Mark Mazzola, and Chris Cook. "Directing the Apple Rhizobiome toward Resiliency Post-Fumigation." Agriculture 13, no. 11 (November 6, 2023): 2104. http://dx.doi.org/10.3390/agriculture13112104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Currently, there are no standard management practices to counteract the adverse effects of fumigation on the soil microbiome. In this study, a variety of pre-plant soil amendments were examined for their ability to recruit and maintain apple rhizosphere microbiomes that are suppressive to pathogen re-infestation of fumigated orchard soils. The capacity of these amendments to improve other characteristics of soil productivity was also evaluated. Results suggest that composted chicken manure and liquid chitin are likely to be detrimental to plant and soil health when used as a post-fumigation soil amendment. In comparison, insect frass (IF) resulted in a significant increase in tree trunk diameter relative to the fumigated control. Following pathogen re-infestation of fumigated soil, however, IF induced a significant increase in Pythium ultimum in the rhizosphere. Therefore, IF can benefit the growth of young apple trees in fumigated soil but may stimulate pathogen activity upon re-infestation. To date, the possibility of using soil amendments to suppress pathogen re-infestation of fumigated soils has not been tested. Results from this study ground support the use of soil amendments as an intervention strategy for “steering” the soil and rhizosphere microbiome in more beneficial and/or prophylactic directions following fumigation.

Дисертації з теми "Rhizobiote":

1

Fracchia, Félix. "Les phytohormones, des régulateurs clefs du microbiote du peuplier ?" Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les écosystèmes forestiers sont des environnements dynamiques aussi bien à l'échelle macroscopique que microscopique. Les arbres abritent un vaste cortège de microorganismes, appelé microbiote, majoritairement constitué de bactéries et de champignons. Ces communautés microbiennes colonisent les différents tissus des arbres et participent à diverses interactions, aussi bien défavorables (e.g. pathogènes), que bénéfiques. En effet, certains microorganismes (e.g. Plant Growth Promoting Bacteria : PGPR ; champignons mycorhiziens), améliorent la croissance et le développement de leur hôte via le transfert de nutriments, principalement de l'azote (N) et du phosphore (P) en échange de sucres photo-assimilés. D'autre part, il confère une résistance à l'arbre face aux stress biotiques (e.g. attaque par des pathogène, herbivorie) et abiotiques (e.g. sécheresse, toxicité des sols). L'assemblage de ce microbiote est un processus dynamique dans le temps et dans l'espace. Chaque organe de l'hôte constitue un micro-habitat particulier où s'établissent des communautés microbiennes spécifiques, aussi bien à la surface (épiphytique) qu'à l'intérieur des différents compartiments (endophytique). D'autre part, l'établissement du microbiote conduit à une succession de microorganismes qui remplacent les communautés déjà présentes au cours du temps. Il existe différents paramètres, biotiques (e.g. rhizodéposition, immunité et génotype de l'hôte) et abiotiques (e.g. type de sol, climat, saisons), qui régulent l'assemblage des communautés microbiennes. Dans ce contexte, l'objectif de cette thèse est de caractériser l'influence des phytohormones dans l'assemblage du microbiote du peuplier. Nous avons déterminé dans un premier temps, la dynamique de colonisation microbienne du système racinaire de plantules de peupliers de 2 à 50 jours. En utilisant deux méthodes complémentaires, le séquençage de marqueurs taxonomiques bactériens (16S) et fongiques (ITS, 18S), et l'observation des systèmes racinaires au microscope confocal à balyage laser (CLSM), nous avons mis en évidence l'existence de vagues successives de colonisation conduisant au remplacement progressif de microorganismes. A l'aide des mêmes approches, nous avons caractérisé la dynamique de colonisation du microbiote foliaire. Comme les systèmes racinaires, l'assemblage des communautés microbiennes était dynamique dans le temps. Les microorganismes racinaires et aériens étaient très proches aux temps précoces de colonisation et se différenciaient au cours du temps. Cette observation suggère le transfert de microorganismes depuis les racines vers les feuilles conduisant à la sélection de communautés microbiennes spécifiques en fonction des compartiments de l'hôte. Pour analyser le rôle des phytohormones, sur l'assemblage des communautés microbiennes, nous avons généré des lignées transgéniques de peupliers altérées dans la biosynthèse et la perception de l'acide gibbérellique (AG), l'acide jasmonique (AJ), l'acide salicylique (AS), l'éthylène (ET) et des terpènes. Dans un premier temps, nous avons utilisé des lignées transgéniques de peuplier altérées dans la régulation de l'ET. Nous avons démontré que l'ET n'altère pas la composition des exsudats racinaires, au contraire des métabolomes aériens et racinaires qui étaient modulés en fonction de la concentration d'ET produit. D'autre part, nous avons observé une influence directe et globale de l'ET sur la structure du microbiote après séquençage de marqueurs taxonomiques bactériens (ITS) et fongiques (16S), et l'observation des systèmes racinaires au CLSM. Enfin, afin d'exclure tout cofacteur pouvant expliquer les variations du microbiote chez des lignées transgéniques, nous avons caractérisé l'influence de l'agro-transformation sans expression de transgène sur la composition des communautés microbiennes. Nous avons démontré que cet évènement de transformation altérait l'assemblage du microbiote en comparaison avec des peupliers sauvages
Forest ecosystems are dynamic environments on both the macroscopic and microscopic scales. Trees are home to a vast array of microorganisms, called microbiota, mainly composed of bacteria and fungi. These microbial communities colonize the different tissues of trees and participate in various interactions, both detrimental (e.g. pathogens) and beneficial. Indeed, some microorganisms (e.g. Plant Growth Promoting Bacteria: PGPR; mycorrhizal fungi), improve the growth and development of their host via the transfer of nutrients, mainly nitrogen (N) and phosphorus (P) in exchange of photoassimilated sugars. On the other hand, it confers resistance to the tree in the face of biotic stresses (e.g. attack by pathogens, herbivory) and abiotic stresses (e.g. drought, soil toxicity). The assembly of this microbiota is a dynamic process in time and space. Each organ of the host constitutes a particular micro-habitat where specific microbial communities are established, both on the surface (epiphytic) and within the different compartments (endophytic). On the other hand, the establishment of the microbiota leads to a succession of microorganisms that replace the communities already present over time. There are different parameters, biotic (e.g. rhizodeposition, immunity and host genotype) and abiotic (e.g. soil type, climate, seasons), that regulate the assembly of microbial communities. In this context, the objective of this thesis is to characterize the influence of phytohormones in the assembly of poplar microbiota. We first determined the dynamics of microbial colonization of the root system of poplar seedlings from 2 to 50 days. Using two complementary methods, sequencing of bacterial (16S) and fungal (ITS, 18S) taxonomic markers, and observation of the root systems with a confocal laser scanning microscope (CLSM), we demonstrated the existence of successive waves of colonization leading to the progressive replacement of microorganisms. Using the same approaches, we characterized the colonization dynamics of the leaf microbiota. Like root systems, the assembly of microbial communities was dynamic over time. Root and aerial microorganisms were very close at early colonization times and differentiated over time. This observation suggests the transfer of microorganisms from roots to leaves leading to the selection of specific microbial communities according to host compartments. To analyze the role of phytohormones on the assembly of microbial communities, we generated transgenic lines of poplars altered in the biosynthesis and perception of gibberellic acid (GA), jasmonic acid (JA), salicylic acid (SA), ethylene (ET) and terpenes. First, we used poplar transgenic lines altered in the regulation of ET. We demonstrated that ET does not alter the composition of root exudates, in contrast to aerial and root metabolomes that were modulated according to the concentration of ET produced. On the other hand, we observed a direct and global influence of ET on the structure of the microbiota after sequencing of bacterial (ITS) and fungal (16S) taxonomic markers, and observation of root systems at CLSM. Finally, in order to exclude any cofactor that could explain microbiota variations in transgenic lines, we characterized the influence of agro-transformation without transgene expression on microbial community composition. We demonstrated that this transformation event altered the assembly of the microbiota in comparison with wild type poplars
2

Leitão, Frederico Tiago Sobral. "Rhizobiome dynamics in Pinus spp.-Fusarium circinatum interaction: host susceptibility and priming." Master's thesis, 2019. http://hdl.handle.net/10773/27919.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The rhizobiome (i.e. the rhizosphere microbiome) may play an important role in plant growth and defence against pathogens. Pitch canker, caused by the fungus Fusarium circinatum, infects a wide range of Pine species with different degrees of susceptibility, Pinus radiata is highly sensitive while Pinus pinea is resistant. To date, there are no suitable approaches available to control this threat, being associated with elevated economic losses to the forestry sector. Priming by chemical compounds such as phosphite, a priming agent with antifungal activity, is pointed as environmental-friendly approach to boost plant immune system. However, the relation between microbiome and host behaviour and priming was never studied in this pathosystem. Therefore, the aim of this study is to unveil the dynamics of the rhizobiome in Pinus spp. -F. circinatum interaction. Specific aims are to elucidate rhizobiome dynamics: 1) in a susceptible and in a resistant Pine species in response to F. circinatum inoculation; and 2) after phosphite application (foliarly or irrigation) in of the susceptible species. To attain these aims, two experiments were set up using 8 month-old Pinus seedlings of both species. Plants were artificially stem inoculated with 1x106 spores of the fungus. A non-inoculated control group was set up. The effect of phosphite (3%) was analyzed in P. radiata, testing two application modes (foliarly and irrigation) and included inoculated and noninoculated plants (control). For both experiments, plant symptoms were monitorized over time and sampled after 10 days, then physiological performance was assessed in needle by gasexchange parameters and antioxidant capacity. DNA was purified from the rhizosphere and used to evaluate the rhizobiome structure by 16S rRNA gene PCR-DGGE and massive parallel sequencing. The functional diversity of the community was inferred using the Piphillin software. When the two species were compared, visible symptoms were observed only in P. radiata, in parallel with significant alteration of gas-exchange parameters. Looking at species level, both rhizobiomes were significantly different, with a higher relative abundance of families known for their specific plant growth promoting traits (e.g. Nocardioidaceae, Burkholderiaceae, Xanthomonadaceae) in P. pinea. In P. pinea rhizobiome a higher abundance of genes related to the synthesis of monoterpenes, compounds with antimicrobial activity, was also estimated. However, F. circinatum inoculation had low impact on both species rhizobiome. Yet in P. radiata a higher abundance of Kofleriaceae, a family associated with plant necrotic tissues was evident after inoculation. The use of phosphite resulted in a priming effect resulting in a clear reduction in of symptomatic plants after 10 days, particularly when applied by irrigation (30%) in comparison to foliar application mode (50%). Moreover, a slight alleviation of the negative impacts on gas exchange parameters comparing to non- priming inoculated plants were observed. At rhizobiome level, phosphite significantly affected the abundance of several families, especially when applied through irrigation. This response is probably related to soil pH decrease, selecting bacteria adapted to acidic soils such as Acidimicrobiaceae, while Polyangiaceae abundance may be related to an increase in phosphorus bioavailability. In conclusion, our study compared for the first time the P. radiata and P. pinea rhizobiome, detecting significant differences that may play a role in the differential host susceptibility to F. circinatum infection. Despite the observed priming effect of phosphite, the strong impact on the plants’ rhizobiome may has further implications on plant development, which deserve further investigation.
O rizobioma (i.e. o microbioma da rizosfera) tem um papel importante no crescimento da planta e na sua defesa contra agentes patogénicos. O cancro resinoso, causado pelo fungo Fusarium circinatum, afeta várias espécies de pinheiro. Estas têm diferentes graus de suscetibilidade à doença, desde Pinus radiata que é mais suscetível a Pinus pinea que é resistente. Esta doença está associada a elevadas perdas económicas no setor florestal, não tendo ainda sido identificadas estratégias eficazes para o seu controlo. O priming é um método ecológico que permite melhorar as defesas da planta. O fosfito tem sido usado com este fim, apresentando atividade antifúngica. No entanto, a interação do rizobioma, hospedeiro e priming nunca foi estudada neste patossistema. O principal objetivo deste trabalho é elucidar a dinâmica do rizobioma na interação entre Pinus spp. e F. circinatum. Os objetivos específicos são: 1) elucidar a dinâmica do rizobioma numa espécie de pinheiro suscetível e numa espécie resistente em resposta à inoculação de F. circinatum; 2) avaliar o impacto do fosfito e do seu modo de aplicação (foliar e rega) no rizobioma de uma espécie sensível. Para atingir estes objetivos, foram efetuadas duas experiências com plântulas de pinheiro com 8 meses de ambas as espécies (P. radiata e P. pinea). As plantas foram inoculadas artificialmente no caule com 1x106 esporos do fungo. Plantas não inoculadas constituíram o grupo controlo. O efeito do fosfito (3%) foi analisado em P. radiata, testando dois modos de aplicação (foliar e rega), assim como a resposta de plantas inoculadas e não inoculadas. Para ambas as experiências, as plantas foram monitorizadas e amostradas após 10 dias. No momento da amostragem a performance das plantas foi analisada, usando parâmetros fisiológicos, de trocas gasosas e capacidade antioxidante. O ADN foi purificado da rizosfera e foi utilizado para avaliar a estrutura do rizobioma através de PCR-DGGE e sequenciação massiva paralela do gene 16S rRNA. A diversidade funcional foi inferida usando o software Piphillin. Comparando as duas espécies, apenas P. radiata demonstrou sintomas visíveis, assim como alterações significativas de parâmetros relacionados com trocas gasosas. Os rizobiomas das duas espécies revelaram ser significativamente diferentes. No rizobioma de P. pinea verificou-se uma maior abundância relativa de bactérias de famílias com funções específicas de promoção de crescimento em plantas (ex: Nocardioidaceae, Burkholderiaceae, Xanthomonadaceae). Para este rizobioma também foi estimada uma maior abundância de genes relacionados com a produção de monoterpenos, compostos com atividade antimicrobiana. A inoculação com F. circinatum teve um baixo impacto no rizobioma de ambas as espécies. Contudo, em P. radiata verificou-se uma maior abundância de Kofleriaceae após inoculação. Esta família tem sido associada a tecidos necróticos vegetais. A utilização de fosfito resultou numa redução de plantas sintomáticas após 10 dias, sendo esta redução mais evidente quando o fosfito foi aplicado por irrigação (30% de plantas sintomáticas) em comparação com a aplicação foliar (50%). Este efeito verificou-se também nos parâmetros de trocas gasosas, embora pouco acentuado. Em termos do rizobioma, o fosfito alterou significativamente a abundância de diversas famílias, especialmente quando foi aplicado por irrigação. Esta resposta parece estar relacionada com o decréscimo do pH do solo, que seleciona bactérias adaptadas a solos mais ácidos, como Acidimicrobiaceae, ou com o aumento da biodisponibilidade de fósforo que seleciona famílias adaptadas a essa condição como Polyangiaceae. Em suma, este trabalho compara pela primeira vez a composição do rizobioma de P. pinea e P. radiata, tendo sido detetadas diferenças significantes que podem ter um papel importante na suscetibilidade destas espécies à infeção por F. circinatum. Apesar do fosfito ter um efeito de priming, o impacto deste composto no rizobioma pode ter implicações no desenvolvimento da planta, o que deve ser investigado.
Apoio financeiro da FCT e do FEDER através do programa COMPETE no âmbito do projeto de investigação “URGENTpine: UnRaveling hostpathoGEn iNteracTions in pine pitch canker disease” (PTDC/AGRFOR/2768/2014; POCI-01-0145-FEDER-016785).
Mestrado em Microbiologia

Книги з теми "Rhizobiote":

1

Kumar, Vivek, Ram Prasad, and Manoj Kumar, eds. Rhizobiont in Bioremediation of Hazardous Waste. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0602-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Egamberdieva, Dilfuza, R. Z. Sayyed, Nowsheen Shameem, and Javid A. Parray. Rhizobiome: Ecology, Management and Application. Elsevier Science & Technology Books, 2024.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kumar, Vivek, Manoj Kumar, and Ram Prasad. Rhizobiont in Bioremediation of Hazardous Waste. Springer Singapore Pte. Limited, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kumar, Vivek, Manoj Kumar, and Ram Prasad. Rhizobiont in Bioremediation of Hazardous Waste. Springer, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Rhizobiote":

1

Vukanti, Raja V. N. R. "Structure and Function of Rhizobiome." In Plant Microbe Symbiosis, 241–61. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36248-5_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rashid, Md Mahtab, Basavaraj Teli, Gagan Kumar, Prerna Dobhal, Dhuni Lal Yadav, Saroj Belbase, Jai Singh Patel, Sudheer Kumar Yadav, and Ankita Sarkar. "Conservation Strategies for Rhizobiome in Sustainable Agriculture." In Re-visiting the Rhizosphere Eco-system for Agricultural Sustainability, 37–61. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4101-6_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Girish, Hodiayala Vasanaika, and Maddur Puttaswamy Raghavendra. "Role of Rhizobiome in Mitigating Plastic Pollution in Pedosphere." In Structure and Functions of Pedosphere, 189–208. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8770-9_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mattoo, Rohini, and Suman B M. "Millet’s Rhizosphere Metagenomics for the Understanding of Rhizobiome Multifunctionalities." In Rhizosphere Biology, 239–57. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2166-9_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bhat, Rohini, and Neha Bhat. "Rhizobiome of the Indian Himalayan ecosystem and its role." In Soil Microbiome of the Cold Habitats, 93–104. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003354031-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Paterlini, Paula, Cintia Mariana Romero, and Analía Alvarez. "Application of Bio-Nanoparticles in Biotechnological Process Focusing in Bioremediation." In Rhizobiont in Bioremediation of Hazardous Waste, 115–30. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0602-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jafarabadi, Ali Ranjbar, Elham Lashani, and Hamid Moghimi. "Mangrove Forest Pollution and Remediation in the Rhizosphere." In Rhizobiont in Bioremediation of Hazardous Waste, 531–64. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0602-1_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Malik, Ruchira, and Savita Kerkar. "Biosurfactant Mediated Remediation of Heavy Metals: A Review." In Rhizobiont in Bioremediation of Hazardous Waste, 73–85. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0602-1_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

de Vasconcelos, Grazielly Maria Didier, Jéssica Mulinari, Talita Corrêa Nazareth, Éllen Francine Rodrigues, Bianca Chieregato Maniglia, and Cristiano José de Andrade. "Biosurfactants: A Green and Sustainable Remediation Alternative." In Rhizobiont in Bioremediation of Hazardous Waste, 49–72. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0602-1_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vajiravelu, Sivamurugan, K. C. Ramya Devi, R. Rachel Veronica, and K. Mary Elizabeth Gnanambal. "Surface-Active Agents from Pseudomonas Emulsify n-Hexadecane: Past, Present, and Future Trends." In Rhizobiont in Bioremediation of Hazardous Waste, 87–114. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0602-1_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Rhizobiote":

1

Almpanis, Apostolos, Christophe Corre, and Adam Noel. "Agent Based Modeling of the Rhizobiome with Molecular Communication and Game Theory." In NANOCOM '19: The Sixth Annual ACM International Conference on Nanoscale Computing and Communication. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3345312.3345476.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Glazunova, Darina, Polina Kuryntseva, Polina Galitskaya, and Svetlana Selivanovskaya. "ASSESSMENT OF THE DIVERSITY OF RHIZOSPHERIC CULTIVATED BACTERIA IN WHEAT PLANTS GROWN ON DIFFERENT SOIL TYPES." In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022v/6.2/s25.11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Microbial communities associated with the plant rhizosphere play an important role in carbon sequestration, regulation of nutrient cycling, and the efficient functioning of the ecosystem as a whole. The diversity of microorganisms inhabiting the plant rhizosphere and their complex interactions with the host plant significantly affect the morphology, physiology, growth, development, and health of plants. At the same time, it is known that the soil microbiome diversity is affected by the type of soil, the type of cultivated crop, and the method of tillage. In this study, the abundance and diversity of cultivated bacteria of the rhizosphere microbiome of wheat was assessed. Rhizospheric soil samples were taken from 5 fields with different types of soils (Greyzem, Chernozem, Podzols, Podzoluvisols, Podzoluvisols). Cultivated bacteria from the rhizosphere soil were isolated on meat-peptone and soil agars, and their number was determined. It has been established that the cultivated bacterial rhizobiome was least diverse in wheat plants grown on medium podzolic soil. The MALDI-TOF method was used to identify isolated cultivated isolate species. The genera Achromobacter, Acinetobacter, Bacillus, Microbacterium, Paenibacillus, Pseudomonas, Stenotrophomonas predominated among the isolated bacteria.

Звіти організацій з теми "Rhizobiote":

1

Rhizobiol biofertilizante para el cultivo de soya : mezcla de cepas ICA J-01 e ICA J-96. Corporación colombiana de investigación agropecuaria - AGROSAVIA, 2017. http://dx.doi.org/10.21930/agrosavia.poster.2017.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Una alternativa viable para reducir costos por el uso de fertilizantes nitrogenadas en el cultivo de la soya es la inoculación de bacterias simbióticas fijadoras de nitrógeno, Corpoica desarrolla el inoculante líquido Rhizobiol elaborado con una mezcla de estas bacterias. El presente plegable a a conocer su uso y recomendaciones en el cultivo de soya.

До бібліографії