Добірка наукової літератури з теми "RF robustness"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "RF robustness".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "RF robustness"
Elyousseph, Hilal, and Majid Altamimi. "Robustness of Deep-Learning-Based RF UAV Detectors." Sensors 24, no. 22 (November 17, 2024): 7339. http://dx.doi.org/10.3390/s24227339.
Повний текст джерелаBollmeyer, Christian, Mathias Pelka, Hartmut Gehring, and Horst Hellbrück. "Wireless medical sensors – context, robustness and safety." Current Directions in Biomedical Engineering 1, no. 1 (September 1, 2015): 349–52. http://dx.doi.org/10.1515/cdbme-2015-0086.
Повний текст джерелаPalego, C., Jie Deng, Zhen Peng, S. Halder, J. C. M. Hwang, D. I. Forehand, D. Scarbrough, et al. "Robustness of RF MEMS Capacitive Switches With Molybdenum Membranes." IEEE Transactions on Microwave Theory and Techniques 57, no. 12 (December 2009): 3262–69. http://dx.doi.org/10.1109/tmtt.2009.2033885.
Повний текст джерелаNguyen, Ngoc-Kim-Khanh, Quang Nguyen, Hai-Ha Pham, Thi-Trang Le, Tuan-Minh Nguyen, Davide Cassi, Francesco Scotognella, Roberto Alfierif, and Michele Bellingeri. "Predicting the Robustness of Large Real-World Social Networks Using a Machine Learning Model." Complexity 2022 (November 9, 2022): 1–16. http://dx.doi.org/10.1155/2022/3616163.
Повний текст джерелаAyaz Atalan, Yasemin, and Abdulkadir Atalan. "Testing the Wind Energy Data Based on Environmental Factors Predicted by Machine Learning with Analysis of Variance." Applied Sciences 15, no. 1 (December 30, 2024): 241. https://doi.org/10.3390/app15010241.
Повний текст джерелаKheir, Mohamed, Heinz Kreft, Iris Hölken, and Reinhard Knöchel. "On the physical robustness of RF on-chip nanostructured security." Journal of Information Security and Applications 19, no. 4-5 (November 2014): 301–7. http://dx.doi.org/10.1016/j.jisa.2014.09.007.
Повний текст джерелаLiu, Alan, Yu-Tai Lin, and Karthikeyan Sundaresan. "View-agnostic Human Exercise Cataloging with Single MmWave Radar." Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 8, no. 3 (August 22, 2024): 1–23. http://dx.doi.org/10.1145/3678512.
Повний текст джерелаSanogo, Lamoussa, Eric Alata, Alexandru Takacs, and Daniela Dragomirescu. "Intrusion Detection System for IoT: Analysis of PSD Robustness." Sensors 23, no. 4 (February 20, 2023): 2353. http://dx.doi.org/10.3390/s23042353.
Повний текст джерелаSaha, Sunil, Anik Saha, Tusar Kanti Hembram, Biswajeet Pradhan, and Abdullah M. Alamri. "Evaluating the Performance of Individual and Novel Ensemble of Machine Learning and Statistical Models for Landslide Susceptibility Assessment at Rudraprayag District of Garhwal Himalaya." Applied Sciences 10, no. 11 (May 29, 2020): 3772. http://dx.doi.org/10.3390/app10113772.
Повний текст джерелаOuyang, Hui, Weibo Li, Feng Gao, Kangzheng Huang, and Peng Xiao. "Research on Fault Diagnosis of Ship Diesel Generator System Based on IVY-RF." Energies 17, no. 22 (November 20, 2024): 5799. http://dx.doi.org/10.3390/en17225799.
Повний текст джерелаДисертації з теми "RF robustness"
Bu, Long. "Linearity and Interference Robustness Improvement Methods for Ultra-Wideband Cmos Rf Front-End Circuits." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1211476269.
Повний текст джерелаAl, Issa Huthaifa A. "Position-adaptive Direction Finding for Multi-platform RF Emitter Localization using Extremum Seeking Control." University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1343755148.
Повний текст джерелаSaid, Nasri. "Evaluation de la robustesse des technologies HEMTs GaN à barrière AlN ultrafine pour l'amplification de puissance au-delà de la bande Ka." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0425.
Повний текст джерелаThe GaN industry is strategic for the European Union because it enhances the power and efficiency of radar and telecommunication systems, especially in the S to Ka bands (up to 30 GHz). To meet the needs of future applications such as 5G and military systems, GaN technology development aims to increase frequencies to the millimeter-wave range. This requires optimizing epitaxy and reducing the gate length to less than 150 nm, as well as using ultrathin barriers (<10 nm) to avoid short-channel effects. Replacing the AlGaN barrier with AlN is a solution to maintain good performance while miniaturizing devices. In this thesis, several technological variants with an ultrathin AlN barrier (3 nm) on undoped GaN channels of various thicknesses, developed by the IEMN laboratory, are studied. The evaluation of the performance and robustness of these technologies, crucial for their qualification and use in long-term profil missions, is conducted in both DC and RF modes to define the safe operating areas (SOA) and identify degradation mechanisms.The DC and pulsed characterization campaign revealed low component dispersion after electrical stabilization, reflecting good technological control. This also allows for more relevant statistical studies and generic analyses across all component batches studied. The sensitivity analysis of the devices at temperatures up to 200°C demonstrated strong thermal stability in diode and transistor modes, following parametric indicators representative of the electrical models of the components (saturation currents and leakage currents, threshold voltage, gate and drain lags rates, ...). The addition of a AlGaN back-barrier on a moderately C-doped buffer layer resolved the trade-off between electron confinement and trap densities. Accelerated aging tests in DC mode at various biasing conditions and in RF mode by input power steps showed that the AlGaN back-barrier provides better stability in leakage currents and static I(V) curves, reduces trapping and self-heating effects, and extends the operational DC-SOA.Dynamic accelerated aging tests at 10 GHz on HEMTs with different gate-drain spacings showed that the RF-SOA does not depend on this spacing but rather on the gate's ability to withstand high RF signals before abrupt degradation occurs. Using an original nonlinear modeling method that considers the self-biasing phenomenon, devices with the AlGaN back-barrier proved to be more robust in RF as well. This is reflected in their later gain compression, up to +10 dB, without apparent electrical or structural degradation (as observed by photoluminescence). Regardless of the AlN/GaN variant, the RF stress degradation mechanism corresponds to the abrupt breakdown of the Schottky gate, leading to its failure. These results indicate that the components are more sensitive to DC bias conditions than to the level of injected RF signals [...]
Pinault, Bastien. "Évaluation de topologies d'amplificateurs faible bruit et robustes en filière GaN pour applications radar ou télécom en bande X." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES070.
Повний текст джерелаIn order to increase telecommunication data rates and enhance the precision and range of modern radar systems, improving the noise factor of a communication link has become crucial. As demonstrated by the FRIIS formula, the noise factor of a reception architecture is mainly determined by the noise factor of the first stage. It is, therefore, necessary to place a low-noise amplifier (LNA) upstream of the first stage. LNAs may face electromagnetic (EM) aggressions that can degrade or even render the system inoperative, depending on the intended application. Hence, it is essential to design LNAs that are robust against these EM aggressions. Due to their intrinsic characteristics (wide bandgap, high breakdown voltage, and good thermal conductivity), gallium nitride (GaN) technologies are excellent candidates for implementing low-noise amplifiers. The natural robustness offered by this material allows for the elimination of protection devices such as power limiters used in GaAs or SiGe technologies. Modern system constraints compel them to maintain their characteristics even when subjected to EM aggressions. Low-noise amplifier topologies must, therefore, meet the dual objective of high detectivity (low HF noise factor) and high linearity (high power) at usage frequencies. To increase the linearity of an LNA, one strategy involves oversizing the transistor (physical or electrical dimensions larger than those necessary for optimal noise factor). This approach improves nonlinear performance at the expense of noise parameters and/or small signals. This thesis proposes a novel approach that simultaneously exploits the nonlinear characteristics of an LNA design initially optimized for noise parameters by enhancing the nonlinear behavior of the active element through a change in its operating point. A comparative study and a broader state-of-the-art analysis position our solution within the spectrum of possibilities for achieving a low-noise and robust system
Oudji, Salma. "Analyse de la robustesse et des améliorations potentielles du protocole RadioFréquences Sub-GHz KNX utilisé pour l’IoT domotique." Thesis, Limoges, 2016. http://www.theses.fr/2016LIMO0121/document.
Повний текст джерелаThis thesis addresses the performance of the KNX-RF protocol used for home automation applications in terms of radiofrequency robustness in a multi-protocol environment that is potentially subject to interferences. In this work, the aim is to assess the interference problems encountered by KNX-RF using simulation models that would increase its RF reliability. Thus, a first model was developed on MATLAB / Simulink and allowed to investigate the performance and limitations of this protocol at its physical layer in an interference scenario occurring inside a multiprotocol home and building automation box/gateway. These simulations were followed by field experimental tests in an indoor environment (house) to verify the results. A second model was developed to evaluate the MAC layer mechanisms of KNX-RF through the discrete event simulator OMNeT ++/Mixim. This model includes all the mechanisms of channel access and frequency agility specified by KNX-RF standard. A frame collision scenario was simulated and several improvement proposals are discussed in this manuscript. The developed models can be used to analyze and predict in advance phase the behavior of KNX-RF in a radio-constrained environment
Частини книг з теми "RF robustness"
Sakian, Pooyan, Reza Mahmoudi, and Arthur van Roermund. "System-Level Design for Robustness." In RF-Frontend Design for Process-Variation-Tolerant Receivers, 7–38. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-2122-1_2.
Повний текст джерелаBartz-Beielstein, Thomas, and Martin Zaefferer. "Models." In Hyperparameter Tuning for Machine and Deep Learning with R, 27–69. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5170-1_3.
Повний текст джерелаBarbulescu, Ruxandra, Tiago Marques, and Arlindo L. Oliveira. "Contribution of V1 Receptive Field Properties to Corruption Robustness in CNNs." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240546.
Повний текст джерелаCurcio, Giuseppe. "Human Psychomotor Performance Under the Exposure to Mobile Phones-Like Electromagnetic Fields." In Advances in Computer and Electrical Engineering, 923–36. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7598-6.ch067.
Повний текст джерелаCurcio, Giuseppe. "Human Psychomotor Performance Under the Exposure to Mobile Phones-Like Electromagnetic Fields." In Encyclopedia of Information Science and Technology, Fourth Edition, 6124–35. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-2255-3.ch532.
Повний текст джерелаMuthurajkumar, S., G. Kajeeth Kumar, and S. T. P. Mohana Priya. "Crayfish-Optimized CNN and Random Forest for Effective Plant Disease Detection." In Advances in Environmental Engineering and Green Technologies, 209–44. IGI Global, 2025. https://doi.org/10.4018/979-8-3693-8019-2.ch007.
Повний текст джерелаmihalache Ovidiu, Yamaouchi Toshihiko, and Ueda Masashi. "Validations of Multifrequency ECT Algorithms for Helical SG Tubes of FBR." In Studies in Applied Electromagnetics and Mechanics. IOS Press, 2014. https://doi.org/10.3233/978-1-61499-407-7-109.
Повний текст джерелаUrbanczyk, Guillaume. "Main Challenges of Heating Plasma with Waves at the Ion Cyclotron Resonance Frequency (ICRF)." In Advances in Fusion Energy Research - Theory, Models, Algorithms, and Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105394.
Повний текст джерелаKundu, Krishanu. "Past, Present, and Future of Rate Splitting Multiple Access for Wireless Networks." In Radar and RF Front End System Designs for Wireless Systems, 275–95. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-0916-2.ch011.
Повний текст джерелаLiu, Guangyu, Xinying Qu, and Dongzhe Qu. "Application and Optimization of Artificial Intelligence in Distributed Energy Management Systems." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia241166.
Повний текст джерелаТези доповідей конференцій з теми "RF robustness"
Said, N., D. Saugnon, K. Harrouche, F. Medjdoub, N. Labat, N. Malbert, and J.-G. Tartarin. "RF-Robustness enhancement in AlN/GaN HEMT through AlGaN Back-Barrier: nonlinear model analysis." In 2024 19th European Microwave Integrated Circuits Conference (EuMIC), 2–5. IEEE, 2024. http://dx.doi.org/10.23919/eumic61603.2024.10732162.
Повний текст джерелаKiasari, Mahmoud, and Hamed H. Aly. "Evaluating Solar Power Forecasting Robustness: A Comparative Analysis of XGBoost, RNN, KNN, RF, and LSTM with emphasis on Lagged Steps, Sensitivity, and Cross-Validation Techniques." In 2024 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 686–92. IEEE, 2024. http://dx.doi.org/10.1109/ccece59415.2024.10667188.
Повний текст джерелаLiu, Zhengdong, Yuanxin Liu, Dajie Zeng, Weichang Xue, and Yaohui Zhang. "RF LDMOS with excellent robustness for wideband application." In 2015 Asia-Pacific Microwave Conference (APMC). IEEE, 2015. http://dx.doi.org/10.1109/apmc.2015.7413377.
Повний текст джерелаGoldsmith, C. L., J. C. M. Hwang, C. Gudeman, O. Auciello, J. L. Ebel, and H. S. Newman. "Robustness of RF MEMS capacitive switches in Harsh Environments." In 2012 IEEE/MTT-S International Microwave Symposium - MTT 2012. IEEE, 2012. http://dx.doi.org/10.1109/mwsym.2012.6259627.
Повний текст джерелаChoudhuri, Chiranjib, Abhishek Ghosh, Urbashi Mitra, and Sudhakar Pamarti. "Robustness of xampling-based RF receivers against analog mismatches." In ICASSP 2012 - 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2012. http://dx.doi.org/10.1109/icassp.2012.6288538.
Повний текст джерелаKaynak, M., F. Korndo, M. Wietstruck, D. Knoll, R. Scholz, C. Wipf, C. Krause, and B. Tillack. "Robustness and reliability of BiCMOS embedded RF-MEMS switch." In 2011 IEEE 11th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF 2011). IEEE, 2011. http://dx.doi.org/10.1109/sirf.2011.5719336.
Повний текст джерелаSandupatla, Abhinay, Shih-Hung Chen, Nikhil Mane, Bertrand Parvais, Hao Yu, Nilam Pradhan, and Nadine Collaert. "Solutions To Improve HBM ESD Robustness of GaN RF HEMTs." In 2023 45th Annual EOS/ESD Symposium (EOS/ESD). IEEE, 2023. http://dx.doi.org/10.23919/eos/esd58195.2023.10287752.
Повний текст джерелаKokalj-Filipovic, Silvija, Rob Miller, and Garrett Vanhoy. "Adversarial Examples in RF Deep Learning: Detection and Physical Robustness." In 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2019. http://dx.doi.org/10.1109/globalsip45357.2019.8969138.
Повний текст джерелаKozlov, Mikhail, and Robert Turner. "RF transmit robustness of dual-row MRI array at 300 MHz." In 2013 Asia Pacific Microwave Conference - (APMC 2013). IEEE, 2013. http://dx.doi.org/10.1109/apmc.2013.6694861.
Повний текст джерелаScholz, Mirko, and Friedrich zur Nieden. "Early Evaluation of ESD Robustness of RF ICs on System-Level." In 2021 43rd Annual EOS/ESD Symposium (EOS/ESD). IEEE, 2021. http://dx.doi.org/10.23919/eos/esd52038.2021.9574774.
Повний текст джерелаЗвіти організацій з теми "RF robustness"
Oh, Ju Hyun, Aimee Martinez, Huaixuan Cao, Garrett George, Jared Cobb, Poonam Sharma, Lauren Fassero, et al. Radio frequency heating of washable conductive textiles for bacteria and virus inactivation. Engineer Research and Development Center (U.S.), January 2024. http://dx.doi.org/10.21079/11681/48060.
Повний текст джерела