Добірка наукової літератури з теми "RF mapping"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "RF mapping".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "RF mapping"
Schmitz, B., J. Köszegi, K. Alomari, O. Kugeler, and J. Knobloch. "Magnetometric mapping of superconducting RF cavities." Review of Scientific Instruments 89, no. 5 (May 2018): 054706. http://dx.doi.org/10.1063/1.5030509.
Повний текст джерелаBonagura, V. R., S. E. Artandi, A. Davidson, I. Randen, N. Agostino, K. Thompson, J. B. Natvig, and S. L. Morrison. "Mapping studies reveal unique epitopes on IgG recognized by rheumatoid arthritis-derived monoclonal rheumatoid factors." Journal of Immunology 151, no. 7 (October 1, 1993): 3840–52. http://dx.doi.org/10.4049/jimmunol.151.7.3840.
Повний текст джерелаOuma, Y., B. Nkwae, D. Moalafhi, P. Odirile, B. Parida, G. Anderson, and J. Qi. "COMPARISON OF MACHINE LEARNING CLASSIFIERS FOR MULTITEMPORAL AND MULTISENSOR MAPPING OF URBAN LULC FEATURES." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2022 (May 30, 2022): 681–89. http://dx.doi.org/10.5194/isprs-archives-xliii-b3-2022-681-2022.
Повний текст джерелаAkbari, Elahe, Ali Darvishi Boloorani, Najmeh Neysani Samany, Saeid Hamzeh, Saeid Soufizadeh, and Stefano Pignatti. "Crop Mapping Using Random Forest and Particle Swarm Optimization based on Multi-Temporal Sentinel-2." Remote Sensing 12, no. 9 (May 3, 2020): 1449. http://dx.doi.org/10.3390/rs12091449.
Повний текст джерелаAbida, Khouloud, Meriem Barbouchi, Khaoula Boudabbous, Wael Toukabri, Karem Saad, Habib Bousnina, and Thouraya Sahli Chahed. "Sentinel-2 Data for Land Use Mapping: Comparing Different Supervised Classifications in Semi-Arid Areas." Agriculture 12, no. 9 (September 9, 2022): 1429. http://dx.doi.org/10.3390/agriculture12091429.
Повний текст джерелаMerfeldas, Audrius, Pranas Kuzas, Darius Gailius, Zilvinas Nakutis, Mindaugas Knyva, Algimantas Valinevicius, Darius Andriukaitis, Mindaugas Zilys, and Dangirutis Navikas. "An Improved Near-field Magnetic Probe Radiation Profile Boundaries Assessment for Optimal Radiated Susceptibility Pre-Mapping." Symmetry 12, no. 7 (June 28, 2020): 1063. http://dx.doi.org/10.3390/sym12071063.
Повний текст джерелаPasquali, J. L., A. M. Knapp, A. Farradji, and A. Weryha. "Mapping of four light chain-associated idiotopes of a human monoclonal rheumatoid factor." Journal of Immunology 139, no. 3 (August 1, 1987): 818–23. http://dx.doi.org/10.4049/jimmunol.139.3.818.
Повний текст джерелаWicaksono, Pramaditya, Prama Ardha Aryaguna, and Wahyu Lazuardi. "Benthic Habitat Mapping Model and Cross Validation Using Machine-Learning Classification Algorithms." Remote Sensing 11, no. 11 (May 29, 2019): 1279. http://dx.doi.org/10.3390/rs11111279.
Повний текст джерелаKwak, Geun-Ho, Chan-won Park, Kyung-do Lee, Sang-il Na, Ho-yong Ahn, and No-Wook Park. "Potential of Hybrid CNN-RF Model for Early Crop Mapping with Limited Input Data." Remote Sensing 13, no. 9 (April 21, 2021): 1629. http://dx.doi.org/10.3390/rs13091629.
Повний текст джерелаKhalighi, Mohammad Mehdi, Brian K. Rutt, and Adam B. Kerr. "Adiabatic RF pulse design for Bloch-SiegertB+ mapping." Magnetic Resonance in Medicine 70, no. 3 (October 5, 2012): 829–35. http://dx.doi.org/10.1002/mrm.24507.
Повний текст джерелаДисертації з теми "RF mapping"
Schwartz, Benjamin M. (Benjamin Matthew). "Mapping bulk electrical properties with non-contact RF measurements." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/36118.
Повний текст джерелаIncludes bibliographical references (leaf 43).
The human body is composed primarily of dielectric tissue with spatially varying permittivity and conductivity. Traditional MRI does not measure these properties. Instead, the conductivity of the patient is a nuisance, causing unpredictable detuning of coils and field inhomogeneities. This thesis presents a method for mapping the electrodynamic properties of the patient's body with both MR and non-MR techniques. Such mapping has direct applications for medical imaging and SAR calculation.
by Benjamin M. Schwartz.
S.B.
Dalveren, Taylan. "A Study of Sensitivity Mapping Techniques for Multi-Channel MR Coils." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1373403690.
Повний текст джерелаBrandejsky, Vaclav. "MR scanner independent 3D B1 field mapping of magnetic resonance spectroscopy RF coils using an automated measurement system." Thesis, Linköpings universitet, Institutionen för medicinsk teknik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-15025.
Повний текст джерелаRadiofrekventa - spolars känslighetsmönster är viktigt för avbildning med magnetkamera (MRI) och magnetresonansspektroskopi (MRS). Vetskap om RF-spolars känslighet för och förmåga att skapa RF-magnetfält (B1 kan användas för att åstadkomma korrekta excitationsflipvinklar och för att korrigera uppmätta signalstyrkor. Det är också viktigt för att göra MRI och MRS undersökningar snabbare och för att förbättra kvalitén på rekonstruerade bilder. Vi har utvecklat en metod för mätning av B1+ och B1- fält i en testbänk som alternativ till metoder där B1 fältet bestäms inne i magnetkameran. Uppställningen omfattar ett industriellt koordinatbord kontrollerat av PC-baserade program, sökspolar för detektion av B1 fält, en tvåports nätverksanalysator och ett analog till digital omvandlingskort. Mätningen är möjlig att utföra i olika vätskor, exempelvis saltlösning, för att efterlikna olika former och dielektriska egenskaper hos människokroppen.
Brandejsky, Vaclav. "MR scanner independent 3D B1 field mapping of magnetic resonance spectroscopy RF coils using an automated measurement system." Thesis, Linköping University, Department of Biomedical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-15025.
Повний текст джерелаWe developed a method for measurement of the B1+/- fields as an alternative approach to B1+/- fields assessment in MR scanner. Our setup incorporates an industrial coordinate table controlled by a PC-based program, search coils, a two--port vector network analyzer and an analog-to-digital (A/D) card. It is possible to measure in various liquid media (for example in saline solution) to mimic different shapes and dielectric properties of the human body.
Radiofrekventa - spolars känslighetsmönster är viktigt för avbildning med magnetkamera (MRI) och magnetresonansspektroskopi (MRS). Vetskap om RF-spolars känslighet för och förmåga att skapa RF-magnetfält (B1 kan användas för att åstadkomma korrekta excitationsflipvinklar och för att korrigera uppmätta signalstyrkor. Det är också viktigt för att göra MRI och MRS undersökningar snabbare och för att förbättra kvalitén på rekonstruerade bilder. Vi har utvecklat en metod för mätning av B1+ och B1- fält i en testbänk som alternativ till metoder där B1 fältet bestäms inne i magnetkameran. Uppställningen omfattar ett industriellt koordinatbord kontrollerat av PC-baserade program, sökspolar för detektion av B1 fält, en tvåports nätverksanalysator och ett analog till digital omvandlingskort. Mätningen är möjlig att utföra i olika vätskor, exempelvis saltlösning, för att efterlikna olika former och dielektriska egenskaper hos människokroppen.
Voigt, Tobias [Verfasser], and O. [Akademischer Betreuer] Dössel. "Quantitative MR Imaging of the Electric Properties and Local SAR based on Improved RF Transmit Field Mapping / Tobias Voigt ; Betreuer: O. Dössel." Karlsruhe : KIT Scientific Publishing, 2011. http://d-nb.info/1184497532/34.
Повний текст джерелаBjörk, Marcus. "Contributions to Signal Processing for MRI." Doctoral thesis, Uppsala universitet, Avdelningen för systemteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-246537.
Повний текст джерелаOkujeni, Akpona. "Quantifying urban land cover by means of machine learning and imaging spectrometer data at multiple spatial scales." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2014. http://dx.doi.org/10.18452/17082.
Повний текст джерелаThe global dimension of urbanization constitutes a great environmental challenge for the 21st century. Remote sensing is a valuable Earth observation tool, which helps to better understand this process and its ecological implications. The focus of this work was to quantify urban land cover by means of machine learning and imaging spectrometer data at multiple spatial scales. Experiments considered innovative methodological developments and novel opportunities in urban research that will be created by the upcoming hyperspectral satellite mission EnMAP. Airborne HyMap data at 3.6 m and 9 m resolution and simulated EnMAP data at 30 m resolution were used to map land cover along an urban-rural gradient of Berlin. In the first part of this work, the combination of support vector regression with synthetically mixed training data was introduced as sub-pixel mapping technique. Results demonstrate that the approach performs well in quantifying thematically meaningful yet spectrally challenging surface types. The method proves to be both superior to other sub-pixel mapping approaches and universally applicable with respect to changes in spatial scales. In the second part of this work, the value of future EnMAP data for urban remote sensing was evaluated. Detailed explorations on simulated data demonstrate their suitability for improving and extending the approved vegetation-impervious-soil mapping scheme. Comprehensive analyses of benefits and limitations of EnMAP data reveal both challenges caused by the high numbers of mixed pixels, when compared to hyperspectral airborne imagery, and improvements due to the greater material discrimination capability when compared to multispectral spaceborne imagery. In summary, findings demonstrate how combining spaceborne imaging spectrometry and machine learning techniques could introduce a new quality to the field of urban remote sensing.
Sandouno, Bernard Tamba. "Amélioration de la précision des cartes de couverture réseau par des techniques de lancer de rayons." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4020.
Повний текст джерелаRay Tracing is a deterministic propagation modeling approach that estimates the signal power received in specific geographical locations based on a thorough consideration of the 3D environmental factors that influence signal propagation. This high accuracy of Ray Tracing is however at the cost of a high computational load due to the complexities of the processes within its workflow. This computational demand is characterized by a high memory consumption and a high execution time, making it challenging to efficiently compute the received signal power.Acknowledging the complexity inherent in Ray Tracing, various acceleration techniques have emerged over time to enhance its computational efficiency. These techniques optimize processes within Ray Tracing, facilitating significant reductions in execution time for signal power estimation at individual locations. However, when applied to the generation of Radio Frequency (RF) maps across expansive regions like cities or countries, these acceleration techniques lose their efficiency. This limitation arises from Ray Tracing's original design, tailored for point-to-point signal reception assessment rather than large-scale RF mapping.In response, this thesis proposes optimizations designed specifically for generating accurate and precise RF maps at large scale without incurring excessive computational overhead. By refining all aspects of the Ray Tracing pipeline with a focus on RF mapping, our optimizations aim to address the inefficiencies prevalent in current large-scale RF mapping solutions. Throughout this work, we demonstrate the shortcomings of existing approaches and validate the effectiveness of our optimizations in significantly reducing execution times while maintaining estimation accuracy within acceptable bounds.We first propose an innovative approach to the traditionally complex ray generation process, by effectively minimizing the number of rays launched from an antenna while preserving the accuracy. Tailored to specific site conditions, this method considers the propagation environment when launching rays, in contrast to the traditional approach that launches rays in a brute-force fashion. Further, by implementing this site-specific ray generation technique and re-imagining the reception test process, we achieve a remarkable reduction of nearly 1200 times in Ray Tracing execution time for RF map generation in terrains with slight altitude variations. Extending this solution to diverse terrains, we then introduce comprehensive optimizations across all Ray Tracing processes, meticulously tailored for RF mapping objectives. These enhancements culminate in a 50-fold increase in the speed of large-scale RF map generation across varied terrains, showcasing the versatility and efficiency of our approach
Wells, D. D., I. G. Siebörger, and Barry Vivian William Irwin. "Location and mapping of 2.4 GHz RF transmitters." 2008. http://hdl.handle.net/10962/d1009324.
Повний текст джерелаSousa, Duarte Fleming Oliveira de. "Human Sensing and Indoor Location: From coarse to fine detection algorithms based on consumer electronics RF mapping." Master's thesis, 2017. https://hdl.handle.net/10216/103010.
Повний текст джерелаЧастини книг з теми "RF mapping"
Ayad, Mustafa, and Richard Voyles. "RF Mapping for Sensor Nodes Connectivity and Communication Signal Recovery." In Lecture Notes in Networks and Systems, 666–84. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80119-9_43.
Повний текст джерелаYazgan, Erdem, and Volkan Akan. "Conformal Mapping Techniques." In Encyclopedia of RF and Microwave Engineering. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471654507.eme552.
Повний текст джерелаRosenheck, Shimon, Jeffrey Banker, Alexey Weiss, and Zehava Sharo. "Electromagnetic Mapping During Complex RF Ablations." In Cardiac Arrhythmias - New Considerations. InTech, 2012. http://dx.doi.org/10.5772/30391.
Повний текст джерелаSharma, Shriya, Rohan M. Goswami, Juan Leoni, and Jose Ruiz. "New Insights into Cardiac Ablation." In Atrial Fibrillation - Current Management and Practice [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1005656.
Повний текст джерела"Appendix H Synthesis of Resonant-Type Metamaterial Transmission Lines by Means of Aggressive Space Mapping." In Artificial Transmission Lines for RF and Microwave Applications, 491–502. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781119058403.app8.
Повний текст джерелаKadir, Herdawatie Abdul, and Mohd Rizal Arshad. "A Framework for RF-Visual SLAM for Cooperative Multi-Agent System." In Advances in Computational Intelligence and Robotics, 697–727. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-7387-8.ch022.
Повний текст джерелаMohammadpour, Pegah, Crismeire Isbaex, Emilio Chuvieco, Domingos Xavier Viegas, and Carlos Viegas. "Vegetation Mapping with Random Forest using Sentinel 2- A case study for Lousã region, Portugal." In Advances in Forest Fire Research 2022, 444–62. Imprensa da Universidade de Coimbra, 2022. http://dx.doi.org/10.14195/978-989-26-2298-9_71.
Повний текст джерелаHubert, G., and S. Silvia Priscila. "Comprehensive Prediction of Retinopathy in Preterm Infants Using Deep Learning Approaches." In Advances in Computer and Electrical Engineering, 353–70. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-3739-4.ch018.
Повний текст джерелаHomère Ngandam Mfondoum, Alfred, Igor Casimir Njombissie Petcheu, Frederic Chamberlain Lounang Tchatchouang, Luc Moutila Beni, Mesmin Tchindjang, and Jean Valery Mefire Mfondoum. "Dynamics, Anomalies and Boundaries of the Forest-Savanna Transition: A Novel Remote Sensing-Based Multi-Angles Methodology Using Google Earth Engine." In GIS and Spatial Analysis [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105074.
Повний текст джерелаMoskal, Anna. "Ablations, Cryotherapy, and Maze Procedure." In Advanced Anesthesia Review, edited by Alaa Abd-Elsayed, 327—C124.S9. Oxford University PressNew York, 2023. http://dx.doi.org/10.1093/med/9780197584521.003.0123.
Повний текст джерелаТези доповідей конференцій з теми "RF mapping"
Kim, Sean, Hailey H. Kim, and Brian Choi. "Exploiting RF Signature in 5G Simultaneous Localization and Mapping." In 2024 IEEE Integrated STEM Education Conference (ISEC), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/isec61299.2024.10665037.
Повний текст джерелаLi, Yiming, Zeyu Li, Zhihui Gao, and Tingjun Chen. "Geo2SigMap: High-Fidelity RF Signal Mapping Using Geographic Databases." In 2024 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), 277–85. IEEE, 2024. http://dx.doi.org/10.1109/dyspan60163.2024.10632773.
Повний текст джерелаTukimin, Roha, Syarfa Zahirah Sapuan, Wan Syazlin Wan Yunoh, and Nur Afrina Zainal. "Measurement and Mapping of Radiofrequency Electromagnetic Field (RF-EMF) Radiation Exposure in Malaysia's Environment." In 2024 IEEE 15th Control and System Graduate Research Colloquium (ICSGRC), 23–28. IEEE, 2024. http://dx.doi.org/10.1109/icsgrc62081.2024.10690979.
Повний текст джерелаRosine, Germanicus, and El-Hassani Othman. "Machine Learning for Predicting DataCube Atomic Force Microscope (AFM)—MultiDAT-AFM." In ISTFA 2024, 351–57. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.istfa2024p0351.
Повний текст джерелаRütschlin, M., and V. Sokol. "Complex permittivity extraction using a space-mapping technique." In 2nd Annual Passive RF and Microwave Components Seminar. IET, 2011. http://dx.doi.org/10.1049/ic.2011.0198.
Повний текст джерелаAyad, Mustafa, Jun Jason Zhang, Richard Voyles, and Mohammad H. Mahoor. "Mobile robot connectivity maintenance based on RF mapping." In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013). IEEE, 2013. http://dx.doi.org/10.1109/iros.2013.6696840.
Повний текст джерелаBozkurt, Sinem, Ahmet Yazici, Serkan Gunal, and Ugur Yayan. "A survey on RF mapping for indoor positioning." In 2015 23th Signal Processing and Communications Applications Conference (SIU). IEEE, 2015. http://dx.doi.org/10.1109/siu.2015.7130275.
Повний текст джерелаSchuette, Jason, Barry Fell, John Chapin, Steven Jones, James Stutler, Mark Birchler, and Dennis Roberson. "Performance of RF mapping using opportunistic distributed devices." In MILCOM 2015 - 2015 IEEE Military Communications Conference. IEEE, 2015. http://dx.doi.org/10.1109/milcom.2015.7357677.
Повний текст джерелаMurakowski, Janusz A., Garrett Schneider, and Dennis W. Prather. "Optical processing for phased-array and beamspace mapping." In Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XV, edited by Laurence P. Sadwick and Tianxin Yang. SPIE, 2022. http://dx.doi.org/10.1117/12.2613480.
Повний текст джерелаJaw, Siow Wei, and Mazlan Hashim. "Accuracy of data acquisition approaches with ground penetrating radar for subsurface utility mapping." In 2011 IEEE International RF and Microwave Conference (RFM). IEEE, 2011. http://dx.doi.org/10.1109/rfm.2011.6168691.
Повний текст джерелаЗвіти організацій з теми "RF mapping"
Alwan, Iktimal, Dennis D. Spencer, and Rafeed Alkawadri. Comparison of Machine Learning Algorithms in Sensorimotor Functional Mapping. Progress in Neurobiology, December 2023. http://dx.doi.org/10.60124/j.pneuro.2023.30.03.
Повний текст джерела