Зміст
Добірка наукової літератури з теми "Réticulm endoplasmique"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Réticulm endoplasmique".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Réticulm endoplasmique"
Bouchecareilh, Marion, and Eric Chevet. "Stress du réticulum endoplasmique." médecine/sciences 25, no. 3 (March 2009): 281–87. http://dx.doi.org/10.1051/medsci/2009253281.
Повний текст джерелаAmar-Costesec, A. "Réticulum endoplasmique : anatomie d'une membrane biologique." Reproduction Nutrition Développement 29, no. 6 (1989): 621–38. http://dx.doi.org/10.1051/rnd:19890601.
Повний текст джерелаLachkar, Floriane, Alexandra Papaioannou, Pascal Ferré, and Fabienne Foufelle. "Stress du réticulum endoplasmique et stéatopathies métaboliques." Biologie Aujourd’hui 214, no. 1-2 (2020): 15–23. http://dx.doi.org/10.1051/jbio/2020007.
Повний текст джерелаFlamment, Mélissa, and Fabienne Foufelle. "Stéatose hépatique et stress du réticulum endoplasmique." médecine/sciences 28, no. 1 (January 2012): 13–15. http://dx.doi.org/10.1051/medsci/2012281004.
Повний текст джерелаBéranger, Florence, Alain Mangé, and Sylvain Lehmann. "Réticulum endoplasmique, protéasome et maladies à prions." médecine/sciences 19, no. 8-9 (August 2003): 778–80. http://dx.doi.org/10.1051/medsci/20031989778.
Повний текст джерелаChevet, Eric. "Inflammation intestinale et stress du réticulum endoplasmique." médecine/sciences 24, no. 11 (November 2008): 899–900. http://dx.doi.org/10.1051/medsci/20082411899.
Повний текст джерелаIslam Kediha, Mohamed, Sonia Nouioua, Meriem Tazir, Damien Sternberg, Joël Lunardi, and Lamia Ali Pacha. "La grande variabilité phénotypique des mutations du gène RYR1." médecine/sciences 38 (December 2022): 46–48. http://dx.doi.org/10.1051/medsci/2022178.
Повний текст джерелаDenus, Morgane, William Fargues, Aurore Filaquier, Éloïse Néel, Philippe Marin, Marie-Laure Parmentier, and Julien Villeneuve. "Sécrétion non conventionnelle." médecine/sciences 40, no. 3 (March 2024): 267–74. http://dx.doi.org/10.1051/medsci/2024013.
Повний текст джерелаLanctôt, C., and P. Crine. "La rétention des protéines dans le réticulum endoplasmique." médecine/sciences 9, no. 11 (1993): 1249. http://dx.doi.org/10.4267/10608/2840.
Повний текст джерелаKahn, A. "Le récepteur des protéines résidentes du réticulum endoplasmique." médecine/sciences 6, no. 7 (1990): 702. http://dx.doi.org/10.4267/10608/4221.
Повний текст джерелаДисертації з теми "Réticulm endoplasmique"
Joliot, Octave. "GPI anchored proteins identify gel-like lipid domains in the membrane of the Endoplasmic Reticulum." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLS013.
Повний текст джерелаBy definition, eukaryotic cells are made up of different compartments, each with its own specific functions. This specificity is the result of differences in the protein and lipid compositions of these compartments. Lipids not only act as a physical barrier between compartments, they also play a key role in numerous mechanisms. In particular, lipids enable the organization of proteins inserted in membranes, and can thus promote the clustering of these proteins in restricted areas. In contrast to intracellular membranes, lipid domains have been widely described at the plasma membrane. Yet the ability of lipids to form domains within membranes is exploited during intracellular transport of glycosylphosphatidylinositol (GPI)-anchored proteins. These proteins have the particularity of being attached to membranes via their anchoring to GPI, a phospholipid conjugated to sugars. In polarized cells, it has been shown that prior to export to plasma membrane, GPI-anchored proteins are accumulated in rigid lipid domains in the Golgi apparatus. This partitioning enables GPI-anchored proteins to be addressed to the right pole of the cell. This mechanism highlights the role of lipid domains within intracellular membranes, but the study of such domains remains complex, notably because of the difficulty of labelling and tracking the lipids. Although lipid probes do exist, they share a number of drawbacks. Most probes rely on the binding of a fluorescent molecule to lipids, either by targeting polar groups exposed on the membrane surface or by interacting directly with the hydrophobic core of the membrane. The former can only target lipids carrying a specific group, while the latter involve the insertion of ectopic lipids into membranes, thereby modifying their properties. Moreover, hydrophobic probes are also subject to lipid diffusion and are thus transported throughout the cell, preventing the study of lipids in a specific compartment. In this project, we developed a sensor capable of tracking lipid dynamics within ER membranes. Using the RUSH (Retention Using Selective Hooks) system developed to synchronize protein transport, we retained GPI-anchored proteins in the ER. This sensor enabled us to track in the ER not only GPI-anchored proteins, but also the lipids to which these proteins are anchored. We thus studied the effect of increasing membrane stiffness on ER membranes. In response to increased membrane saturation, we observed the formation of GPI-containing domains in the ER only. This effect is potentiated by a decrease in temperature, which also induces a decrease in stiffness. We were able to characterize these domains, showing that they remain connected to the rest of the ER, but that no diffusion is possible within them. Surprisingly, the appearance of these domains did not disrupt the organization or function of the ER, suggesting that they may represent a response to increased stiffness that preserves the fluidity of ER membranes
Lebeau, Justine. "Stress du réticulum endoplasmique et tumorigenèse." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10175.
Повний текст джерелаDuring carcinogenesis, oncogene activation induces high glucose avidity that outstrips the microenvironment supply until angiogenesis occurs. How malignant cells cope with this potentially lethal metabolic stress remains poorly understood. We found that oncogene-Driven glucose shortage triggers apoptosis through the PERK-CHOP pathway of the endoplasmic reticulum (ER) unfolded protein response (UPR). Deletion of the pro-Apoptotic UPR effector CHOP in a mouse model of KrasG12V induced lung cancer increases tumour incidence, strongly supporting the notion that ER stress serves as a barrier to malignancy. Overcoming this barrier requires the selective attenuation of the PERK-CHOP arm of the UPR by the molecular chaperone p58IPK. Furthermore, p58IPK-Mediated adaptive response enables cells to benefit from the protective features of chronic UPR. Altogether, these results show that ER stress activation and p58IPK expression control the fate of malignant cells facing glucose shortage
Lavoie, Christine. "Reconstitution acellulaire du réticulum endoplasmique de transition." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ48783.pdf.
Повний текст джерелаScarcelli, Vincent. "Caractérisation des réticulons chez Caenorhabditis elegans : spécificités tissulaires, rôle dans l’organisation du réticulum endoplasmique et lien avec l’autophagie Approaches for Studying Autophagy in Caenorhabditis elegans." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS200.
Повний текст джерелаAutophagy is a degradative process well conserved among eukaryotes. This recycling process can be very selective. Homeostasis of endoplasmic reticulum (ER) ensures the correct biological activity of its distinct domains. The ER is a contiguous network of interconnected sheets and tubules forming distinct domains that spread from nuclear envelope to the cell cortex including perinuclear and peripheral ER. Several proteins play an important role in shaping and organizing the endoplasmic reticulum network, including a reticulon family proteins as RTN4/Nogo-A that generate and maintain tubule structure. In mammalian cell, in stress conditions, the different domains of ER are degraded by a selective autophagy (ER-phagy), mediated by specific reticulon receptors as FAM134B or RTN3L. The presence of multiple isoforms of reticulon may suggest a specific spatio-temporal expression pattern depending on the needs of different cell types. My thesis work consisted in the characterization of the locus of the only reticulon gene in C. elegans, ret-1 and showed the specificity of expression of the three categories of isoforms. The long and intermediate isoforms are expressed in muscle cells and neurons respectively, while the short RET-1 isoforms are ubiquitous and the only isoforms expressed in early embryos. The RET-1 depletion results in abnormal ER shape. I showed that short isoforms are necessary for the establishment of the tubular ER network but are not involved in the biogenesis of autophagosomes in embryos. My results highlight that the distribution of autophagosomes in the cell of the embryos is not random and closely associated with the ER network. All my results, added to the fact that only long isoforms of RTN3 are involved in ER-phagy, suggest that specific RET-1 isoforms could mediate ER-phagy processes only in some tissues
Bortolato, Muriel. "Etude des activités UDP-glucose collagène glucosyltransférases dans les fractions subcellulaires du foie d'embryon de poulet (appareil de Golgi, réticulum endoplasmique lisse et réticulum endoplasmique rugueux)." Lyon 1, 1991. http://www.theses.fr/1991LYO10174.
Повний текст джерелаHuber, Anne-Laure. "Mise en évidence d’un rôle oncosuppressif du Stress du Réticulum Endoplasmique." Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10328.
Повний текст джерелаCarcinogenesis involves not only inactivation of tumourigenesis barriers, but also alterations in energy metabolism to fulfil the synthetic and bioenergetic requirements for fast and uncontrolled growth. Our study supports a model in which the ER acts as a node between altered glucose metabolism and tumourigenesis barriers. This major site in the cell for protein folding and maturation, can sense glucose limitation that results from oncogenic-mediated increased glucose demand, and consequently trigger unfolded protein response-dependent apoptosis. As such, the ER functions as a surveillance mechanism that suppresses the emergence of tumour cells. Overcoming this early barrier involves a specific attenuation of the pro-apoptotic PERK-CHOP branch of the unfolded protein response, a cellular adaptation that in turn may favour malignant progression. These observations bring new insights into the complex role of the unfolded protein response during tumourigenesis
Belingheri, Lionel. "Les hydrocarbures sesquiterpéniques : sites de biosynthèse et purification des systèmes enzymatiques du Calamondin (Citrofortunella mitis)." Bordeaux 1, 1987. http://www.theses.fr/1987BOR10622.
Повний текст джерелаGrolier, Pascal. "Lipides membranaires et biotransformation des xénobiotiques : effets de l'induction et de la carence en vitamine A." Bordeaux 1, 1987. http://www.theses.fr/1987BOR10532.
Повний текст джерелаSallafranque, Marie-Line. "Expression et localisation de la tryptophanyl-tARN synthétase dans les tissus et cellules de bœuf." Bordeaux 2, 1986. http://www.theses.fr/1986BOR22002.
Повний текст джерелаMami, Iadh. "L’angiogénine : un nouveau médiateur de la réponse au stress du Réticulum Endoplasmique." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCB136/document.
Повний текст джерелаThe Endoplasmic Reticulum (ER) stress is involved in the pathophysiology of renal diseases ; the UPR (Unfolded Protein Response), which is activated in response to that stress plays an important role in renal tubular cells and podocytes homeostasis and consequently in tissu homeostasis. Understanding the molecular mechanisms and the consequences of the activation of this pathway is important to characterize the pathophysiology of renal diseases and identification of biomarkers of ongoing lesions. Angiogenin (ANG, also known as RNase 5) is a secreted ribonuclease, which is involved in the cellular stress response, it allows cell and tissue adaptation. The goal of this work was to clarify and identify the mechanisms regulating Angiogenin’s expression and its biological functions during ER stress. Using a human renal tubular cell line, we have shown that ER stress induces the expression of angiogenin and its secretion. This observation was also made on several murine models of renal injury. The transcriptional factor sXBP1 activated by the UPR transducer, IRE1α, is directly involved in regulating the expression of angiogenin. We have shown that angiogenin participates in the inhibition of protein translation in response to ER stress by cleaving transfer RNA and generating tiRNAs (stress-induced tRNA fragments) that suppress protein translation by interfering with the translation initiation complex. Angiogenin promotes cell survival by reducing ER stress-induced apoptosis, ANG knockout mice are more sensitive to acute tubular necrotic lesions induced by tunicamycin. In addition to the cell-autonomous effects of angiogenin, we also characterized the mechanisms by which Angiogenin is secreted by the renal epithelium under ER stress. Angiogenin is secreted in a conventional manner under the control of the transcriptional factors NF-kB and sXBP1. As such, the regulation of angiogenin is similar to Interleukin-6. We also demonstrated that Angiogenin induces macrophage polarization to a pro-inflammatory phenotype. Finally, considering that angiogenin is secreted by the renal epithelium under stress, we have shown that angiogenin may be a noninvasive marker of kidney injury. Angiogenin can be quantified in the urine of patients with kidney disease, its urinary concentration is correlated to the urinary concentration of Retinol Binding Protein (a low molecular weight protein marker of tubular dysfunction), but not with that of Albumin . In addition, the urinary concentration of angiogenin is significantly higher in the urine of renal transplant patients whose renal biopsy highlights tubulitis lesions (cell acute rejection and BK virus associated nephropathy) than in the urine of patients without histological tubular damage (antibody-mediated rejection, or no visible histological lesions). We have demonstrated by immuno-histochemistry a tubular nuclear localization of the activated transcriptional factor sXBP1 in the biopsies of patients with high tubulitis score, suggesting a potential relationship between the secretion of Angiogenin and the activation of transcriptional factor sXBP1 within an inflammatory environment. To conclude, we have described Angiogenin as a new mediator of the integrated ER stress response, and characterized its cell- and non-cell-autonomous biological functions. Our study have identified urinary angiogenin as a potential marker of ongoing kidney tubular injuries