Добірка наукової літератури з теми "Resonant inelastic X-Ray"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Resonant inelastic X-Ray".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Resonant inelastic X-Ray":

1

Abbamonte, Peter. "Resonant Inelastic X-ray Scattering." Synchrotron Radiation News 25, no. 4 (July 30, 2012): 2. http://dx.doi.org/10.1080/08940886.2012.700840.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Platzman, P. M., and E. D. Isaacs. "Resonant inelastic x-ray scattering." Physical Review B 57, no. 18 (May 1, 1998): 11107–14. http://dx.doi.org/10.1103/physrevb.57.11107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ma, Yanjun. "X-ray resonant inelastic scattering." Journal of Electron Spectroscopy and Related Phenomena 79 (May 1996): 131–34. http://dx.doi.org/10.1016/0368-2048(96)02819-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Caciuffo, Roberto, and Gerard H. Lander. "X-ray synchrotron radiation studies of actinide materials." Journal of Synchrotron Radiation 28, no. 6 (November 1, 2021): 1692–708. http://dx.doi.org/10.1107/s1600577521009413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
By reviewing a selection of X-ray diffraction (XRD), resonant X-ray scattering (RXS), X-ray magnetic circular dichroism (XMCD), resonant and non-resonant inelastic scattering (RIXS, NIXS), and dispersive inelastic scattering (IXS) experiments, the potential of synchrotron radiation techniques in studying lattice and electronic structure, hybridization effects, multipolar order and lattice dynamics in actinide materials is demonstrated.
5

van den Brink, Jeroen, and Michel van Veenendaal. "Magnetic Resonant Inelastic X-ray Scattering." Synchrotron Radiation News 25, no. 4 (July 30, 2012): 29–32. http://dx.doi.org/10.1080/08940886.2012.700845.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hill, J. P., C. C. Kao, W. A. L. Caliebe, M. Matsubara, A. Kotani, J. L. Peng, and R. L. Greene. "Resonant Inelastic X-Ray Scattering inNd2CuO4." Physical Review Letters 80, no. 22 (June 1, 1998): 4967–70. http://dx.doi.org/10.1103/physrevlett.80.4967.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Harada, Yoshihisa. "Resonant Inelastic X-ray Scattering (RIXS)." Synchrotron Radiation News 31, no. 2 (March 4, 2018): 2. http://dx.doi.org/10.1080/08940886.2018.1435947.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hämäläinen, K., and S. Manninen. "Resonant and non-resonant inelastic x-ray scattering." Journal of Physics: Condensed Matter 13, no. 34 (August 9, 2001): 7539–55. http://dx.doi.org/10.1088/0953-8984/13/34/306.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kao, Chi-Chang. "Workshop on inelastic and resonant inelastic x-ray scattering." Synchrotron Radiation News 10, no. 5 (September 1997): 8–9. http://dx.doi.org/10.1080/08940889708260906.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ishii, K., K. Ikeuchi, I. Jarrige, J. Mizuki, H. Hiraka, K. Yamada, K. Tsutsui, et al. "Resonant inelastic X-ray scattering of La2Cu0.95Ni0.05O4." Physica C: Superconductivity and its Applications 470 (December 2010): S155—S157. http://dx.doi.org/10.1016/j.physc.2009.11.171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Resonant inelastic X-Ray":

1

Hobbs, Sarah. "Development of resonant inelastic X-ray scattering spectroscopy." Thesis, University of Southampton, 2012. https://eprints.soton.ac.uk/349475/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This research focuses on the development of Resonant Inelastic X-ray Scattering spectroscopy (RIXS) as a tool in homogeneous catalysis by looking at 3d transition metal compounds and specifically Cr(salen) epoxidation catalysts. Previous studies have demonstrated the sensitivity of transition metal K-edge X-ray absorption pre-edge and edge features to their chemical environment, but the exact origins are unassigned. The aim of this study is to bring together a collection of complementary, and some novel, X-ray techniques to assign these features and obtain more detailed structural and electronic information on the systems under investigation. Novel high energy resolution data on transition metal complexes have been obtained and the pre-edge region has been simulated with the FEFF9 multiple scattering code. The increase in spectral structure compared to normal XANES allows for a more detailed analysis and as such, provides detailed insights in the electronic properties. L-edge XAS data obtained using soft X-rays enabled the determination of crystal field parameters, which were compared with other X-ray (RIXS) and optical absorption techniques. The novel RIXS experiments provide L and K-edge spectra unaffected by lifetime broadening or background from the main absorption edge. 2D images of X-ray emission as a function of absorption are obtained, revealing the relationship between them and providing direct and detailed information on the presence and position of molecular orbitals. These 1s2p RIXS experiments make use of hard X-rays enabling in-situ experiments, which are important in the field of catalysis, making it a promising tool to monitor the changing electronics of the metal centre as well as ligand coordination during the catalytic process. Whereas the electronic differences on the Cr metal as a function of salen ligand are not revealed by the current RIXS experiments, which is likely due to resolution issues, new preliminary insights in the different catalytic Cr intermediates of the epoxidation reaction have been obtained.
2

Kvashnina, Kristina. "Resonant Inelastic X-ray Scattering of Rare-Earth and Copper Systems." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7094.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Geondzhian, Andrey. "Resonant inelastic X-ray scattering as a probe of exciton-phonon coupling." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAY077/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les phonons contribuent à la diffusion inélastique résonante des rayons X (RIXS) du fait du couplage entre les degrés de liberté électronique et ceux du réseau. Contrairement à d'autres techniques sensibles aux interactions électron-phonon, la technique RIXS peut donner accès aux constantes de couplage dépendantes du moment. Des informations sur la dispersion de l'interaction électron-phonon sont très précieuses dans le contexte de la supraconductivité anisotrope conventionnelle et non conventionnelle.Nous avons considéré la contribution des phonons sur la diffusion RIXS d’un point de vue théorique. Contrairement aux études précédentes nous soulignons le rôle du couplage du réseau avec les trous de cœur. Notre modèle, avec les paramètres obtenus ab-initio, montre que même dans le cas d'un trou de coeur profond, la technique RIXS sonde le couplage exciton-phonon plutôt qu’un couplage direct électron-phonon.Cette différence conduit à des écarts quantitatifs et qualitatifs pour le couplage électron-phonon implicite par rapport à l'interprétation standard dans la littérature. Ainsi, notre objectif est de développer une approche rigoureuse pour quantifier le couplage électron-phonon dans le contexte des mesures de diffusion RIXS. La possibilité de reproduire avec précision les résultats expérimentaux à partir des calculs ab-initio, sans recourir à des paramètres ajustés, doit être considérée comme le test ultime d'une compréhension correcte de la contribution des phonons sur la diffusion RIXS.Nous commençons notre travail en considérant uniquement l’interaction trou de coeur-phonon dans le contexte de la spectroscopie par photoémission de rayons X. Nous combinons un calcul ab-initio de la fonction de réponse en espace réel avec des techniques de fonctions de Green à plusieurs corps pour reproduire les bandes latérales vibrationnelles dans les molécules SiX4 (X = H, F). L'approche que nous avons développée peut être appliquée aux matériaux cristallins.Nous examinons ensuite la contribution des phonons aux spectres d'absorption des rayons X. Contrairement aux excitations chargées générées par la photoémission par rayons X, l'absorption des rayons X crée une excitation neutre que nous approchons en tant que trou de cœur et électron excité. Nous résolvons d’abord la partie électronique du problème au niveau de l’équation de Bethe-Salpeter, puis nous habillons la quasi-particule excitonique à 2 particules résultante avec les interactions exciton-phonon en utilisant l’Ansatz des cumulants. La viabilité de cette méthode a été testée en calculant le seuil K XAS de la molécule N2 et le seuil K d’Oxygène de l’acétone. Les spectres vibrationnels obtenus concordent avec les résultats expérimentaux.Enfin, nous construisons une formulation hybride de la section transversale RIXS qui préserve la sommation explicite sur un petit nombre d'états finals, mais remplace la sommation sur les états intermédiaires, ce qui pourrait être extrêmement coûteux, par une fonction de Green. Nous avons obtenu un développement de la fonction de Green et dérivé des solutions analytiques exactes (dans la limite de non-recul) et approximatives. Le formalisme a de nouveau été testé sur le seuil K de l'acétone et est bien en accord avec l'expérience. En perspectives des travaux futurs, nous discutons de l’applicabilité de notre formalisme aux matériaux cristallins
Phonons contribute to resonant inelastic X-ray scattering (RIXS) as a consequence of the coupling between electronic and lattice degrees of freedom. Unlike other techniques that are sensitive to electron-phonon interactions, RIXS can give access to momentum dependent coupling constants. Information about the dispersion of the electron-phonon interaction is highly desirable in the context of understanding anisotropic conventional and unconventional superconductivity.We considered the phonon contribution to RIXS from the theoretical point of view. In contrast to previous studies, we emphasize the role of the core-hole lattice coupling. Our model, with parameters obtained from first principles, shows that even in the case of a deep core-hole, RIXS probes exciton-phonon coupling rather than a direct electron-phonon coupling.This difference leads to quantitative and qualitative deviations from the interpretation of the implied electron-phonon coupling from the standard view expressed in the literature. Thus, our objective is to develop a rigorous approach to quantify electron-phonon coupling within the context of RIXS measurements. The ability to accurately reproduce experimental results from first-principles calculations, without recourse to adjustable parameters, should be viewed as the ultimate test of a proper understanding of the phonon contribution to RIXS.We start by considering only the core-hole--phonon interaction within the context of X-ray photoemission spectroscopy. We combine an ab initio calculation of the real-space response function with many-body Green's functions techniques to reproduce the vibrational side-bands in SiX4 (X=H, F) molecules. The approach we developed is suitable for application to crystalline materials.We next consider the phonon contribution to X-ray absorption spectra. Unlike the charged excitations generated by X-ray photoemission, X-ray absorption creates a neutral excitation that we approximate as a core-hole and an excited electron. We first solved the electronic part of the problem on the level of the Bethe-Salpeter equation and then dressed the resulting 2-particle excitonic quasiparticle with the exciton-phonon interactions using the cumulant ansatz. The viability of this methodology was tested by calculating the N K-edge XAS of the N2 molecule and the O K-edge of acetone. The resulting vibronic spectra agreed favorably with experimental results.Finally, we construct a hybrid formulation of the RIXS cross section that preserves explicit summation over a small number of final states, but replaces the summation over intermediate states, which might be enormously expensive, with a Green's function. We develop an expansion of the Green's function and derive both analytically exact (in the no-recoil limit) and approximate solutions. The formalism was again tested on the O K-edge of acetone and agrees well with the experiment. To provide an outlook towards future work, we discuss application of the developed formalism to crystalline materials
4

Marra, Pasquale. "Theoretical approach to Direct Resonant Inelastic X-Ray Scattering on Magnets and Superconductors." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-185619.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The capability to probe the dispersion of elementary spin, charge, orbital, and lattice excitations has positioned resonant inelastic x-ray scattering (RIXS) at the forefront of photon science. In this work, we will investigate how RIXS can contribute to a deeper understanding of the orbital properties and of the pairing mechanism in unconventional high-temperature superconductors. In particular, we will show how direct RIXS spectra of magnetic excitations can reveal long-range orbital correlations in transition metal compounds, by discriminating different kind of orbital order in magnetic and antiferromagnetic systems. Moreover, we will show how RIXS spectra of quasiparticle excitations in superconductors can measure the superconducting gap magnitude, and reveal the presence of nodal points and phase differences of the superconducting order parameter on the Fermi surface. This can reveal the properties of the underlying pairing mechanism in unconventional superconductors, in particular cuprates and iron pnictides, discriminating between different superconducting order parameter symmetries, such as s, d (singlet pairing) and p wave (triplet pairing).
5

Balandeh, Shadi. "X-ray absorption and resonant inelastic X-ray scattering calculations with ligand field single cluster method on praseodymium nickel oxide." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/45392.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
RNiO3 perovskites (R=rare earth) are one of the most interesting compounds in condensed matter physics presenting various unusual physical properties. The detailed electronic structure of these materials are very controversial at the present time. The charge transfer energy and the d-d Coulomb interaction are the two very important parameters which can explain their electronic behaviours nicely. However, predicting their values has been a challenge to the science society so far. X-ray Absorption Spectroscopy (XAS) and Resonant Inelastic Scattering (RIXS) are the two very useful techniques to probe the electronic structure of a solid state system in general and predict these two energies in particular. In this thesis Multiplet Ligand Field Cluster Calculation (MLFCC) is used to calculate these two spectra, then the charge transfer energy (Δ), the covalent hopping integral(pds), and the d-d Coulomb repulsion energy Udd are obtained by fitting the calculated spectra to the experiment. In this work, the calculated XAS results are compared with the experiment and the adjusted values are introduced as Δ=2.5eV , pds=-1.9eV, Udd=7.5eV and 10Dq=0.5 eV. The low spin to high spin transition is also studied and the critical charge transfer energies and covalent hopping integrals are calculated at which the abrupt transition happens. It is also found that in almost all low spin cases the d8L9 configuration has the largest contribution to the ground state. Since the best fit of XAS is not satisfactory and displays considerable differences with the experiment, the study is followed with the RIXS calculations. Finally, the calculated RIXS results for different polarizations are compared with the experiment.It results in a smaller Δ=0.8eV and a smaller absolute value of pds=-1.4eV at which the double peak structure in XAS L3 vanishes. This could be an evidence to the fact that XAS should not be interpreted in the conventional way and the Δ should not be fitted to keep the double peak which probably has another source than the multiplet structure.
6

Scherer, Ricardo [Verfasser]. "Soft X-ray emission and resonant inelastic scattering study of polycyclic hydrocarbons / Ricardo Scherer." München : GRIN Verlag, 2019. http://d-nb.info/1193574277/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Thomas, Rowena. "Development of resonant inelastic X-ray metal catalysts scattering spectroscopy for 4d and 5d transition metal catalysts." Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/354566/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schmitt, Thorsten. "Resonant Soft X-Ray Emission Spectroscopy of Vanadium Oxides and Related Compounds." Doctoral thesis, Uppsala University, Atomic and molecular physics, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4290.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

This thesis addresses the electronic structure of vanadium and copper oxides using soft X-ray absorption (SXA) spectroscopy and resonant inelastic X-ray scattering (RIXS) at high brightness synchrotron radiation sources. In RIXS incident photons, tuned to the energy of specific absorption resonances, are inelastically scattered leaving behind a low energy valence excitation in the system studied. Effects of electron localization are reflected by the occurrence of low-energy excitations in form of dd- and charge-transfer excitations that are modelled by cluster calculations. Band-like states are dominating when the intermediate core excited state is delocalized.

RIXS at V 2p and O 1s resonances has been used to study the electronic structure of the monovalent vanadium oxides VO2 and V2O3, and of the mixed valence compounds, NaV2O5 and V6O13. For NaV2O5 and V6O13 significant contributions from localized low-energy excitations reflect the partly localized character of their valence band electronic structure, whereas VO2 and V2O3 appear mostly as band-like. Effects of carrier doping are addressed for the case of Mo doping into VO2 and reveal a quasi-rigid band behavior. In the cases of VO2 and V6O13 the temperature dependent metal-insulator transition could be monitored by following the spectral evolution of bands originating from V 3d and V 3d - O2p hybridized states. For Na2V3O7 nanotubes it was possible to selectively probe states from the apical and the basal oxygen sites of VO5 pyramids that constitute these nanotubes. Furthermore, the RIXS technique has been demonstrated to be highly valuable in characterizing the charge transfer processes that accompany lithium insertion into vanadium oxide battery cathodes. Finally, for insulating cuprates RIXS at O 1s, Cu 3p and Cu 3s resonances has been recorded at high-resolution for the detailed investigation of crystal field excitations.

9

Feng, Jiatai. "Low-energy excitations in some complex oxides by resonant inelastic X-ray scattering : RMnO3 (R = Tb, Dy) and Lu2V2O7." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les propriétés physiques intriguantes présentées dans certains oxydes complexes de métaux de transition sont attractives non seulement pour la recherche fondamentale, mais pour les applications, par exemple, la supraconductivité, la magnétorésistance colossale, la multiferroïcité. La forte corrélation électronique est à l'origine de ces comportements.La thèse contribue à la fois à l'effort expérimental de détermination de la structure électronique des systèmes fortement corrélés et à l'analyse critique des modèles théoriques les décrivant. Expérimentalement, le travail a porté sur la diffusion inélastique résonante des rayons X pour déterminer les excitations électroniques de basse énergie de l'état fondamental (excitations d-d, transfert de charge, etc.). Les expériences ont été effectuées sur la ligne de lumière SEXTANTS du synchrotron SOLEIL (France), en utilisant le spectromètre AERHA avec un haut pouvoir résolvant. L'analyse des résulats a été focalisée sur la détermination du champ cristallin des métaux de transition en jeu en utilisant la théorie des multiplets avec champ cristallin.Deux systèmes ont été étudiés: les composés multiferroïques RMnO3 (R = Tb, Dy) et un isolant de Mott ferromagnétique Lu2V2O7
The intriguing physical properties presented in some complex oxides of transition metals draw attention not only in fundamental research but also in applications, for instance, superconductivity, colossal magnetoresistance, multiferroicity. The strong electronic correlation is at the origin of these behaviours. The thesis is a contribution to both the experimental effort to determine the electronic structure of strongly correlated systems and the critical assesment of the theoretical models describing them. Experimentally, the work of is devoted to the investigations of the low-energy excitations (d-d excitations, charge transfer, …) of the ground state by resonant inelastic x-ray scattering. The experiments have been performed on the SEXTANTS beamline of SOLEIL synchrotron (France) using the high resolving power AERHA spectrometer. The analysis of the data has been focused on the determination of the the crystal field of the transition metal involved using the crystal field multiplets theory.Two systems have been investigated: the multiferroics RMnO3 (R = Tb, Dy) and the ferromagnetic Mott insulator Lu2V2O7
10

Söderström, Johan. "Soft X-ray Scattering Dynamics Close to Core Ionization Thresholds in Atoms and Molecules." Doctoral thesis, Uppsala University, Department of Physics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7832.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

In this Thesis studies of highly excited states in gas-phase atoms and molecules (He, Ne, N2, O2, N2O and CO2) using a variety of synchrotron-radiation based techniques are presented. The three techniques used most frequently are X-ray-emission-threshold-electron coincidence (XETECO), X-ray emission spectroscopy (XES) and X-ray photoelectron spectroscopy (XPS) and they are all given a brief introduction.

The fluorescence yield (FY) from doubly excited states in helium near the N=2 threshold(s) has been investigated in weak static external magnetic and electric fields, but also in a field free environment. The FY spectra in weak static magnetic fields show the importance of including the diamagnetic interaction in the theoretical models. The presence of weak static electric fields shows that even weak fields (as low as 44 V/cm) has a great impact on the observed FY spectra. Resonant XES spectra from some of the first doubly excited states in helium has been recorded in a field free environment, and compared to theory.

The XETECO technique is presented and the first XETECO results from Ne, N2, O2, CO2 and N2O are shown, together with interpretations of possible threshold dynamics. I show that XETECO can be interpreted as threshold photoelectron spectra free from post collision interaction, and can hence be compared to above threshold XPS measurements. The observed below-threshold structures in the XETECO spectra are discussed and given a tentative explanation. The results from the analysis of the N2O XETECO spectrum lead to further investigations using XPS. Results showing the vibrational parameters and vibrationally resolved cross-sections and asymmetry parameters for N2O are presented together with theoretical predictions.

Частини книг з теми "Resonant inelastic X-Ray":

1

Carra, Paolo, and Michele Fabrizio. "X-Ray Resonant Inelastic Scattering." In Core Level Spectroscopies for Magnetic Phenomena, 203–12. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-9871-5_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Harada, Yoshihisa. "Resonant Inelastic X-Ray Scattering." In Compendium of Surface and Interface Analysis, 531–37. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6156-1_86.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hague, Coryn F. "Resonant Inelastic X-ray Scattering." In Magnetism and Synchrotron Radiation, 273–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44954-x_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Brookes, N. B. "High-Resolution Soft X-ray Resonant Inelastic X-ray Scattering." In Synchrotron Light Sources and Free-Electron Lasers, 1–24. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-04507-8_75-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Brookes, N. B. "High-Resolution Soft X-ray Resonant Inelastic X-ray Scattering." In Synchrotron Light Sources and Free-Electron Lasers, 2367–90. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-23201-6_75.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ishii, Kenji. "Resonant Inelastic X-Ray Scattering in Strongly Correlated Copper Oxides." In Resonant X-Ray Scattering in Correlated Systems, 197–241. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-53227-0_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chiuzbăian, Sorin G. "A Student’s Introduction to Resonant Inelastic Soft X-ray Scattering." In Springer Proceedings in Physics, 185–210. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-03032-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Alp, E. E., W. Sturhahn, T. S. Toellner, J. Zhao, M. Hu, and D. E. Brown. "Vibrational Dynamics Studies by Nuclear Resonant Inelastic X-Ray Scattering." In Mössbauer Spectroscopy, 3–20. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0045-1_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Butorin, Sergei M. "Resonant Inelastic Soft X-Ray Scattering Spectroscopy of Light-Actinide Materials." In Actinide Nanoparticle Research, 63–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11432-8_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kim, Hun-ho. "CDW in YBa2Cu3O6.67 Under Uniaxial Pressure: Resonant Inelastic X-ray Scattering." In Uniaxial Pressure Study of Charge Density Waves in a High-T꜀ Cuprate Superconductor, 83–102. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99898-1_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Resonant inelastic X-Ray":

1

Hill, J. P. "Resonant inelastic X-ray scattering from transition metal oxides." In X-RAY AND INNER-SHELL PROCESSES: 18th International Conference. AIP, 2000. http://dx.doi.org/10.1063/1.1302762.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Iwazumi, Toshiaki. "Magnetic Circular Dichroism of Resonant Inelastic X-ray Scattering in Magnetic Materials." In X-RAY AND INNER-SHELL PROCESSES. AIP, 2003. http://dx.doi.org/10.1063/1.1536393.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kotani, Akio. "Theory of Resonant Inelastic X-ray Scattering in f and d Electron Systems." In X-RAY AND INNER-SHELL PROCESSES. AIP, 2003. http://dx.doi.org/10.1063/1.1536394.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hayashi, Hisashi. "Selective XAFS Studies of Functional Materials by Resonant Inelastic X-Ray Scattering." In X-RAY ABSORPTION FINE STRUCTURE - XAFS13: 13th International Conference. AIP, 2007. http://dx.doi.org/10.1063/1.2644678.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Marra, Pasquale. "Fingerprints of orbital physics in magnetic resonant inelastic X-ray scattering." In LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XVI: Sixteenth Training Course in the Physics of Strongly Correlated Systems. AIP, 2012. http://dx.doi.org/10.1063/1.4755829.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Moewes, A. "Resonant inelastic scattering at the 3d and 4d resonances of LaAlO[sub 3]." In X-RAY AND INNER-SHELL PROCESSES: 18th International Conference. AIP, 2000. http://dx.doi.org/10.1063/1.1302761.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Morawe, C., J. C. Peffen, R. Supruangnet, L. Braicovich, N. B. Brookes, G. Ghiringhelli, and F. Yakhou-Harris. "Graded multilayers for fully polarization resolved resonant inelastic x-ray scattering in the soft x-ray range." In SPIE Optical Engineering + Applications, edited by Christian Morawe, Ali M. Khounsary, and Shunji Goto. SPIE, 2014. http://dx.doi.org/10.1117/12.2061827.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jiang, Chang-Ming, Ian Sharp, and Jason Cooper. "Electronic Structure of CuFeO2 Photocathode Studied by Resonant Inelastic X-ray Scattering." In nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.fallmeeting.2018.161.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Higashiya, A., S. Imada, T. Murakawa, H. Fujiwara, A. Yamasaki, A. Sekiyama, S. Suga, M. Yabashi, and T. Ishikawa. "Compact Resonant Inelastic X-Ray Scattering Equipment at BL19LXU in SPring-8." In SYNCHROTRON RADIATION INSTRUMENTATION: Ninth International Conference on Synchrotron Radiation Instrumentation. AIP, 2007. http://dx.doi.org/10.1063/1.2436330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jiang, Chang-Ming, Ian Sharp, and Jason Cooper. "Electronic Structure of CuFeO2 Photocathode Studied by Resonant Inelastic X-ray Scattering." In nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.nfm.2018.161.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Resonant inelastic X-Ray":

1

V.ZIMMERMANN, M., J. P. HILL, C. C. KAO, T. GOG, C. VENKATARAMAN, A. BOMMANNAVAR, I. TSUKADA, T. MASUDA, and K. UCHINOKURA. RESONANT AND NON-RESONANT INELASTIC X-RAY SCATTERING IN CuGeO{sub 3}. Office of Scientific and Technical Information (OSTI), December 1999. http://dx.doi.org/10.2172/755035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kvashnina, Kristina. Resonant Inelastic X-ray Scattering of Rare-Earth and CopperSystems. Office of Scientific and Technical Information (OSTI), July 2007. http://dx.doi.org/10.2172/910327.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lawniczak-Jablonska, K., [Institute of Physics, Warsaw (Poland)], J. J. Jia, and J. H. Underwood. Resonant inelastic scattering in dilute magnetic semiconductors by x-ray fluorescence spectroscopy. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603587.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії