Зміст
Добірка наукової літератури з теми "Réseaux phasés d’antenne"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Réseaux phasés d’antenne".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Réseaux phasés d’antenne"
Ferrari, Chiara. "Le Square Kilometre Array (SKA) : un radiotélescope géant pour étudier l’aube et l’évolution du cosmos." Reflets de la physique, no. 67 (November 2020): 10–14. http://dx.doi.org/10.1051/refdp/202067010.
Повний текст джерелаДисертації з теми "Réseaux phasés d’antenne"
Capelli, Thomas. "Amplificateur de puissance pour réseaux phasés d’antenne 5G multi-bande en technologie ST CMOS065SOIMMW." Thesis, Bordeaux, 2022. http://www.theses.fr/2022BORD0176.
Повний текст джерелаMobile telecommunications, in order to support its insatiable needs, has been finding ways to improve its capabilities for over thirty years now. In 2019 the fifth generation (5G) is on trial to ensure connection not only to the ever-growing cell phone market, but also to the vast world of the Internet of Things (IoT). In order to meet its goals, 5G marks an unprecedented expansion in the frequency bands used. Indeed, bands up to 60 GHz and beyond are part of the network's ambitions and this implies radical technological changes that impact all dedicated electronics. New higher frequencies, higher propagation losses in the air, and higher requirements, antenna phased arrays are introduced to overcome all these constraints and impose a completely new system architecture and interface for the RF front-end of mobile communications.In this work, we propose an analysis of these phased antenna arrays and the constraints they represent particularly for power amplifiers (PA), such as the parasitic load variation and the behavior of the components generated by the non-linear behavior of the latter. An evaluation of the active load variation due to the different coupling existing in the antenna networks is proposed as well as its impact on the performance of the amplifiers, particularly in terms of power added efficiency (PAE). The behavior of nonlinearities such as third-order intermodulation products (IMD3) is shown in antenna arrays. A concept using the principle of beam generation and steering of antenna arrays is proposed, allowing for relaxing the linearity constraints of 5G amplifiers and thus allowing a reduction of their power consumption. An implementation of an AP using this principle is demonstrated in ST CMOS 65 nm PD-SOI technology at 28 GHz
Jaeck, Vincent. "Développement d’antennes de communication reconfigurables en bande C pour munitions intelligentes." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S104/document.
Повний текст джерелаNowadays wireless communications have become a useful and universal mean to exchange a wide range of information between different systems, some of them being moving, as UAVs among others. In this context we consider here the link between a projectile and a base station. The shape of the structure and the aerodynamic constraints involve the use of patch antennas in the conical front part. This class of antenna is easy to be integrated into the platform as a conformal array, while respecting space constraint. Communications have to be reliable and discrete in disturbed or hostile environment. Antennas array radiation patterns must have some specific characteristics, in particular in the case of flying objects with spin which involves the use of a switched phased array considering its roll position. A fixed-radiation pattern antenna may presents a relevant level or gain toward the interlocutor, but also toward sensitive directions, in which may be located others systems, interfering with the current communication. The solution to switch on and off vertical sub-arrays to steer the beam in the azimuthal plane seem convenient ant fitting the requirements of rotating platform. A conical phased array was studied and two prototypes were manufactured, one at ISL. Sub-arrays are distributed around the conical shape in order to be able to radiate in each direction. Moreover, each sub-array are composed of three radiating elements allowing to steer the main antenna beam in many direction (along the projectile fuze axes). A beam forming network was developed to control the 12 radiating elements conical array. The antenna array and the feeding network were characterized independently in order to optimized the phase of each radiating element. Finally, measurements were done on the whole system in the DGA-MI and ISL anechoic chambers and are in good agreement with simulation results
Campo, Clément. "Conception d'un système de contrôle d’antennes basé sur la radio logicielle pour réception et émission améliorées de données." Thesis, Poitiers, 2020. http://www.theses.fr/2020POIT2270.
Повний текст джерелаAs a wireless way to exchange information, electromagnetic waves are more omnipresent in our environment than ever. The ever increasing number of connected devices calls for a better use of the available spectrum. In the particular case of telecommunications with a projectile, which is the case of study in this thesis, communications must also be discreet and reliable, even in a hostile environment. In the general framework of telecommunications as well as in this particular field of application, antenna arrays and the dynamic spatial filtering they allow offer multiple advantages for present and future challenges. Antenna array steering requires phase coherent and phase aligned functioning from the control electronics. In a previous PhD thesis, an analog system allowed beam steering of the array embedded in a projectile towards a base station at all times during projectile flight. However, this system was only able to switch between 16 different configurations for the embedded array radiation pattern and was functional only around a 5.2 GHz working frequency. On the other hand, Software Defined Radio (SDR) uses wide-band programmable components thanks to which received or generated signals can be processed in digital baseband. Therefore, using SDR would allow for a more precise control of the radiation pattern over large frequency bandwidths. Despite these promises, this technology remains rarely used for phase coherent applications. This work hence studies possibilities provided by commercial SDR for phase coherent applications. Telecommunications with a projectile, which also require phase alignment, constitute the considered application. Linear and planar antenna arrays are studied. An antenna weighting system of 4 channels for both data reception and transmission is assembled using commercial SDR. Distinct solutions are developed for data reception or transmission in order to automate phase shift compensation between channels. Several antenna weighting and Direction of Arrival (DOA) algorithms are implemented in C++. As the available equipment does not allow the automated measurement of the radiation pattern of antenna arrays when steered by SDR, a dedicated experimental setup is proposed. The developed system performance is then quantified in an anechoic environment for arrays of different geometries, and working frequencies from 2.3 to 5.2 GHz. Depending on the measured array, the main lobe or null can be steered within 60 to more than 100° along 1 or 2 dimensions. The implemented algorithms are also used to develop a projectile tracking station based on DOA estimation of the transmitter embedded in the projectile. The resulting station is tested with several projectiles flying at a speed close to Mach 1. The projectiles are electronically followed by the system as expected from simulations. The signal to noise ratio of the station combined signals is superior to that of a single element signal by more than 5 dB, and transmitted flight data is correctly decoded
Mellouli, Moalla Dorra. "Étude comportementale et conception d'un réseau d'oscillateurs couplés intégré en technologie silicium appliqué à la commande d'un réseau d'antennes linéaire." Thesis, Poitiers, 2013. http://www.theses.fr/2013POIT2332/document.
Повний текст джерелаThe work presented in this thesis deals with the study, design, and validation of a new architecture based on the coupling of differential voltage controlled oscillators (VCO) applied to the beamsteering of a linear antenna array. After optimizing the differential VCO structure, with a graphical optimization approach while satisfying design constraints imposed, in order to minimize the phase noise and power consumption, the differential VCO was realized in NXP BiCMOS SiGe 0.25 µm process and then measured. Since the radiation direction of an antenna array depends on the phase difference imposed between the two signals on adjacent antennas, the theoretical equations modeling two coupled VCOs, and allowing the extraction of the amplitude and phase difference between the outputs signals have been presented. The last step was the realization of two arrays consisting respectively of two and four VCOs coupled through a resistor and a MOS transistor operating in the triode region. The proposed coupling approach is validated based on the obtained measurement results. Furthermore, the impact of the use of differential structures on the phase shift range obtained and thus on the beam-scanning range achieved was also presented allowing to conclude on the efficiency of the proposed architecture
Sadiq, Mohammad Nikhian. "Conception et développement de dispositifs hyperfréquences à reconfiguration rapide à partir de matériaux à transition isolant-métal (MIT) : application au dioxyde de vanadium (VO2)." Thesis, Brest, 2019. http://www.theses.fr/2019BRES0109.
Повний текст джерелаThis thesis, conducted at Lab−STICC as part of the ANR MUFRED project, focuses on the study, the design and the development of reconfigurable microwave devices based on vanadium dioxide (a metal-insulator transition material). This multidisciplinary project – from material deposition and study to the design and characterization of RF devices by way of optical control – aims to demonstrate the VO2 performances as a tuning element for fast (about ten nanoseconds) to ultra-fast (about hundred picoseconds) switching.With this aim in mind, this work begins with a characterization of vanadium dioxide as a tuning element before integrating it into reconfigurable RF devices.Thus, the first VO2 based switches, SPST, SP2T and SP4T are designed for control of the metal-insulator transition with an electrical or optical command. These switches are subsequently used in the design of reconfigurable 1-bit (relative phase shift of 0° and − 45°) and 2-bits (relative phase shift of 0°, − 90°, − 180° and − 270°) switched lines True Time Delay phase shifters.Then this study focuses on the proof-of-concept targeted by the MUFRED project, i.e. a reconfigurable phased array antennas based on VO2 switches. The performances of each RF blocks involved in its design are described, presented and analyzed.The first demonstrators carried out make it possible to foresee prospects for improvement in the short and long term
Herth, Étienne. "Conception et réalisation d’antennes en bande millimétrique à base de MEMS RF pour des applications télécoms et en contrôle non destructif." Thesis, Lille 1, 2009. http://www.theses.fr/2009LIL10174.
Повний текст джерелаWe have seen recently a great interest in high data rate (>100 Mbit s-1) indoor Local Area Networks combining ad hoc and more traditional networks. However, at 60GHz in a confined environment, theses networks pose issues due to multipath effects and fadings. One solution to combat effectively against these problems is the development of band beam agility antenna based RF-MEMS. In this context, the objective of this thesis was to make and to use jointly the performances of fabricated capacitve RF-MEMS (MicroElectroMechanical System) switches and new antenna structures. However, the maturity of these RF MEMS devices is not yet realised, and problems related to the dielectric reliability or mechanical reliability are unsolved. Thus, in order to improve their lifetime, this study focuses at first on optimizing the mechanical stress of membranes and understanding the properties of various films of hydrogenated amorphous silicon nitrides SiNx : H, elaborated by employing plasma enhanced chemical vapor deposited (PECVD) techniques evaluated through optical, structural and electrical experimental results. The second part of this work concerns the design, fabrication and characterization of new antennas millimeter wave excited by a coplanar line CPWFA (CPW Fed Aperture). The design of the radiating element suspended on packaging Level 0 allows in particular RF MEMS to ensure a good behaviour in a real environment. These antennas, developed on a process “Wafer Scale Packaging” propose, an excellent performance in terms of efficiency (>80%), polarization (circular,linear or mixed) and also overall wafer-level packaging at low cost. These systems fabricated on high resistivity (HR) GaAs substrate for a compatible monolithic integration of an “above IC” type process offers great potential for many telecommunications applications and others e.g. non distructive testing (NDT)
Kriegl, Roberta. "A flexible coil array for high resolution magnetic resonance imaging at 7 Tesla." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112425/document.
Повний текст джерелаMagnetic resonance imaging (MRI), among other imaging techniques, has become a major backbone of modern medical diagnostics. MRI enables the non-invasive combined, identification of anatomical structures, functional and chemical properties, especially in soft tissues. Nonetheless, applications requiring very high spatial and/or temporal resolution are often limited by the available signal-to-noise ratio (SNR) in MR experiments. Since first clinical applications, image quality in MRI has been constantly improved by applying one or several of the following strategies: increasing the static magnetic field strength, improvement of the radiofrequency (RF) detection system, development of specialized acquisition sequences and optimization of image reconstruction techniques. This work is concerned with the development of highly sensitive RF detection systems for biomedical ultra-high field MRI. In particular, auto-resonant RF coils based on transmission line technology are investigated. These resonators may be fabricated on flexible substrate which enables form-fitting of the RF detector to the target anatomy, leading to a significant SNR gain. The main objective of this work is the development of a flexible RF coil array for high-resolution MRI on a human whole-body 7 T MR scanner. With coil arrays, the intrinsically high SNR of small surface coils may be exploited for an extended field of view. Further, parallel imaging techniques are accessible with RF array technology, allowing acceleration of the image acquisition. Secondly, in this PhD project a novel design for transmission line resonators is developed, that brings an additional degree of freedom in geometric design and enables the fabrication of large multi-turn resonators for high field MR applications. This thesis describes the development, successful implementation and evaluation of novel, mechanically flexible RF devices by analytical and 3D electromagnetic simulations, in bench measurements and in MRI experiments