Зміст
Добірка наукової літератури з теми "Réseaux de neurones non supervisé"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Réseaux de neurones non supervisé".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Réseaux de neurones non supervisé"
Dechemi, N., T. Benkaci, and A. Issolah. "Modélisation des débits mensuels par les modèles conceptuels et les systèmes neuro-flous." Revue des sciences de l'eau 16, no. 4 (April 12, 2005): 407–24. http://dx.doi.org/10.7202/705515ar.
Повний текст джерелаHeddam, Salim, Abdelmalek Bermad, and Noureddine Dechemi. "Modélisation de la dose de coagulant par les systèmes à base d’inférence floue (ANFIS) application à la station de traitement des eaux de Boudouaou (Algérie)." Revue des sciences de l’eau 25, no. 1 (March 28, 2012): 1–17. http://dx.doi.org/10.7202/1008532ar.
Повний текст джерелаLOTFI, Siham, and Hicham MESK. "Prévision de Défaillance Des entreprises : Apport des Réseaux de Neurones Artificiels." International Journal of Financial Accountability, Economics, Management, and Auditing (IJFAEMA) 3, no. 3 (June 1, 2021): 70–79. http://dx.doi.org/10.52502/ijfaema.v3i3.53.
Повний текст джерелаLek, S., I. Dimopoulos, M. Derraz, and Y. El Ghachtoul. "Modélisation de la relation pluie-débit à l'aide des réseaux de neurones artificiels." Revue des sciences de l'eau 9, no. 3 (April 12, 2005): 319–31. http://dx.doi.org/10.7202/705255ar.
Повний текст джерелаVazquez, J., M. Zug, D. Bellefleur, B. Grandjean, and O. Scrivener. "Utilisation d'un réseau de neurones pour appliquer le modèle de Muskingum aux réseaux d'assainissement." Revue des sciences de l'eau 12, no. 3 (April 12, 2005): 577–95. http://dx.doi.org/10.7202/705367ar.
Повний текст джерелаFortin, V., T. B. M. J. Ouarda, P. F. Rasmussen, and B. Bobée. "Revue bibliographique des méthodes de prévision des débits." Revue des sciences de l'eau 10, no. 4 (April 12, 2005): 461–87. http://dx.doi.org/10.7202/705289ar.
Повний текст джерелаKatlane, Faten, and Mohamed Saber Naceur. "La combinaison d'indicateurs de changement pour le suivi de l'évolution de l'occupation du sol à partir d'imagerie satellitales." Revue Française de Photogrammétrie et de Télédétection, no. 203 (April 8, 2014): 43–48. http://dx.doi.org/10.52638/rfpt.2013.29.
Повний текст джерелаWils, Thierry, and Aziz Rhnima. "Taxonomie des conflits entre le travail et la famille : une analyse multidimensionnelle à l’aide de cartes auto-organisatrices." Articles 70, no. 3 (October 5, 2015): 432–56. http://dx.doi.org/10.7202/1033405ar.
Повний текст джерелаДисертації з теми "Réseaux de neurones non supervisé"
Galtier, Mathieu. "Une approche mathématique de l'apprentissage non-supervisé dans les réseaux de neurones récurrents." Phd thesis, École Nationale Supérieure des Mines de Paris, 2011. http://pastel.archives-ouvertes.fr/pastel-00667368.
Повний текст джерелаYin, Hao. "Étude des réseaux de neurones en mode non supervisé : application à la reconnaissance des formes." Compiègne, 1992. http://www.theses.fr/1992COMPD524.
Повний текст джерелаCherif, Aymen. "Réseaux de neurones, SVM et approches locales pour la prévision de séries temporelles." Thesis, Tours, 2013. http://www.theses.fr/2013TOUR4003/document.
Повний текст джерелаTime series forecasting is a widely discussed issue for many years. Researchers from various disciplines have addressed it in several application areas : finance, medical, transportation, etc. In this thesis, we focused on machine learning methods : neural networks and SVM. We have also been interested in the meta-methods to push up the predictor performances, and more specifically the local models. In a divide and conquer strategy, the local models perform a clustering over the data sets before different predictors are affected into each obtained subset. We present in this thesis a new algorithm for recurrent neural networks to use them as local predictors. We also propose two novel clustering techniques suitable for local models. The first is based on Kohonen maps, and the second is based on binary trees
Manenti, Céline. "Découverte d'unités linguistiques à l'aide de méthodes d'apprentissage non supervisé." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30074.
Повний текст джерелаThe discovery of elementary linguistic units (phonemes, words) only from sound recordings is an unresolved problem that arouses a strong interest from the community of automatic speech processing, as evidenced by the many recent contributions of the state of the art. During this thesis, we focused on using neural networks to answer the problem. We approached the problem using neural networks in a supervised, poorly supervised and multilingual manner. We have developed automatic phoneme segmentation and phonetic classification tools based on convolutional neural networks. The automatic segmentation tool obtained 79% F-measure on the BUCKEYE conversational speech corpus. This result is similar to a human annotator according to the inter-annotator agreement provided by the creators of the corpus. In addition, it does not need a lot of data (about ten minutes per speaker and 5 different speakers) to be effective. In addition, it is portable to other languages (especially for poorly endowed languages such as xitsonga). The phonetic classification system makes it possible to set the various parameters and hyperparameters that are useful for an unsupervised scenario. In the unsupervised context, the neural networks (Auto-Encoders) allowed us to generate new parametric representations, concentrating the information of the input frame and its neighboring frames. We studied their utility for audio compression from the raw signal, for which they were effective (low RMS, even at 99% compression). We also carried out an innovative pre-study on a different use of neural networks, to generate vectors of parameters not from the outputs of the layers but from the values of the weights of the layers. These parameters are designed to mimic Linear Predictive Coefficients (LPC). In the context of the unsupervised discovery of phoneme-like units (called pseudo-phones in this memory) and the generation of new phonetically discriminative parametric representations, we have coupled a neural network with a clustering tool (k-means ). The iterative alternation of these two tools allowed the generation of phonetically discriminating parameters for the same speaker: low rates of intra-speaker ABx error of 7.3% for English, 8.5% for French and 8 , 4% for Mandarin were obtained. These results allow an absolute gain of about 4% compared to the baseline (conventional parameters MFCC) and are close to the best current approaches (1% more than the winner of the Zero Resource Speech Challenge 2017). The inter-speaker results vary between 12% and 15% depending on the language, compared to 21% to 25% for MFCCs
Delsert, Stéphane. "Classification interactive non supervisée de données multidimensionnelles par réseaux de neurones à apprentissage cométitif." Lille 1, 1996. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/1996/50376-1996-214.pdf.
Повний текст джерелаBernert, Marie. "Développement d'un réseau de neurones STDP pour le tri en ligne et non-supervisé de potentiels d'action." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAS001.
Повний текст джерелаPattern recognition is a fundamental task for living beings and is perform very efficiently by the brain. Artificial deep neural networks are making quick progress in reproducing these performance and have many applications such as image recognition or natural language processing. However, they require extensive training on large datasets and heavy computations. A promising alternative are spiking neural networks, which closely mimic what happens in the brain, with spiking neurons and spike-timing dependent plasticity (STDP). They are able to perform unsupervised learning and have been used for visual or auditory pattern recognition. However, for now applications using STDP networks lag far behind classical deep learning. Developing new applications for this kind of networks is all the more at stake that they could be implemented in low power neuromorphic hardware that currently undergoes important developments, in particular with analog miniaturized memristive devices able to mimic synaptic plasticity. In this work, we chose to develop an STDP neural network to perform a specific task: spike-sorting, which is a crucial problem in neuroscience. Brain implants based on microelectrode arrays are able to record the activity of individual neurons, appearing in the recorded signal as peak potential variations called action potentials. However, several neurons can be recorded by the same electrode. The goal of spike-sorting is to extract and separate the activity of different neural cells from a common extracellular recording taking advantage of the fact that the shape of an action potential on an electrode depends on the neuron it stems from. Thus spike-sorting can be seen as an unsupervised pattern recognition task where the goal is to detect and classify different waveforms. Most classical spike-sorting approaches use three separated steps: detecting all action potentials in the signal, extract features characterizing their shapes, and separating these features into clusters that should correspond to different neural cells. Though online methods exists, most widespread spike-sorting methods are offline or require an offline preprocessing step, which is not compatible with online application such as Brain-computer interfaces (BCI). Moreover, the development of always larger microelectrode arrays creates a need for fully automatic and computationally efficient algorithms. Using an STDP network brings a new approach to meet these requirements. We designed a network that take the electrode signal as an input, and output spikes that correspond to the spiking activity of the recorded neural cells. It is organized into several layers, designed to achieve different processing steps, connected in feedforward way. The first layer, composed of neurons acting as sensory neurons, convert the input signal into spike train. The following layers are able to learn patterns from the previous layer thanks to STDP rules. Each layer implement different mechanisms that improve their performance, such as resource-dependent STDP, intrinsic plasticity, plasticity triggered by inhibition, or neuron models having rebound spiking properties. An attention mechanism has been implemented to make the network sensitive only to part of the signal containing action potentials. This network was first designed to process data from a single electrode, and then adapted to process data from multiple electrodes. It has been tested on simulated data, which allowed to compare the network output to the known ground truth, and also on real extracellular recordings associated with intracellular recordings that give an incomplete ground truth. Different versions of the network were evaluated and compared to other spike-sorting algorithms, and found to give very satisfying results. Following these software simulations, we initiated an FPGA implementation of the method, which constitutes a first step toward embedded neuromorphic implementation
Buhot, Arnaud. "Etude de propriétés d'apprentissage supervisé et non supervisé par des méthodes de Physique Statistique." Phd thesis, Université Joseph Fourier (Grenoble), 1999. http://tel.archives-ouvertes.fr/tel-00001642.
Повний текст джерелаSchutz, Georges. "Adaptations et applications de modèles mixtes de réseaux de neurones à un processus industriel." Phd thesis, Université Henri Poincaré - Nancy I, 2006. http://tel.archives-ouvertes.fr/tel-00115770.
Повний текст джерелаartificiels pour améliorer le contrôle de processus industriels
complexes, caractérisés en particulier par leur aspect temporel.
Les motivations principales pour traiter des séries temporelles
sont la réduction du volume de données, l'indexation pour la
recherche de similarités, la localisation de séquences,
l'extraction de connaissances (data mining) ou encore la
prédiction.
Le processus industriel choisi est un four à arc
électrique pour la production d'acier liquide au Luxembourg. Notre
approche est un concept de contrôle prédictif et se base sur des
méthodes d'apprentissage non-supervisé dans le but d'une
extraction de connaissances.
Notre méthode de codage se base sur
des formes primitives qui composent les signaux. Ces formes,
composant un alphabet de codage, sont extraites par une méthode
non-supervisée, les cartes auto-organisatrices de Kohonen (SOM).
Une méthode de validation des alphabets de codage accompagne
l'approche.
Un sujet important abordé durant ces recherches est
la similarité de séries temporelles. La méthode proposée est
non-supervisée et intègre la capacité de traiter des séquences de
tailles variées.
Lefort, Mathieu. "Apprentissage spatial de corrélations multimodales par des mécanismes d'inspiration corticale." Phd thesis, Université Nancy II, 2012. http://tel.archives-ouvertes.fr/tel-00756687.
Повний текст джерелаGermain, Mathieu. "L’estimation de distribution à l'aide d'un autoencodeur." Mémoire, Université de Sherbrooke, 2015. http://hdl.handle.net/11143/6910.
Повний текст джерела