Зміст
Добірка наукової літератури з теми "Réseau neuronal récurrent profond"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Réseau neuronal récurrent profond".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Réseau neuronal récurrent profond"
ASSIS, Y., A. NAFI, X. NI, A. SAMET, and G. GUARINO. "Analyse textuelle des RPQS pour la constitution de bases de connaissances." 3, no. 3 (March 22, 2021): 31–36. http://dx.doi.org/10.36904/tsm/202103031.
Повний текст джерелаGuan, Guan, Shupeng Xue, Hui Peng, Naiqiu Shu, Wei Gao, and David Wenzhong Gao. "Contact Failure Diagnosis for GIS Plug-In Connector by Magnetic Field Measurements and Deep Neural Network Classifiers Diagnostic des défauts de contact du connecteur SIG basé sur la mesure du champ magnétique et le classificateur du réseau neuronal profond." IEEE Canadian Journal of Electrical and Computer Engineering, 2022, 1–10. http://dx.doi.org/10.1109/icjece.2022.3159806.
Повний текст джерелаДисертації з теми "Réseau neuronal récurrent profond"
Cîrstea, Bogdan-Ionut. "Contribution à la reconnaissance de l'écriture manuscrite en utilisant des réseaux de neurones profonds et le calcul quantique." Electronic Thesis or Diss., Paris, ENST, 2018. http://www.theses.fr/2018ENST0059.
Повний текст джерелаIn this thesis, we provide several contributions from the fields of deep learning and quantum computation to handwriting recognition. We begin by integrating some of the more recent deep learning techniques (such as dropout, batch normalization and different activation functions) into convolutional neural networks and show improved performance on the well-known MNIST dataset. We then propose Tied Spatial Transformer Networks (TSTNs), a variant of Spatial Transformer Networks (STNs) with shared weights, as well as different training variants of the TSTN. We show improved performance on a distorted variant of the MNIST dataset. In another work, we compare the performance of Associative Long Short-Term Memory (ALSTM), a recently introduced recurrent neural network (RNN) architecture, against Long Short-Term Memory (LSTM), on the Arabic handwriting recognition IFN-ENIT dataset. Finally, we propose a neural network architecture, which we name a hybrid classical-quantum neural network, which can integrate and take advantage of quantum computing. While our simulations are performed using classical computation (on a GPU), our results on the Fashion-MNIST dataset suggest that exponential improvements in computational requirements might be achievable, especially for recurrent neural networks trained for sequence classification
Dahmani, Sara. "Synthèse audiovisuelle de la parole expressive : modélisation des émotions par apprentissage profond." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0137.
Повний текст джерела: The work of this thesis concerns the modeling of emotions for expressive audiovisual textto-speech synthesis. Today, the results of text-to-speech synthesis systems are of good quality, however audiovisual synthesis remains an open issue and expressive synthesis is even less studied. As part of this thesis, we present an emotions modeling method which is malleable and flexible, and allows us to mix emotions as we mix shades on a palette of colors. In the first part, we present and study two expressive corpora that we have built. The recording strategy and the expressive content of these corpora are analyzed to validate their use for the purpose of audiovisual speech synthesis. In the second part, we present two neural architectures for speech synthesis. We used these two architectures to model three aspects of speech : 1) the duration of sounds, 2) the acoustic modality and 3) the visual modality. First, we use a fully connected architecture. This architecture allowed us to study the behavior of neural networks when dealing with different contextual and linguistic descriptors. We were also able to analyze, with objective measures, the network’s ability to model emotions. The second neural architecture proposed is a variational auto-encoder. This architecture is able to learn a latent representation of emotions without using emotion labels. After analyzing the latent space of emotions, we presented a procedure for structuring it in order to move from a discrete representation of emotions to a continuous one. We were able to validate, through perceptual experiments, the ability of our system to generate emotions, nuances of emotions and mixtures of emotions, and this for expressive audiovisual text-to-speech synthesis
Biasutto-Lervat, Théo. "Modélisation de la coarticulation multimodale : vers l'animation d'une tête parlante intelligible." Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0019.
Повний текст джерелаThis thesis deals with neural network based coarticulation modeling, and aims to synchronize facial animation of a 3D talking head with speech. Predicting articulatory movements is not a trivial task, as it is well known that production of a phoneme is greatly affected by its phonetic context, a phoneme called coarticulation. We propose in this work a coarticulation model, i.e. a model able to predict spatial trajectories of articulators from speech. We rely on a sequential model, the recurrent neural networks, and more specifically the Gated Recurrent Units, which are able to consider the articulation dynamic as a central component of its modeling. Unfortunately, the typical amount of data in articulatory and audiovisual databases seems to be quite low for a deep learning approach. To overcome this difficulty, we propose to integrate articulatory knowledge into the networks during its initialization. The RNNs robustness allow uw to apply our coarticulation model to predict both face and tongue movements, in french and german for the face, and in english and german for the tongue. Evaluation has been conducted through objective measures of the trajectories, and through experiments to ensure a complete reach of critical articulatory targets. We also conducted a subjective evaluation to attest the perceptual quality of the predicted articulation once applied to our facial animation system. Finally, we analyzed the model after training to explore phonetic knowledges learned
Haykal, Vanessa. "Modélisation des séries temporelles par apprentissage profond." Thesis, Tours, 2019. http://www.theses.fr/2019TOUR4019.
Повний текст джерелаTime series prediction is a problem that has been addressed for many years. In this thesis, we have been interested in methods resulting from deep learning. It is well known that if the relationships between the data are temporal, it is difficult to analyze and predict accurately due to non-linear trends and the existence of noise specifically in the financial and electrical series. From this context, we propose a new hybrid noise reduction architecture that models the recursive error series to improve predictions. The learning process fusessimultaneouslyaconvolutionalneuralnetwork(CNN)andarecurrentlongshort-term memory network (LSTM). This model is distinguished by its ability to capture globally a variety of hybrid properties, where it is able to extract local signal features, to learn long-term and non-linear dependencies, and to have a high noise resistance. The second contribution concerns the limitations of the global approaches because of the dynamic switching regimes in the signal. We present a local unsupervised modification with our previous architecture in order to adjust the results by adapting the Hidden Markov Model (HMM). Finally, we were also interested in multi-resolution techniques to improve the performance of the convolutional layers, notably by using the variational mode decomposition method (VMD)
Etienne, Caroline. "Apprentissage profond appliqué à la reconnaissance des émotions dans la voix." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS517.
Повний текст джерелаThis thesis deals with the application of artificial intelligence to the automatic classification of audio sequences according to the emotional state of the customer during a commercial phone call. The goal is to improve on existing data preprocessing and machine learning models, and to suggest a model that is as efficient as possible on the reference IEMOCAP audio dataset. We draw from previous work on deep neural networks for automatic speech recognition, and extend it to the speech emotion recognition task. We are therefore interested in End-to-End neural architectures to perform the classification task including an autonomous extraction of acoustic features from the audio signal. Traditionally, the audio signal is preprocessed using paralinguistic features, as part of an expert approach. We choose a naive approach for data preprocessing that does not rely on specialized paralinguistic knowledge, and compare it with the expert approach. In this approach, the raw audio signal is transformed into a time-frequency spectrogram by using a short-term Fourier transform. In order to apply a neural network to a prediction task, a number of aspects need to be considered. On the one hand, the best possible hyperparameters must be identified. On the other hand, biases present in the database should be minimized (non-discrimination), for example by adding data and taking into account the characteristics of the chosen dataset. We study these aspects in order to develop an End-to-End neural architecture that combines convolutional layers specialized in the modeling of visual information with recurrent layers specialized in the modeling of temporal information. We propose a deep supervised learning model, competitive with the current state-of-the-art when trained on the IEMOCAP dataset, justifying its use for the rest of the experiments. This classification model consists of a four-layer convolutional neural networks and a bidirectional long short-term memory recurrent neural network (BLSTM). Our model is evaluated on two English audio databases proposed by the scientific community: IEMOCAP and MSP-IMPROV. A first contribution is to show that, with a deep neural network, we obtain high performances on IEMOCAP, and that the results are promising on MSP-IMPROV. Another contribution of this thesis is a comparative study of the output values of the layers of the convolutional module and the recurrent module according to the data preprocessing method used: spectrograms (naive approach) or paralinguistic indices (expert approach). We analyze the data according to their emotion class using the Euclidean distance, a deterministic proximity measure. We try to understand the characteristics of the emotional information extracted autonomously by the network. The idea is to contribute to research focused on the understanding of deep neural networks used in speech emotion recognition and to bring more transparency and explainability to these systems, whose decision-making mechanism is still largely misunderstood
Szilas, Nicolas. "Apprentissage dans les réseaux récurrents pour la modélisation mécanique et étude de leurs interactions avec l'environnement." Phd thesis, Grenoble INPG, 1995. http://tel.archives-ouvertes.fr/tel-00345820.
Повний текст джерелаJavid, Gelareh. "Contribution à l’estimation de charge et à la gestion optimisée d’une batterie Lithium-ion : application au véhicule électrique." Thesis, Mulhouse, 2021. https://www.learning-center.uha.fr/.
Повний текст джерелаThe State Of Charge (SOC) estimation is a significant issue for safe performance and the lifespan of Lithium-ion (Li-ion) batteries, which is used to power the Electric Vehicles (EVs). In this thesis, the accuracy of SOC estimation is investigated using Deep Recurrent Neural Network (DRNN) algorithms. To do this, for a one cell Li-ion battery, three new SOC estimator based on different DRNN algorithms are proposed: a Bidirectional LSTM (BiLSTM) method, Robust Long-Short Term Memory (RoLSTM) algorithm, and a Gated Recurrent Units (GRUs) technique. Using these, one is not dependent on precise battery models and can avoid complicated mathematical methods especially in a battery pack. In addition, these models are able to precisely estimate the SOC at varying temperature. Also, unlike the traditional recursive neural network where content is re-written at each time, these networks can decide on preserving the current memory through the proposed gateways. In such case, it can easily transfer the information over long paths to receive and maintain long-term dependencies. Comparing the results indicates the BiLSTM network has a better performance than the other two. Moreover, the BiLSTM model can work with longer sequences from two direction, the past and the future, without gradient vanishing problem. This feature helps to select a sequence length as much as a discharge period in one drive cycle, and to have more accuracy in the estimation. Also, this model well behaved against the incorrect initial value of SOC. Finally, a new BiLSTM method introduced to estimate the SOC of a pack of batteries in an Ev. IPG Carmaker software was used to collect data and test the model in the simulation. The results showed that the suggested algorithm can provide a good SOC estimation without using any filter in the Battery Management System (BMS)
Mehr, Éloi. "Unsupervised Learning of 3D Shape Spaces for 3D Modeling." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS566.
Повний текст джерелаEven though 3D data is becoming increasingly more popular, especially with the democratization of virtual and augmented experiences, it remains very difficult to manipulate a 3D shape, even for designers or experts. Given a database containing 3D instances of one or several categories of objects, we want to learn the manifold of plausible shapes in order to develop new intelligent 3D modeling and editing tools. However, this manifold is often much more complex compared to the 2D domain. Indeed, 3D surfaces can be represented using various embeddings, and may also exhibit different alignments and topologies. In this thesis we study the manifold of plausible shapes in the light of the aforementioned challenges, by deepening three different points of view. First of all, we consider the manifold as a quotient space, in order to learn the shapes’ intrinsic geometry from a dataset where the 3D models are not co-aligned. Then, we assume that the manifold is disconnected, which leads to a new deep learning model that is able to automatically cluster and learn the shapes according to their typology. Finally, we study the conversion of an unstructured 3D input to an exact geometry, represented as a structured tree of continuous solid primitives
Baylon, Fuentes Antonio. "Ring topology of an optical phase delayed nonlinear dynamics for neuromorphic photonic computing." Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2047/document.
Повний текст джерелаNowadays most of computers are still based on concepts developed more than 60 years ago by Alan Turing and John von Neumann. However, these digital computers have already begun to reach certain physical limits of their implementation via silicon microelectronics technology (dissipation, speed, integration limits, energy consumption). Alternative approaches, more powerful, more efficient and with less consume of energy, have constituted a major scientific issue for several years. Many of these approaches naturally attempt to get inspiration for the human brain, whose operating principles are still far from being understood. In this line of research, a surprising variation of recurrent neural network (RNN), simpler, and also even sometimes more efficient for features or processing cases, has appeared in the early 2000s, now known as Reservoir Computing (RC), which is currently emerging new brain-inspired computational paradigm. Its structure is quite similar to the classical RNN computing concepts, exhibiting generally three parts: an input layer to inject the information into a nonlinear dynamical system (Write-In), a second layer where the input information is projected in a space of high dimension called dynamical reservoir and an output layer from which the processed information is extracted through a so-called Read-Out function. In RC approach the learning procedure is performed in the output layer only, while the input and reservoir layer are randomly fixed, being the main originality of RC compared to the RNN methods. This feature allows to get more efficiency, rapidity and a learning convergence, as well as to provide an experimental implementation solution. This PhD thesis is dedicated to one of the first photonic RC implementation using telecommunication devices. Our experimental implementation is based on a nonlinear delayed dynamical system, which relies on an electro-optic (EO) oscillator with a differential phase modulation. This EO oscillator was extensively studied in the context of the optical chaos cryptography. Dynamics exhibited by such systems are indeed known to develop complex behaviors in an infinite dimensional phase space, and analogies with space-time dynamics (as neural network ones are a kind of) are also found in the literature. Such peculiarities of delay systems supported the idea of replacing the traditional RNN (usually difficult to design technologically) by a nonlinear EO delay architecture. In order to evaluate the computational power of our RC approach, we implement two spoken digit recognition tests (classification tests) taken from a standard databases in artificial intelligence TI-46 and AURORA-2, obtaining results very close to state-of-the-art performances and establishing state-of-the-art in classification speed. Our photonic RC approach allowed us to process around of 1 million of words per second, improving the information processing speed by a factor ~3
Mlynarski, Pawel. "Apprentissage profond pour la segmentation des tumeurs cérébrales et des organes à risque en radiothérapie." Thesis, Université Côte d'Azur (ComUE), 2019. http://www.theses.fr/2019AZUR4084.
Повний текст джерелаMedical images play an important role in cancer diagnosis and treatment. Oncologists analyze images to determine the different characteristics of the cancer, to plan the therapy and to observe the evolution of the disease. The objective of this thesis is to propose efficient methods for automatic segmentation of brain tumors and organs at risk in the context of radiotherapy planning, using Magnetic Resonance (MR) images. First, we focus on segmentation of brain tumors using Convolutional Neural Networks (CNN) trained on MRIs manually segmented by experts. We propose a segmentation model having a large 3D receptive field while being efficient in terms of computational complexity, based on combination of 2D and 3D CNNs. We also address problems related to the joint use of several MRI sequences (T1, T2, FLAIR). Second, we introduce a segmentation model which is trained using weakly-annotated images in addition to fully-annotated images (with voxelwise labels), which are usually available in very limited quantities due to their cost. We show that this mixed level of supervision considerably improves the segmentation accuracy when the number of fully-annotated images is limited.\\ Finally, we propose a methodology for an anatomy-consistent segmentation of organs at risk in the context of radiotherapy of brain tumors. The segmentations produced by our system on a set of MRIs acquired in the Centre Antoine Lacassagne (Nice, France) are evaluated by an experienced radiotherapist